Adaptive Fault-Tolerant Control for Flexible Variable Structure Spacecraft with Actuator Saturation and Multiple Faults
Abstract
:1. Introduction
- A fault diagnosis approach was developed for the attitude systems with variable structure parameters, detects the occurrence time and amplitudes of all faults in different actuators: partial loss of effectiveness (LOE), bias, and complete failure. Finally, the FTC under the complete failure of general spacecraft has been solved firstly in the world.
- According to fault estimation, an adaptive fault-tolerant controller without actuator saturation was designed by utilizing the fast terminal sliding mode control technique, such that all the closed-loop signals of the attitude systems are finite-time convergence. Then, the FTC scheme under the actuator saturation case was further proposed; it has good tolerance capability to multiple actuator faults;
- A variable structure improved adaptive scheme was proposed where the harmonic functions based on variable structure parameters were designed. It was combined with the fault-tolerant algorithm so that the fault repair process can maintain the stability under multiple mechanical configurations and multiple faults. Finally, the control of a universal variant spacecraft is first achieved in the world.
2. Problem Statement
3. Actuator Fault Detection and Diagnosis Scheme
3.1. Neural Network Approximation
3.2. Fault Diagnosis Scheme Design
4. Fault-Tolerant Controller Design
4.1. Active FTC without Actuator Saturation
4.2. Active Anti-Saturation FTC
5. Simulation
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thongchom, C.; Roodgar, S.P.; Roudgar, S.P.; Refahati, N.; Sirimontree, S.; Keawsawasvong, S.; Titotto, S. Dynamic response of fluid-conveying hybrid smart carbon nanotubes considering slip boundary conditions under a moving nanoparticle. Mech. Adv. Mater. Struct. 2022, 7, 1–4. [Google Scholar] [CrossRef]
- Thongchom, C.; Saffari, P.R.; Refahati, N.; Saffari, P.R.; Pourbashash, H.; Sirimontree, S.; Keawsawasvong, S. An analytical study of sound transmission loss of functionally graded sandwich cylindrical nanoshell integrated with piezoelectric layers. Sci. Rep. 2022, 12, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Hang, B.; Cao, S.; Fang, Y. Adaptive anti-disturbance fault tolerant control of flexible satellites with input saturation. In Advances in Guidance, Navigation and Control; Yan, L., Duan, H., Yu, X., Eds.; Springer: Singapore, 2022; Volume 644, pp. 1277–1287. [Google Scholar]
- Ashayeri, L.; Doustmohammadi, A.; Saberi, F.F. Fault-tolerant control allocation of a flexible satellite with an infinite- dimensional model. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2021, 235, 2069–2080. [Google Scholar] [CrossRef]
- Liu, C.; Vukovich, G.; Sun, Z.; Shi, K. Observer-based fault-tolerant attitude control for spacecraft with input delay. J. Guid. Control Dyn. 2018, 41, 2041–2053. [Google Scholar] [CrossRef]
- Ren, W.; Jiang, B.; Yang, H. Singular perturbation-based fault-tolerant control of the air-breathing hypersonic vehicle. IEEE/ASME Trans. Mechatron. 2019, 24, 2562–2571. [Google Scholar] [CrossRef]
- Li, F.; Xiong, J.; Lan, X.; Bi, H.; Chen, X. NSHV trajectory prediction algorithm based on aerodynamic acceleration EMD decomposition. J. Syst. Eng. Electron. 2021, 32, 103–117. [Google Scholar]
- Sun, J.; Yi, J.; Pu, Z.; Liu, Z. Adaptive fuzzy nonsmooth backstepping output-feedback control for hypersonic vehicles with finite-time convergence. IEEE Trans. Fuzzy Syst. 2020, 28, 2320–2334. [Google Scholar] [CrossRef]
- Guo, Z.; Guo, J.; Zhou, J.; Chang, J. Robust tracking for hypersonic reentry vehicles via disturbance estimation-triggered control. IEEE Trans. Aerosp. Electron. Syst. 2020, 56, 1279–1289. [Google Scholar] [CrossRef]
- Hu, Y.; Geng, Y.; Wu, B.; Wang, D. Model-free prescribed performance control for spacecraft attitude tracking. IEEE Trans. Control Syst. Technol. 2021, 29, 165–179. [Google Scholar] [CrossRef]
- Sun, J.; Pu, Z.; Yi, J.; Liu, Z. Fixed-time control with uncertainty and measurement noise suppression for hypersonic vehicles via augmented sliding mode observers. IEEE Trans. Ind. Inform. 2020, 16, 1192–1203. [Google Scholar] [CrossRef]
- Mu, C.; Ni, Z.; Sun, C.; He, H. Air-breathing hypersonic vehicle tracking control based on adaptive dynamic programming. IEEE Trans. Neural Netw. Learn. Syst. 2017, 28, 584–598. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Ali, N.; Gao, Q. Winding inductance and performance prediction of a switched reluctance motor with an exterior-rotor considering the magnetic saturation. CES Trans. Electr. Mach. Syst. 2021, 5, 212–223. [Google Scholar] [CrossRef]
- Ma, G.; Chen, C.; Lyu, Y.; Guo, Y. Adaptive backstepping-based neural network control for hypersonic reentry vehicle with input constraints. IEEE Access 2018, 6, 1954–1966. [Google Scholar] [CrossRef]
- Chen, L.; Wang, Q.; Ye, H.; He, G. Low-complexity adaptive tracking control for unknown pure feedback nonlinear systems with multiple constraints. IEEE Access 2019, 7, 27615–27627. [Google Scholar] [CrossRef]
- Meng, F.; Tian, K.; Wu, C. Deep reinforcement learning-based radar network target assignment. IEEE Sens. J. 2021, 21, 16315–16327. [Google Scholar] [CrossRef]
- An, H.; Liu, J.; Wang, C.; Wu, L. Disturbance observer-based antiwindup control for air-breathing hypersonic vehicles. IEEE Trans. Ind. Electron. 2016, 63, 3038–3049. [Google Scholar] [CrossRef]
- Yu, X.; Li, P.; Zhang, Y. Fixed-time actuator fault accommodation applied to hypersonic gliding vehicles. IEEE Trans. Autom. Sci. Eng. 2021, 18, 1429–1440. [Google Scholar] [CrossRef]
- Gao, K.; Song, J.; Wang, X.; Li, H. Fractional-order proportional-integral-derivative linear active disturbance rejection control design and parameter optimization for hypersonic vehicles with actuator faults. Tsinghua Sci. Technol. 2021, 26, 9–23. [Google Scholar] [CrossRef]
- Xu, Y.; Yang, C.; Zhendong, L.; Zhang, W.; Stichel, S. Long-term high-speed train-track dynamic interaction analysis. In Proceedings of the 27th IAVSD Symposium on Dynamics of Vehicles on Roads and Tracks, Saint-Petersburg, Russia, 16–20 August 2021. [Google Scholar]
- Ai, S.; Song, J.; Cai, G. Diagnosis of sensor faults in hypersonic vehicles using wavelet packet translation based support vector regressive classifier. IEEE Trans. Reliab. 2021, 70, 901–915. [Google Scholar] [CrossRef]
- Han, T.; Hu, Q.; Shin, H.S.; Tsourdos, A.; Xin, M. Incremental twisting fault tolerant control for hypersonic vehicles with partial model knowledge. IEEE Trans. Ind. Inform. 2022, 18, 1050–1060. [Google Scholar] [CrossRef]
- Li, Y.X. Finite time command filtered adaptive fault tolerant control for a class of uncertain nonlinear systems. Automatica 2019, 106, 117–123. [Google Scholar] [CrossRef]
- Hu, K.; Li, W.; Cheng, Z. Fuzzy adaptive fault diagnosis and compensation for variable structure hypersonic vehicle with multiple faults. PLoS ONE 2021, 16, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Hu, K.; Chen, F.; Cheng, Z. Fuzzy adaptive hybrid compensation for compound faults of hypersonic flight vehicle. Int. J. Control Autom. Syst. 2021, 19, 2269–2283. [Google Scholar] [CrossRef]
- Du, Y.; Jiang, B.; Ma, Y.; Cheng, Y. Robust ADP-based sliding-mode fault-tolerant control for nonlinear systems with application to spacecraft. Appl. Sci. 2022, 12, 1673. [Google Scholar] [CrossRef]
- Xiao, B.; Hu, Q.; Wang, D.; Eng, K.P. Attitude tracking control of rigid spacecraft with actuator misalignment and fault. IEEE Trans. Control Syst. Technol. 2013, 21, 2360–2366. [Google Scholar] [CrossRef]
- Su, J.; Chen, W. Model-based fault diagnosis system verification using reachability analysis. IEEE Trans. Syst. Man Cybern. Syst. 2019, 49, 742–751. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Yang, J. Nonsingular fast terminal sliding mode control for nonlinear dynamical systems. Int. J. Robust Nonlinear Control 2011, 21, 1865–1879. [Google Scholar] [CrossRef]
- Li, Y.X.; Yang, G.H. Observer-based fuzzy adaptive event-triggered control codesign for a class of uncertain nonlinear systems. IEEE Trans. Fuzzy Syst. 2018, 26, 1589–1599. [Google Scholar] [CrossRef]
- Li, Y.X.; Tong, S.; Yang, G.H. Observer-based adaptive fuzzy decentralized event-triggered control of interconnected nonlinear system. IEEE Trans. Cybern. 2020, 50, 3104–3112. [Google Scholar] [CrossRef]
- Han, Z.; Zhang, K.; Yang, T.; Zhang, M. Spacecraft fault-tolerant control using adaptive non-singular fast terminal sliding mode. IET Control Theory Appl. 2016, 10, 1991–1999. [Google Scholar] [CrossRef]
Fault Type | Loss of Effectiveness Fault | Bias Fault | Complete Failure |
---|---|---|---|
ei | 0 < ei < I | I | 0 |
fi | 0 | fi ≠ 0 | 0 |
FTC Scheme | Convergence Time: σ | Steady Precision: σ | Convergence Time: ω | Steady Precision: ω |
---|---|---|---|---|
FTC in [30] | — | 2 | — | 1.5 |
FTC in this paper | 5.1 | 4 × 10−5 | 5.2 | 6 × 10−5 |
FTC Scheme | Convergence Time: σ | Steady Precision: σ | Convergence Time: ω | Steady Precision: ω |
---|---|---|---|---|
Passive FTC without fault estimation | — | 0.73 | — | 0.52 |
FTC in this paper | 5.1 | 4 × 10−5 | 5.2 | 6 × 10−5 |
FTC Scheme | Convergence Time: σ | Steady Precision: σ | Convergence Time: ω | Steady Precision: ω |
---|---|---|---|---|
FTC without variable structure method | — | ∞ | — | ∞ |
FTC in this paper | 5.1 | 4 × 10−5 | 5.2 | 6 × 10−5 |
FTC Scheme | Convergence Time: σ | Steady Precision: σ | Convergence Time: ω | Steady Precision: ω |
---|---|---|---|---|
FTC without anti-saturation method | 34.5 | 2 × 10−4 | 35.7 | 4.5 × 10−4 |
FTC in this paper | 5.1 | 4 × 10−5 | 5.2 | 6 × 10−5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, K.-Y.; Sun, W.; Yang, C. Adaptive Fault-Tolerant Control for Flexible Variable Structure Spacecraft with Actuator Saturation and Multiple Faults. Appl. Sci. 2022, 12, 5319. https://doi.org/10.3390/app12115319
Hu K-Y, Sun W, Yang C. Adaptive Fault-Tolerant Control for Flexible Variable Structure Spacecraft with Actuator Saturation and Multiple Faults. Applied Sciences. 2022; 12(11):5319. https://doi.org/10.3390/app12115319
Chicago/Turabian StyleHu, Kai-Yu, Wenjing Sun, and Chunxia Yang. 2022. "Adaptive Fault-Tolerant Control for Flexible Variable Structure Spacecraft with Actuator Saturation and Multiple Faults" Applied Sciences 12, no. 11: 5319. https://doi.org/10.3390/app12115319
APA StyleHu, K.-Y., Sun, W., & Yang, C. (2022). Adaptive Fault-Tolerant Control for Flexible Variable Structure Spacecraft with Actuator Saturation and Multiple Faults. Applied Sciences, 12(11), 5319. https://doi.org/10.3390/app12115319