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Abstract: This study investigated the adaptive fault-tolerant control (FTC) for a flexible variable
structure spacecraft in the presence of external disturbance, multiple actuator faults, and saturation.
The attitude system model of a variable structure spacecraft and actuator fault model are first given.
A sliding mode-based fault detection observer and a radial basis function-based fault estimation
observer were designed to detect the time of actuator fault occurrence and estimate the amplitude of
an unknown fault, respectively. Then, the adaptive FTC with variable structure harmonic functions
was proposed to automatically repair multiple actuator faults, which first guaranteed that the
state trajectory of attitude systems without actuator saturation converges to a neighborhood of
the origin. Then, another improved adaptive FTC scheme was further proposed in the actuator
saturation constraint case, ensuring that all the closed-loop signals are finite-time convergence.
Finally, simulation results are given to illustrate the effectiveness of the proposed method.

Keywords: fault-tolerant control; fault estimation; fault detection; multiple actuator faults; actuator
saturation

1. Introduction

In recent years, the advanced spacecraft control technology has been able to achieve
more and more functions, and the control technology in many harsh environments has also
been developing rapidly. They meet many new needs including satellites and hypersonic
vehicles: anti-interference, anti-interception, super maneuver, etc. [1–4]. Fault-tolerant
control (FTC) can also ensure spacecraft stability when the faults occur [5,6]. However,
space exploration is increasingly diversified, and the engineering requirements for control
technology are far from being met, such as multi-channel multi-type concurrent fault
compensation, variable structure dexterity avoidance, etc. The purpose of this paper was
to design an improved adaptive FTC scheme so that the spacecraft with saturation and
multiple faults can realize flexible variable structure stability control and meet the design
requirements of a new-generation spacecraft.

New progress has been made in spacecraft control technology that satisfies tracking
stability in complex environments and missions [7,8]. In [9], disturbances in the hypersonic
re-entry vehicles were revisited, a disturbance effect indicator was defined to demonstrate
the pros and cons of the disturbances’ influence on the system, and based on the disturbance
estimation, a disturbance estimation-triggered control scheme for the attitude tracking was
established. In [10], the proposed control law was able to guarantee the prescribed transient
and steady-state behavior for both attitude and angular velocity errors in the presence
of bounded external disturbances. In [11], a novel fixed-time convergent nonsmooth
backstepping control scheme was proposed for flexible hypersonic vehicles via augmented
sliding mode observers to overcome the uncertainty and measurement noise. In [12], to
track the desired velocity and the desired altitude, a data-driven supplementary control
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approach with adaptive learning capability was proposed for the rigid aircraft controller
based on action-dependent heuristic dynamic programming. However, the above schemes
seldom considered actuator failure and saturation, so their algorithm reliability is difficult
to guarantee. This paper designed an anti-saturation FTC scheme on this basis to solve the
above problem.

Anti-saturation control technology can normally control the system to complete the
task when the actuator is limited, so it is widely used in spacecraft with a strict upper
limit of payload [13,14]. In [15], a low-complexity adaptive tracking control strategy for
a class of pure feedback nonlinear spacecraft systems was developed in the presence of
completely unknown non-affine nonlinearities, full state constraints, and input saturation
constraints. In [16], to improve the agent’s solution quality during a search, an agent soft
search constraint was designed, setting the soft search constraint filters from the obviously
inferior solutions, thereby improving the solution quality of the spacecraft. In [17], a
combination of feedback linearization and disturbance observer-based control was adopted
for the design of a state-feedback controller that regulated the velocity and altitude of
spacecraft subject to constrained inputs. However, the above methods did not consider
the fault and flexible active variable structure mode, and the reliability and environmental
adaptability are insufficient. On this basis, this paper studied variable structure adaptive
FTC to realize the dexterous maneuvering FTC of anti-interception.

Spacecraft FTC is a relatively popular branch of space control technology, and due to
borrowing the mature information technology of high-speed trains, it is a field with rapid
progress and more achievements in recent years [18–21]. In [22], a passive FTC scheme
was proposed for the full re-entry trajectory tracking of spacecraft in the presence of
modeling uncertainties, external disturbances, and actuator faults. In [23], a finite-time FTC
scheme with command filtering was applied to the general nonlinear uncertain systems.
In [24], based on the type-II fuzzy logic, a robust adaptive fault diagnosis and FTC scheme
was proposed for multisensor faults in the variable structure hypersonic vehicles with
parameter uncertainties. In [25], indirect passive compensation factors shielded system
faults, and an observer with adaptive learning rates that combined the fault magnitude
and fuzzy premise variable was then designed to estimate actuator faults, where a novel
bionic variable parameter algorithm improved the spacecraft sensitivity of estimation to the
incipient fault deviations. In [26], an FTC scheme was considered for a cascade nonlinear
spacecraft system with mismatched uncertainties and unknown actuator faults. However,
the above-mentioned FTC methods did not consider active flexible variable structure
and actuator saturation, and thus, it is difficult to meet the space warfare requirements
for dexterous maneuvering. This paper improved the adaptive control on the basis of
finite-time control in [23] or the methods of other references mentioned above so that the
spacecraft can achieve attitude fault-tolerant tracking in a multi-mechanical configuration
and create conditions for avoiding enemy interception, grabbing, and space junk.

This paper focused on an active adaptive FTC for the attitude systems of a flexible
variable structure spacecraft to tackle multiple actuator faults and saturation. The main
contributions are as follows:

1. A fault diagnosis approach was developed for the attitude systems with variable
structure parameters, detects the occurrence time and amplitudes of all faults in
different actuators: partial loss of effectiveness (LOE), bias, and complete failure.
Finally, the FTC under the complete failure of general spacecraft has been solved
firstly in the world.

2. According to fault estimation, an adaptive fault-tolerant controller without actuator
saturation was designed by utilizing the fast terminal sliding mode control technique,
such that all the closed-loop signals of the attitude systems are finite-time convergence.
Then, the FTC scheme under the actuator saturation case was further proposed; it has
good tolerance capability to multiple actuator faults;

3. A variable structure improved adaptive scheme was proposed where the harmonic
functions based on variable structure parameters were designed. It was combined
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with the fault-tolerant algorithm so that the fault repair process can maintain the
stability under multiple mechanical configurations and multiple faults. Finally, the
control of a universal variant spacecraft is first achieved in the world.

The rest of the paper is organized as follows. Section 2 provides the attitude system
mode of a flexible variable structure spacecraft and the actuator fault mode. In Section 3,
a fault detection observer detects the occurrence time of an unknown fault. Then, a fault
estimation observer estimates the amplitude of the actuator fault. In Section 4, a fault-
tolerant controller with variable structure harmonic functions self-repairs actuator faults,
guaranteeing the finite-time convergence. Then, an improved adaptive FTC scheme is
developed to deal with the actuator saturation. Section 5 verifies the effectiveness of the
developed FTC method by simulation. Finally, Section 6 provides the conclusion.

2. Problem Statement

In this section, the Euler-angles moment equations are adopted to describe the attitude
systems of spacecraft, and the equations of motion in terms of kinematics are given by [7]:

.
φ = ω1 − tan θ(ω2 cos φ−ω3 sin φ)
.
θ = ω2 sin φ + ω3 cos φ
.
ψ = (ω2 cos φ−ω3 sin φ)/ cos θ

(1)

where φ, θ, and ψ are roll angle, pitch angle, and yaw angle, respectively. ω1, ω2, and ω3
denote the angular velocities with respect to the body-fixed frame.

For simplicity, the kinematic Equation (1) can be rewritten in the following form

.
σ = G(σ)ω (2)

where
σ = [φ, θ, ψ]T , ω = [ω1, ω2, ω3]

T (3)

and

G(σ) =
1

cos θ

 cos θ − cos φ sin θ sin φ sin θ
0 sin φ cos θ cos φ cos θ
0 cos φ − sin φ

 (4)

According to reference [7], the dynamic equation of a flexible variable structure
spacecraft is modeled as

(J + JVS + ∆J)
.

ω = −Λ(J + JVS + ∆J)ω + Du(t) + d(t) (5)

where J ∈ R3×3 is the symmetric inertia matrix, JVS ∈ R3×3 is the added value of inertia
matrix generated by changing the mechanical structure of the spacecraft, that is, the
variable structure parameter, ∆J ∈ R3×3 is the norm-bounded inertia uncertainty, u(t) ∈ Rn

is the control torque generated by n reaction wheels, D ∈ R3×n is the reaction wheel
distribution matrix, and n is the number of reaction wheels. d(t) ∈ R3 is the bounded
external disturbance, and Λ is a skew-symmetric matrix and has the following form

Λ =

 0 −ω3 ω2
ω3 0 −ω1
−ω2 ω1 0

 (6)

After some manipulations, Equation (5) can be transformed into the following form

.
ω = −(J + JVS)

−1Λ(J + JVS)ω + (J + JVS)
−1Du(t) + ρ(t) (7)

where
ρ(t) = −(J + JVS)

−1∆J
.

ω− (J + JVS)
−1Λ∆Jω + (J + JVS)

−1d(t) (8)
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represents the generalized perturbation caused by disturbance and inertia uncertainty,
which is unknown and satisfies

‖ρ(t)‖ ≤ ρ (9)

All the environmental disturbances due to solar radiation pressure, gravitation, mag-
netic forces, and aerodynamic drag can be assumed to be bounded, and thus it is reasonable.

The actuator considered in this study is the reaction wheel, which is usually composed
of a flywheel and an electric motor. If the speed of the flywheel is changed, the flexible
variable structure spacecraft starts to rotate in reverse by keeping the angular momentum.
Several components of the reaction wheel may cause fault, such as electronics, motor, and
power supply; the reaction wheels are susceptible to the following three types of faults:
LOE, increased bias torque, and complete failure.

It was noted that the three different types of actuator faults described above may
happen in the attitude systems of a flexible variable structure spacecraft, and the actual
control torques generated by the faulty actuators could be modeled as the following form

u(t) = Eτ(t) + F (10)

where τ(t) ∈ Rn is the desired torque of the reaction wheel produced by the attitude
controller. E = diag{e1, . . . , en} is the effectiveness matrix of the reaction wheel and satisfies
0 ≤ ei ≤ 1 (i = 1, 2, . . . , n). If ei = 1, the ith actuator works normally, 0 < ei < 1 indicates that
the ith actuator produces a reduced effectiveness, and ei = 0 implies that the ith actuator
undergoes a complete failure. Apart from this, F = [f 1, . . . , fn]T is regarded as the actuator
bias fault. The relations between fault parameters ei, fi, and the actual actuator faults are
summarized in Table 1.

Table 1. The reaction wheel fault types of spacecraft.

Fault Type Loss of Effectiveness Fault Bias Fault Complete Failure

ei 0 < ei < I I 0
fi 0 fi 6= 0 0

Substituting Equation (10) into Equation (7), the faulty dynamics equation can be
described by

.
ω = −(J + JVS)

−1Λ(J + JVS)ω + (J + JVS)
−1DEτ(t)

+(J + JVS)
−1DF + ρ(t)

(11)

In this paper, it was assumed that all of the state variables are measurable. To achieve
the objective of this paper, the following Assumptions and Lemma are introduced, which
are used in the controller design and the closed-loop stability analysis.

Assumption 1. The desired output trajectory σ and its first-time derivative are continuous and
bounded; moreover, there exists a known compact set Π such that

[
σ,

.
σ
]
∈ Π.

Assumption 2. The bias fault introduced in the fault model (10) satisfies

‖F‖ ≤ f0 (12)

where f0 is a positive constant.

Assumption 3. The nonlinear functions ΛJω and ΛJVSω in the dynamics Equation (11) are
locally Lipschitz bounded with respect to a Lipschitz constant ξ, namely

‖Λ(J + JVS)ω− Λ̂(J + JVS)ω̂‖ ≤ ξ‖ω̂−ω‖ = ξ‖ω‖ (13)
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Lemma 1 ([7]). The extended Lyapunov description of finite-time stability with a finite-time
convergence is given as

.
V(x) + λ1V(x) + λ2Vr(x) ≤ 0, ∀t ≥ t0, V(xt0) ≥ 0 (14)

Then, for any given t0, the convergence time is given as

Tr ≤ t0 +
1

λ1(1− r)
ln

λ1V1−r(xt0) + λ2

λ2
(15)

where λ1, λ2 > 0, and 0 < r< 1.

Remark 1. The n actuators (n > 3) may suffer from LOE fault or complete failure, but the number of
totally failed actuators is no more than n − 3, such that DE3DT is a positive definite matrix, which
can be viewed as the requirement of controllability of the plant and the existence of a fault-tolerant
controller for compensating the effects of actuator faults.

Remark 2. Because of increased friction between stator and rotor, inadequate lubrication, marginal
failures in bearings, and decreased motor torque, the rate of change of the wheel speed might be less
than the nominal value. Consequently, the generated reaction wheel output torque can be less than
the torque commanded, and therefore, it is modeled as partial LOE fault. Because of changes in
coulomb friction and viscous friction of the bearings caused by aging and lubrication, the wheel may
not be capable of holding its speed, which may decelerate the wheel gradually. Therefore, a low-bias
torque is produced even when the commanded attitude control torque is zero, and it is modeled
as bias fault. If malfunction occurs in the drive motor and power supply, the reaction wheel may
decelerate slowly or hold its speed without response to control signals, and it is modeled as complete
failure fault.

3. Actuator Fault Detection and Diagnosis Scheme
3.1. Neural Network Approximation

Radial basis function (RBF) neural networks have good capability in function ap-
proximation which is unknown and continuous. In this section, the following RBF neural
networks are used to reconstruct the generalized perturbation ρ(t) in Equation (11), which
can be expressed as

ρ(t) = WT ϕ(t) + ε0 (16)

where W ∈ Rp×3 is an ideal but unknown weight matrix and p is the number of the implicit
layer. ε0 is the extremely small and unknown bounded approximation error. ϕ(t) = [ϕ(t),
. . . , ϕp(t)]T represents the known basis function, which can be expressed by a Gaussian
function as

ϕi(t) = exp(−‖ω− νi‖2

η2
i

), i = 1, . . . , p (17)

where νi and ηi are the center and width of neural cell of the ith neurons, respectively. The
uncertain parameters are unknown, but their distribution area can be obtained through
experiments. Based on this, the basis functions with the centers in the distribution area and
the widths superimposed to cover this area can construct ϕ(t).

The optimal weight value W of RBF neural network is given by

W = arg minŴ∈Rp×3

{
supω∈Γ

∣∣∣ρ(t)− ŴT ϕ(t)
∣∣∣} (18)

Since the optimal weight value W and approximation error ε0 are unknown, we have

ρ̂(t) = ŴT ϕ(t) + ε̂0 (19)
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where ρ̂(t) is the estimated value of ρ(t).

3.2. Fault Diagnosis Scheme Design

In this section, a sliding mode-based fault detection observer is designed for the
dynamic Equation (7) in the actuator healthy case in order to detect the occurrence of an
unknown fault, namely

.
ω̂ = A1(ω− ω̂)− (J + JVS)

−1Λ̂(J + JVS)ω̂ + (J + JVS)
−1Dτ + ρsign(ω̃) (20)

where A1 is a positive definite matrix given in advance.
Define

ω̃ = ω− ω̂ (21)

the following error equation is obtained by subtracting Equation (20) from Equation (7).

.
ω̃ = −A1ω̃ + (J + JVS)

−1[Λ̂(J + JVS)ω̂−Λ(J + JVS)ω]
+ρ(t)− ρsigh(ω̃)

(22)

In this position, the first result of this study is given in the form of Theorem 1.

Theorem 1. Considering the healthy dynamics Equation (7) of a variable structure spacecraft, a
sliding mode-based fault detection observer is designed in Equation (20), for a given positive definite
matrix A1, if exists a symmetric positive definite matrix P1, such that inequality (23) holds

L = [A1 − ξ(J + JVS)
−1]

T
P1 + P1[A1 − ξ(J + JVS)

−1] > 0 (23)

then, a fault detection threshold is designed as follows

Jth = (
λmax(P1)

λmin(P1)
e−(λmin(L)/λmax(P1))(t−t0)‖ω̃(t0)‖2)

1/2

(24)

If the 2-norm of the estimation error of ω generated by fault detection observer (20) surpasses
the detection threshold Jth, then at least one actuator is suffering from an unknown fault.

Proof of Theorem 1. Considering the following Lyapunov candidate function

V1 =
1
2

ω̃T P1ω̃ (25)

Taking the derivative of V1 along the trajectory of Equation (22) yields

.
V1 ≤ − 1

2 ω̃T(P1 A1 + AT
1 P1)ω̃ + ξω̃T P1(J + JVS)

−1ω̃ + ω̃T P1(ρ(t)
−ρsign(ω̃))

≤ − 1
2 ω̃T

{
P1[A1 − ξ(J + JVS)

−1] + [A1 − ξ(J + JVS)
−1]

T
P1

}
ω̃

+‖P1‖‖ω̃‖(‖ρ(t)‖ − ρ)

≤ − 1
2 ω̃T

{
P1[A1 − ξ(J + JVS)

−1] + [A1 − ξ(J + JVS)
−1]

T
P1

}
ω̃

(26)

According to the inequality (23), it can be seen that

.
V1 ≤ −

1
2

λmin(L)‖ω̃‖2 ≤ − λmin(L)
λmax(P1)

V1 (27)

From Equation (27), the following inequality is derived

‖ω̃‖2 ≤ λmax(P1)

λmin(P1)
e−(λmin(L)/λmax(P1))(t−t0)‖ω̃(t0)‖2 (28)
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Defining the fault detection residual signal r = ω̃, a so-called threshold Jth is proposed
to evaluate the residual signal r, and the following fault detection mechanism is given by

‖r‖2,T > Jth ⇒ a f ault occurs⇒ Alarm
‖r‖2,T ≤ Jth ⇒ no f ault

(29)

where

Jth ≤ (
λmax(P1)

λmin(P1)
e−(λmin(L)/λmax(P1))(t−t0)‖ω̃(t0)‖2)

1/2

(30)

and the residual evaluation function ‖r‖2,T is described as

‖r‖2,T = [
∫ T

0
rT(t)r(t)dt]

1/2

(31)

where t ∈ (0, T] is the finite time window.
When the unknown actuator fault signal is detected successfully by the designed fault

detection strategy, the fault alarm triggers the fault estimation observer to start working. In
the following description, a fault estimation observer is designed using an adaptive neural
network technique.

For the design of a fault estimation observer, two new variables are defined as:
Φ = [e1, . . . , en]T and Ξ = diag{τ1, . . . , τn}, and Equation (11) can be transformed into
the following

.
ω = −(J + JVS)

−1Λ(J + JVS)ω + (J + JVS)
−1DΞΦ

+(J + JVS)
−1DF + WT ϕ(t) + ε0

(32)

A RBF neural network-based fault estimation observer is given by

.
ω̂ = A2ω− (J + JVS)

−1Λ̂(J + JVS)ω̂ + (J + JVS)
−1DΞΦ̂

+(J + JVS)
−1DF̂ + ŴT ϕ(t) + ε̂0

(33)

where ω is the estimation error which satisfies

ω = ω̂−ω (34)

A2 is a known Hurwitz matrix. Φ̂, F̂, and ŴT ϕ(t) + ε̂0 denote the estimated values of
LOE fault factor, bias fault factor, and the generalized perturbation, respectively. They are
determined by the following adaptive updated estimation algorithms

.
Φ̂ = −Φ̂− 1

c1 + ch,1(JVS)
[(J + JVS)

−1DΞ]
T

P2ω (35)

.
F̂ = −F̂− 1

c2 + ch,2(JVS)
[(J + JVS)

−1D]
T

P2ω (36)

.
Ŵ = −Ŵ − 1

c3 + ch,3(JVS)
ϕ(t)ωT P2 (37)

.
ε̂0 = −ε̂0 −

1
c0 + ch,0(JVS)

P2ω (38)

where ci > 0 (i = 0, 1, 2, 3) are known constants, and ch,i(JVS) are the variable structure
harmonic functions of their respective updated algorithms, which change continuously
with the change of JVS and have known expressions. P2 is an unknown positive definite
matrix to be determined later.

Let
Φ̃ = Φ̂−Φ (39)

F̃ = F̂− F (40)
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W̃ = Ŵ −W (41)

ε̃0 = ε̂0 − ε0 (42)

the following error dynamics equation is obtained by subtracting Equation (32) from
Equation (33):

.
ω = A2ω + (J + JVS)

−1[Λ(J + JVS)ω− Λ̂(J + JVS)ω̂]

+(J + JVS)
−1DΞΦ̃ + (J + JVS)

−1DF̃ + W̃T ϕ(t) + ε̃0

= A2ω + (J + JVS)
−1[Λ(J + JVS)ω− Λ̂(J + JVS)ω̂]

+(J + JVS)
−1DΞΦ̃ + (J + JVS)

−1DF̃ + ρ̃(t)

(43)

where
ρ̃(t) = W̃T ϕ(t) + ε̃0 (44)

In this position, the second result of this study is given in the form of Theorem 2. �

Theorem 2. For the faulty dynamics Equation (11), a RBF neural network-based fault estimation
observer is designed in Equation (33) with the adaptive parameter updated algorithms (35)–(38),
and for a given Hurwitz matrix A2, if exists a positive definite matrix P2 with a known positive
scalar ξ, such that inequality (45) holds

Q = P2[A2 + ξ(J + JVS)
−1] + [AT

2 + ξ((J + JVS)
−1)

T
]P2 < 0 (45)

then, the error dynamics Equation (43) is ultimately uniformly bounded (UUB).

Proof of Theorem 2. Considering the following Lyapunov candidate function

V2 = 1
2 ωT P2ω + 1

2 (c1 + ch,1(JVS))Φ̃TΦ̃ + 1
2 (c2 + ch,2(JVS))F̃T F̃

+ 1
2 (c3 + ch,3(JVS))tr(W̃TW̃) + 1

2 (c0 + ch,0(JVS))ε̃
T
0 ε̃0

(46)

Taking the derivative of V2 along the trajectory of Equation (43) yields

.
V2 = 1

2 (
.

ω
T

P2ω + ωT P2
.

ω) + C1,JVSΦ̃T
.

Φ̃ + C2,JVS F̃T
.
F̃

+C3,JVStr(W̃T
.

W̃)+C0,JVS ε̃T
0

.
ε̃0 + C1,JVSΦ̃T

.
Φ̂ + C2,JVS F̃T

.
F̂

+C3,JVStr(W̃T
.

Ŵ)+C0,JVS ε̃T
0

.
ε̂0

= 1
2 ωT

{
[AT

2 + ξ((J + JVS)
−1)

T
]P2 + P2[A2 + ξ(J + JVS)

−1]

}
ω

+ωT P2(J + JVS)
−1DΞΦ̃ + ωT P2(J + JVS)

−1DF̃

+ωT P2W̃T ϕ(t) + ωT P2 ε̃0 + C1,JVSΦ̃T
.

Φ̂ + C2,JVS F̃T
.
F̂

+C3,JVStr(W̃T
.

Ŵ) + C0,JVS ε̃T
0

.
ε̂0

(47)

where 
C1,JVS = c1 + ch,1(JVS)
C2,JVS = c2 + ch,2(JVS)
C3,JVS = c3 + ch,3(JVS)
C0,JVS = c0 + ch,0(JVS)

(48)
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Substituting the adaptive updated laws (35)–(38) into Equation (47), it leads to

.
V2 = 1

2 ωTQω + ωT P2(J + JVS)
−1DΞΦ̃ + ωT P2(J + JVS)

−1DF̃
+ωT P2W̃T ϕ(t) + ωT P2 ε̃0 − C1,JVSΦ̃TΦ̂− Φ̃T [(J

+JVS)
−1DΞ]T P2ω− C2,JVS F̃T F̂− F̃T [(J + JVS)

−1D]
T

P2ω

−C3,JVStr(W̃TŴ
)
− tr(W̃T ϕ(t)ωT P2)− C0,JVS ε̃T

0 ε̂0 − ε̃T
0 P2ω

= 1
2 ωTQω− C1,JVS

2 Φ̃TΦ̃− C2,JVS
2 F̃T F̃− C3,JVS

2 tr(W̃TW̃)

−C0,JVS
2 ε̃T

0 ε̃0 +
C1,JVS

2 ΦTΦ +
C2,JVS

2 FT F +
C3,JVS

2 tr(WTW)

+
C0,JVS

2 εT
0 ε0

(49)

According to the inequality (45) described in Theorem 2, the following result is easily
obtained .

V2 ≤ −αV1 + β (50)

where
α = min{−λmin(Q)/λmax(P2), 1} > 0 (51)

β =
C1,JVS

2
‖Φ‖2 +

C2,JVS

2
‖F‖2 +

C3,JVS

2
‖W‖2 +

C0,JVS

2
‖ε0‖2 (52)

According to Lyapunov stability theory, it is easily known from the above inequality
that the error dynamics Equation (43) is UUB. This completes the proof. �

Using reachable set computation [27–29], the robust fault diagnosis was extended
to linear uncertain systems. Then, a sliding mode fault detection was designed for the
nonlinear attitude systems of a flexible variable structure spacecraft in this study. The
sliding mode ρsign(ω̃) offsets the uncertainty effects, and therefore, the designed detec-
tion threshold is sensitive to unknown faults. Hence, the fault estimation observer was
designed by utilizing the approximate ability of RBF to unknown functions, such that the
uncertainty’s negative impact on the fault estimation accuracy is reduced.

Remark 3. Compared with existing state-of-the-art detectors [30,31], the proposed detector consid-
ers complete failure and variable structure conditions, and is more suitable for dexterous spacecraft.
It is seen from Figure 1 that the output signal of attitude controller τ and the angular velocity ω are
measured by the gyro as the inputs of the fault detection and estimation observer and the estimated
angular velocity is the output of the fault detection and estimation observer. In addition, the esti-
mated parameter values which can be obtained using the designed adaptive updated algorithms (35)
and (38), were also used in the design of the fault estimation observer.
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4. Fault-Tolerant Controller Design
4.1. Active FTC without Actuator Saturation

In this section, an active FTC strategy is proposed for the faulty attitude systems
(1) and (11) without actuator saturation. First, a fast terminal sliding model surface is
designed as

S = ω + (k1 + kh,1(JVS))σ + k2sig(σ)p/(q+h(JVS)) (53)

where S = [S1, S2, S3]T ∈ R3 is the sliding mode variable; k1 > 0, k2 > 0 are two positive scalars;
kh,1(JVS), h(JVS) are the variable structure harmonic functions with JVS as the argument,
which are all known scalars, and 0 < (p/(q + h(JVS))) < 1; and p, q are positive odd integers.
The function sig(σ)p/(q + h(JVS)) is defined as

sig(σ)p/(q+h(JVS)) =

 |φ|
p/(q+h(JVS))sign(φ)

|θ|p/(q+h(JVS))sign(θ)
|ψ|p/(q+h(JVS))sign(ψ)

 (54)

Taking the derivative of sliding variable S with respect to time yields

.
S =

.
ω + (k1 + kh,1(JVS))

.
σ +

k2 p
q + h(JVS)

diag(|σ|[p/(q+h(JVS))]−1)
.
σ (55)

It was noted that Equation (55) contains a negative fractional term [p/(q + h(JVS))]−1,
the singularity occurs while σj = 0 and its derivative is nonzero. To avoid the singularity
problem, the derivative of S is modified as

.
S =

.
ω + (k1 + kh,1(JVS))

.
σ + k2S∗(σ) (56)

where
S∗(σ) = [S∗1(σ), S∗2(σ), S∗3(σ)]

T ∈ R3×1 (57)

with

S∗i (σ) =


p

q+h(JVS)
|σi|[p/(q+h(JVS))]−1 .

σi, i f
.
σi 6= 0, |σi| ≥ ε

p
q+h(JVS)

|ε|[p/(q+h(JVS))]−1 .
σi, i f

.
σi 6= 0, |σi| < ε

0, i f
.
σi = 0

(58)

where Si*(σ) is the ith component of S*(σ) and ε is a small positive constant.
Substituting Equation (11) into Equation (56), it is easily known that

.
S = −(J + JVS)

−1Λ(J + JVS)ω + (J + JVS)
−1DEτ + (J

+JVS)
−1DF + ρ(t) + (k1 + kh,1(JVS))

.
σ + k2S∗(σ)

(59)

According to the sliding mode control idea, sliding mode dynamics need to match a
reaching law. This study selected an improved exponential reaching law as

.
S = −(υ1 + υh,1(JVS))S− (υ2 + υh,2

(
JVS))sig(S)p/(q+h(JVS)) (60)

where {
υ1 = diag{υ11, υ12, υ13} > 0
υ2 = diag{υ21, υ22, υ23} > 0

(61){
υh,1(JVS) = diag

{
υh,11, υh,12, υh,13

}
> 0

υh,2(JVS) = diag
{

υh,21, υh,22, υh,23
}
> 0

(62)

Equations (61) and (62) are the diagonal matrices. υh,11, υh,12, υh,13, υh,21, υh,22, and
υh,23 are the known harmonic functions with JVS as the argument. To derive the FTC scheme
of this paper, an assumption is introduced in this position.
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Assumption 4. There exists two unknown constants γ ≥ 0 and δ ≥ 0, such that the following
inequalities are satisfied

‖−(J + JVS)
−1Λ(J + JVS)ω‖ ≤ γ (63)

‖(k1 + kh,1(JVS))
.
σ + k2S∗(σ)‖ ≤ δ‖ .

σ‖ (64)

In the following, the third result of this study is given in the form of Theorem 3.

Theorem 3. Considering the faulty attitude systems (1) and (11) of a flexible variable structure
spacecraft without actuator saturation, a fast terminal sliding mode-based active FTC scheme is
given by

τ = −Ê2DT [(J + JVS)
−1DÊ3DT ]

−1
(τ1 + τ2) (65)

with
τ1 = (υ1 + υh,1(JVS))S + (υ2 + υh,2(JVS))sig(S)p/(q+h(JVS)) (66)

τ2 =
S

‖S‖+ ς
(δ̂‖ .

σ‖+ γ̂ + ‖(J + JVS)
−1DF̂‖+ ‖ŴT ϕ(t) + ε̂0‖) (67)

.
γ̂ = (c4 + ch,4(JVS))‖S‖ (68)

.
δ̂ = (c5 + ch,5(JVS))‖S‖‖

.
σ‖ (69)

where ς > 0 is a small positive scalar, ci > 0(i = 4, 5) are positive scalars, and ch,i are the variable
structure harmonic functions; additionally, these parameters can be preset. Then, the state trajectory
of the faulty attitude systems can converge to a neighborhood of the origin in finite time.

Proof of Theorem 3. Let {
δ̃ = δ̂− δ
γ̃ = γ̂− γ

(70)

a Lyapunov candidate function was selected as

V3 =
1
2

STS +
1

2(c4 + ch,4(JVS))
γ̃2 +

1
2(c5 + ch,5(JVS))

δ̃2 + V2 (71)

Taking the derivative of V3 along the trajectory of Equation (59) yields

.
V3 = ST [−(J + JVS)

−1Λ(J + JVS)ω + (J + JVS)
−1DEτ + (J

+JVS)
−1DF + ρ(t) + (k1 + kh,1(JVS))

.
σ + k2S∗(σ)] + γ̃

.
γ̂

C4,JVS

+ δ̃
.
δ̂

C5,JVS
+

.
V2

(72)

where {
C4,JVS = c4 + ch,4(JVS)
C5,JVS = c5 + ch,5(JVS)

(73)

Substituting Equation (59) into the above equation, it can be seen that

.
V3 ≤ ‖S‖(‖(k1 + kh,1(JVS))

.
σ + k2S∗(σ)‖ − δ̂‖ .

σ‖) + γ̃‖S‖+ δ̃‖S‖‖ .
σ‖

+‖S‖(‖−(J + JVS)
−1Λ(J + JVS)ω‖ − γ̂) + ST [−(υ1 + υh,1(JVS))S

−(υ2 + υh,2

(
JVS))sig(S)p/(q+h(JVS))]− αV2 + β

≤ ST [−(υ1 + υh,1(JVS))S− (υ2 + υh,2

(
JVS))sig(S)p/(q+h(JVS))] + β

≤ −ST(υ1 + υh,1(JVS))S− 2{[p/(q+h(JVS))]+1}/2[ 1
2 ST(υ2

+υh,2

(
JVS))S]{[p/(q+h(JVS))]+1}/2 + β

≤ −2λmin(υ1 + υh,1(JVS))(1− Ω
V3
)V3 − 2{[p/(q+h(JVS))]+1}/2λmin(υ2

+υh,2(JVS))(1− ( Ω
V3
)
{[p/(q+h(JVS))]+1}/2

)V{[p/(q+h(JVS))]+1}/2
3 + β

(74)
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where
Ω = (1/2C4,JVS)γ̃

2(t) + (1/2C5,JVS)δ̃
2(t) + V2 (75)

and {
(Ω/V3) < 1
(Ω/V3)

{[p/(q+h(JVS))]+1}/2 < 1
(76)

Define
ϑ1 = 2λmin(υ1 + υh,1(JVS))(1− (Ω/V3)) (77)

ϑ2 = 2{[p/(q+h(JVS))]+1}/2λmin(υ2 + υh,2(JVS))[1− (Ω/V3)
{[p/(q+h(JVS))]+1}/2] (78)

then, we have
.

V3 ≤ −ϑ1V3 − ϑ2V{[p/(q+h(JVS))]+1}/2
3 + β (79)

If V3 > β/ϑ1, the inequality (79) is further rewritten as

.
V3 ≤ −(ϑ1 − β/V3)V3 − ϑ2V{[p/(q+h(JVS))]+1}/2

3 (80)

According to Lemma 1, the convergence time satisfies the following inequality

TS ≤ t0 +
1

(ϑ1 − β/V3)(1− p
q+h(JVS)

)
ln

{
(ϑ1 − β/V3)V3(t0)

[1−p/(q+h(JVS))]/2

ϑ2
+ 1

}
(81)

where t0 is the initial time and V3(t0) is the initial value.
If V{[p/(q+h(JVS))]+1}/2

3 > β/ϑ2, the inequality (79) is rewritten in the following form

.
V3 ≤ −ϑ1V3 − (ϑ2 − β/V{[p/(q+h(JVS))]+1}/2

3 )V{[p/(q+h(JVS))]+1}/2
3 (82)

Similarly, the convergence time satisfies

TS ≤ t0 +
1

ϑ1(1− p
q+h(JVS)

)
ln

{
ϑ1V3(t0)

[1−p/(q+h(JVS))]/2

ϑ2 − β/V{[p/(q+h(JVS))]+1}/2
3

+ 1

}
(83)

Therefore, the state trajectory of the faulty closed-loop attitude systems can converge
into a neighborhood of the origin in finite time. This completes the proof. �

Remark 4. In the study by [29], a non-singular terminal sliding model surface was designed as:

S = ω + ksig(a/b)(σ),

where k > 0 and 1 < (a/b) < 2. It provides a fast convergence rate at a distance from the origin and
becomes slow as it nears the equilibrium. The closer to the origin, the slower the convergence rate.
In this paper, a non-singular fast terminal sliding model surface was designed in the form:

S = ω + (k1 + kh,1(JVS))σ + k2sig(σ)p/(q+h(JVS)),

when the system states are far away from zero, the linear term k1σ offers a fast convergence rate,
and when the system states are close to zero, the nonlinear term k2sig(σ)p/(q+h(JVS)) guarantees the
finite-time convergence. Therefore, the system states converge quickly to the sliding model surface
designed in this study.
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4.2. Active Anti-Saturation FTC

To address the problem of actuator saturation, the other active FTC scheme is further
presented in this section. Consider the dynamics Equation (7) of a flexible variable structure
spacecraft under actuator saturation, which is described by

.
ω = −(J + JVS)

−1Λ(J + JVS)ω + (J + JVS)
−1Dsat(τ) + ρ(t) (84)

in which sat(τ) is given by

sat(τi) =

{
τi, i f |τi| < τmax
τmaxsign(τi), otherwise

(85)

where t is the designed control input and tmax is the upper boundary of saturation nonlin-
earity.

Here, a nonlinear saturation function is introduced to handle the saturation input

sat(τ) = χ(τ)τ (86)

where χ(τ) = diag{χ1(τ1), . . . , χn(τn)} represents the saturation characteristic of the actua-
tors with

χi(τi) =

{
1, i f |τi| ≤ τmax
τmax

τi
sign(τi), otherwise (87)

It was assumed that χi(τi) satisfies the following constraint

0 < µ ≤ min(χi(τi)) ≤ 1 (88)

By referring to the fault modeling method developed in the study by [21], the faulty
dynamics equation in the actuator saturation case is written as

.
ω = −(J + JVS)

−1Λ(J + JVS)ω + (J + JVS)
−1D(Esat(τ)

+F) + ρ(t)
(89)

By designing the same fast terminal sliding model surface

S = ω + (k1 + kh,1(JVS))σ + k2sig(σ)p/(q+h(JVS)) (90)

the derivative of S is given by

.
S = −(J + JVS)

−1Λ(J + JVS)ω + (J + JVS)
−1D(Esat(τ) + F)

+ρ(t) + (k1 + kh,1(JVS))
.
σ + k2S∗(σ)

(91)

Based on the above content, the fourth result of this study is given in the form of
Theorem 4.

Theorem 4. Considering the faulty attitude systems (1) and (89) in the actuator saturation case, a
fast terminal sliding model-based active FTC scheme is designed as

τ = −Ê2DT [(J + JVS)
−1DÊ3DT ]

−1
(τ1 + τ2) (92)

with
τ1 = (υ1 + υh,1(JVS))S + (υ2 + υh,2

(
JVS))sig(S)p/(q+h(JVS)) (93)

τ2 =
S

‖S‖+ ς
µ̂[γ̂ + δ̂‖ .

σ‖+ ‖(J + JVS)
−1DF̂‖+ ‖ŴT ϕ(t) + ε̂0‖] (94)
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The adaptive parameter updated algorithms are given by

.
γ̂ = (c6 + ch,6(JVS))‖S‖ (95)

.
δ̂ = (c7 + ch,7(JVS))‖S‖‖

.
σ‖ (96)

.
µ̂ = (c8 + ch,8(JVS))µ̂

3‖S‖(γ̂ + δ̂‖ .
σ‖+ ‖(J + JVS)

−1DF̂‖
+‖ŴT ϕ(t) + ε̂0‖)

(97)

where ς > 0 is a small positive constant, ci > 0 (i = 6, 7, 8) are positive scalars, and ch,i are the
variable structure harmonic functions, all of which can be preset. Then, the state trajectory of the
faulty attitude systems can converge in finite time.

Proof of Theorem 4. Defining
µ̃ = µ̂−1 − µ (98)

a Lyapunov candidate function was selected as

V4 = 1
2 STS + 1

2(c6+ch,6(JVS))
γ̃2 + 1

2(c7+ch,7(JVS))
δ̃2

+ 1
2(c8+ch,8(JVS))

µ̃2 + V2
(99)

Set 
C6,JVS = c6 + ch,6(JVS)
C7,JVS = c7 + ch,7(JVS)
C8,JVS = c8 + ch,8(JVS)

(100)

and taking the derivative of V4 along the trajectory of Equation (91) yields

.
V4 = ST [−(J + JVS)

−1Λ(J + JVS)ω + (J + JVS)
−1DEsat(τ)

+(J + JVS)
−1DF + ρ(t) + (k1 + kh,1(JVS))

.
σ + k2S∗(σ)]

+ γ̃
.
γ̂

C6,JVS
+ δ̃

.
δ̂

C7,JVS
− µ̃µ̂−2

.
µ̂

C8,JVS
+

.
V2

(101)

Substituting Equation (92) into
.

V4, it is easily known that

.
V4 ≤ ‖S‖[‖−(J + JVS)

−1Λ(J + JVS)ω‖ − γ̂− δ̂‖ .
σ‖

−‖(J + JVS)
−1DF̂‖ − ‖ŴT ϕ(t) + ε̂0‖+ ‖(J + JVS)

−1DF‖+ ‖ρ(t)‖
+‖(k1 + kh,1(JVS))

.
σ + k2S∗(σ)‖+ γ̃‖S‖+ δ̃‖S‖‖ .

σ‖+ µST [−(υ1

+υh,1(JVS))S− (υ2 + υh,2(JVS))sig(S)p/(q+h(JVS))] +
.

V2

≤ ‖S‖[(‖−(J + JVS)
−1Λ(J + JVS)ω‖ − γ) + (‖ρ(t)‖ − ‖ŴT ϕ(t) + ε̂0‖)

+(‖(k1 + kh,1(JVS))(J + JVS)
.
σ + k2(J + JVS)S∗(σ)‖ − δ‖ .

σ‖)
+(‖(J + JVS)

−1DF‖ − ‖(J + JVS)
−1DF̂‖)] + µST [−(υ1 + υh,1(JVS))S

−(υ2 + υh,2(JVS))sig(S)p/(q+h(JVS))]− αV2 + β

≤ µST [−(υ1 + υh,1(JVS))S− (υ2 + υh,2(JVS))sig(S)p/(q+h(JVS))] + β

≤ −2µ[ 1
2 ST(υ1 + υh,1(JVS))S]− 2{[p/(q+h(JVS))]+1}/2µ[ 1

2 ST(υ2
+υh,2(JVS))S]{[p/(q+h(JVS))]+1}/2 + β

≤ −2µλmin(υ1 + υh,1(JVS))(1− Θ
V4
)V4 − 2{[p/(q+h(JVS))]+1}/2µλmin(υ2

+υh,2(JVS))(1− ( Θ
V4
)
{[p/(q+h(JVS))]+1}/2

)V{[p/(q+h(JVS))]+1}/2
4 + β

(102)

where
Θ =

1
2C6,JVS

γ̃2(t) +
1

2C7,JVS
δ̃2(t) +

1
2C8,JVS

µ̃2(t) + V2 (103)

and { Θ
V4

< 1

( Θ
V4
)
{[p/(q+h(JVS))]+1}/2

< 1
(104)
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Define
ϑ3 = 2µλmin(υ1 + υh,1(JVS))(1− (

Θ
V4

)) (105)

ϑ4 = 2{[p/(q+h(JVS))]+1}/2µλmin(υ2 + υh,2(JVS))(1− (
Θ
V4

)
{[p/(q+h(JVS))]+1}/2

) (106)

then, we have
.

V4 ≤ −ϑ3V4 − ϑ4V{[p/(q+h(JVS))]+1}/2
4 + β (107)

By referring to the proof process of Theorem 3, all the state trajectory of the considered
closed-loop attitude systems can converge to a neighborhood of the origin in finite time.
This completes the proof. The unknown P1 and P2 could be obtained by solving (23) and
(45) using the linear matrix inequality toolbox in MATLAB. Hence, the fault detection
threshold Jth and the adaptive fault parameter updated algorithms could be accomplished
online and the final FTC (64) or (91) was successfully reconstructed to the faulty attitude
systems. The whole active FTC scheme in this study had an acceptable computational
burden and could be easily applied. �

Remark 5. In this study, the variable structure control has one more JVS including the harmonic
functions with JVS as the independent variable than the non-variable structure control. When
JVS = 0, the harmonic functions in the controller are 0. This shows that the control method without
the variable structure is the same as the control method after all harmonic functions are removed. In
NASA’s 1979 technical report ‘Simulator study of stall/poststall characteristics of a fighter airplane
with relaxed longitudinal static stability’, the mechanical structure of the aircraft in the angular rate
channel is represented by the inertia coefficient, and the active variable structure causes the inertia
coefficient to change. That is, nine incremental functions are added after the reported c1–c9. The
flexible variable structure parameter JVS in this paper is this incremental function, and its physical
meaning is completely consistent.

5. Simulation

In this section, we use the Links-Box semi-physical simulator to verify the effectiveness
of algorithms. Links-Box automatically converts the MATLAB simulation models to the
embedded control prototype and support engineering hardware to test in the models. The
physical device can be directly connected to the rapid prototyping simulator to dynamically
verify controller performance. The features of software package Links-RT are: (1) adapting
to the models built in MATLAB; (2) providing input and output hardware to enable
users to integrate the hardware environment into the simulation models; (3) automatic
conversion of MATLAB model codes to VxWorks codes; (4) providing communication,
storage, scheduling, and other services in VxWorks.

To illustrate our adaptive method and evaluate its effectiveness, we applied it to an
attitude system of a variable structure spacecraft where the physical parameters were
set according to [32]. The fixed structure inertia J, variable structure parameter JVS, and
actuator distribution matrix are given by

J =

 40 12 9
12 90 14
9 14 40

 kg ·m3, D =


1 0 0 1√

3
0 1 0 1√

3
0 0 1 1√

3

,

JVS =


 10tanh[10(t− 20)] 0 5tanh[10(t− 20)]

0 7tanh[10(t− 20)] 0
3tanh[10(t− 20)] 0 5tanh[10(t− 20)]

 kg ·m3, t ≥ 20 s

0, 0 ≤ t < 20 s
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where tanh(·) is the hyperbolic tangent function which satisfies:

tanh[10(t− 20)] =
e10(t−20) − e−10(t−20)

e10(t−20) + e−10(t−20)

The inertia uncertainty was chosen as ∆J = 2diag{sin(0.1t), 2cos(0.2t), sin(0.1t)} kg·m3,
and the external disturbance vector was chosen as d(t) = [0.1sin(0.1t), 0.2sin(0.2t), 0.1sin(0.3t)]
N·m. The initial attitude angles were chosen as σ0 = [0.5, 0.3, −0.5]T deg, and the initial
angular velocities were selected as ω0 = [0.5, 0.3, −0.6]T deg/s. The gyro was used for
the angular velocity measurement, and it will inevitably encounter measurement noise in
practical applications. The output signal of each gyro could be modeled as

ωg(t) = ω(t) + ωn(t) (108)

where ωg(t) is the actual measured angular velocity, ωn(t) is the zero mean Gaussian white
noise process, and the covariance of ωn(t) is given by

E
{

ωn(t)ωT
n (h)

}
= I3η2

nα(t− h) (109)

where α(t − h) is the Dirac delta function [21]. All the variable structure harmonic functions
are linear functions.

It was set that there are four reaction wheels used for the attitude control of a variable
structure spacecraft. The actuator saturation is addressed in the position, namely, the
maximum torque of each actuator was constrained to be the value of 0.8 N·m. The first
reaction wheel works normally, the second reaction wheel decreases 40% of the control
effectiveness after t = 2 s, the third reaction wheel occurs a bias fault f 3 = 0.4 N·m after
t = 2 s, and the fourth reaction wheel occurs a complete failure fault after t = 2 s.

In the design of the fault detection observer, the positive matrix A1 was chosen as
diag{2, 6, 2}, and the unknown positive matrix P1 could be solved from Equation (23) as
diag{20, 10, 20}. In the design of the fault estimation observer, the Hurwitz matrix A2 was
chosen as diag{−3, −6, −5}, and the unknown positive matrix P2 could be solved from
inequality (45) as diag{19, 21, 6}. In addition, the other constant parameters were selected
as c0 = 0.9, c1 = 0.8, c2 = 0.7, c3 = 0.9, and Ŵ(0) = diag{1, 1, 1}. The parameters of the
FTC controller (92) were selected as follows: k1 = 0.25, k2 = 0.11, p = 4, q = 7, υ1 = diag{1.9,
2.5, 4.5}, υ2 = diag{3.6, 4.8, 1.5}, ς = 0.03, c6 = 1.5, c7 = 1.4, and c8 = 1.4.

Figure 2 shows the evolution of residual evaluation function ‖r‖2,T, in which the
dashed line represents the fault threshold, and the solid line represents the fault detector
residual norm. It can be seen that once the actuator faults happened, the designed residual
exceeded the threshold Jth at t = 2 s, which could trigger the fault estimation observer to
start working.

At t = 20 s, the system entered the variable structure mode, and Figure 2b shows that
as long as no fault occurs, the residual never exceeds Jth, and therefore, the proposed fault
detector could adapt to the variable structure mode.

Figure 3 is the corresponding fault estimation result, and the three different types of
actuator faults could be estimated accurately using the fault estimation observer (33) and
the adaptive estimation algorithms (35)–(38).

For the purpose of comparison, the passive non-singular terminal sliding mode-based
FTC scheme designed in [32] and the FTC scheme designed in this article are adopted to
simulate the same faulty attitude systems in this section. When the considered actuator fault
occurs, the corresponding semi-physical simulation results (including the attitude angle
σ, and the angular velocity ω) using the proposed FTC scheme are depicted in Figure 4,
and it is seen from Figure 4 that the simulation results using the proposed FTC scheme
developed in this paper had fast and accurate tracking performance. The comparison with
the scheme of [32] is in Table 2, which shows that the passive non-singular terminal sliding
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mode-based FTC scheme could not make the output converge, and the scheme of this study
had obvious advantages.
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Figure 3. The actuator fault estimation results. (a) Estimation results of LOE fault e2. (b) Estimation
results of LOE fault e4. (c) Estimation results of bias fault f 3.
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Table 2. Comparative analysis of performance with the prior art in [32].

FTC Scheme Convergence
Time: σ

Steady
Precision: σ

Convergence
Time: ω

Steady
Precision: ω

FTC in [30] — 2 — 1.5
FTC in this paper 5.1 4 × 10−5 5.2 6 × 10−5

The biggest difficulty of this study was to take into account the nominal mode and the
variable structure mode. Because of the uncertainty brought by the variable structure, this
study designed many harmonic functions that were nearly twice as much as the nominal
control to solve this problem. Finally, the effect of overshoot was limited and the final
parameter setting was successful.

To further emphasize the superiority of the proposed method, the control performance
comparisons using three different FTC schemes are also given in Tables 2–5. Where “—”
indicates that the curve does not converge and therefore has no convergence time, “∞”
indicates that the curve diverges and thus the maximum steady precision tends to infinity
as time increases.

Table 3. Comparative analysis of performance with proposed FTC without fault estimation.

FTC Scheme Convergence Time: σ Steady Precision: σ Convergence Time: ω Steady Precision: ω

Passive FTC without
fault estimation — 0.73 — 0.52

FTC in this paper 5.1 4 × 10−5 5.2 6 × 10−5

Table 4. Comparative analysis of performance with proposed FTC without variable structure har-
monic functions.

FTC Scheme Convergence Time: σ Steady Precision: σ Convergence Time: ω Steady Precision: ω

FTC without variable
structure method — ∞ — ∞

FTC in this paper 5.1 4 × 10−5 5.2 6 × 10−5
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Table 5. Comparative analysis of performance with proposed FTC without anti-saturation method.

FTC Scheme Convergence Time: σ Steady Precision: σ Convergence Time: ω Steady Precision: ω

FTC without
anti-saturation method 34.5 2 × 10−4 35.7 4.5 × 10−4

FTC in this paper 5.1 4 × 10−5 5.2 6 × 10−5

If the method of this paper removes the variable structure harmonic functions, the
tracking curves diverge. If the method of this paper does not have an anti-saturation
scheme, i.e., only uses Algorithm (65), the maximum convergence time increases by a factor
of seven. If the method of this paper does not have a fault estimation scheme (passive FTC
of Table 3), the static errors of the tracking curves are still more than 5% of the expected
outputs. As can be seen, none of the above three comparison schemes can meet the demand.
Our improved adaptive FTC scheme with fast terminal sliding mode and variable structure
harmonic functions could achieve higher attitude tracking accuracy and faster convergence
rate than [32], the proposed FTC without variable structure method, and the proposed FTC
without anti-saturation method.

6. Conclusions

In this paper, an improved FTC scheme was developed for the attitude systems of
a flexible variable structure spacecraft in the presence of disturbances, multiple actuator
faults, and saturation. A fault detection and estimation approach is presented to detect
the time of actuator faults occurrence and estimate the amplitude of unknown faults. On
this basis, the improved adaptive FTC with variable structure harmonic functions was
designed in the framework of the fast terminal sliding mode technique, which ensures that
the faulty attitude system is asymptotical convergence in finite time. Thus, the proposed
FTC scheme achieves unified compensation for multi-location (different actuator channels)
multi-type (bias and complete failures) concurrent faults in nominal and variable structure
flight modes. Simulation results verified the good fault-tolerant performance using the
proposed active FTC scheme. However, the proposed FTC scheme did not consider the
sensor fault problem, and how to design a FTC strategy to compensate the effects of sensor
fault is our future research works.
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