Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (67)

Search Parameters:
Keywords = multiple actuator faults

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 2215 KiB  
Article
Machine Learning Approaches for Data-Driven Self-Diagnosis and Fault Detection in Spacecraft Systems
by Enrico Crotti and Andrea Colagrossi
Appl. Sci. 2025, 15(14), 7761; https://doi.org/10.3390/app15147761 - 10 Jul 2025
Viewed by 406
Abstract
Ensuring the reliability and robustness of spacecraft systems remains a key challenge, particularly given the limited feasibility of continuous real-time monitoring during on-orbit operations. In the domain of Fault Detection, Isolation, and Recovery (FDIR), no universal strategy has yet emerged. Traditional approaches often [...] Read more.
Ensuring the reliability and robustness of spacecraft systems remains a key challenge, particularly given the limited feasibility of continuous real-time monitoring during on-orbit operations. In the domain of Fault Detection, Isolation, and Recovery (FDIR), no universal strategy has yet emerged. Traditional approaches often rely on precise, model-based methods executed onboard. This study explores data-driven alternatives for self-diagnosis and fault detection using Machine Learning techniques, focusing on spacecraft Guidance, Navigation, and Control (GNC) subsystems. A high-fidelity functional engineering simulator is employed to generate realistic datasets from typical onboard signals, including sensor and actuator outputs. Fault scenarios are defined based on potential failures in these elements, guiding the data-driven feature extraction and labeling process. Supervised learning algorithms, including Support Vector Machines (SVMs) and Artificial Neural Networks (ANNs), are implemented and benchmarked against a simple threshold-based detection method. Comparative analysis across multiple failure conditions highlights the strengths and limitations of the proposed strategies. Results indicate that Machine Learning techniques are best applied not as replacements for classical methods, but as complementary tools that enhance robustness through higher-level self-diagnostic capabilities. This synergy enables more autonomous and reliable fault management in spacecraft systems. Full article
Show Figures

Figure 1

25 pages, 20538 KiB  
Article
Leader-Following-Based Optimal Fault-Tolerant Consensus Control for Air–Marine–Submarine Heterogeneous Systems
by Yandong Li, Longqi Li, Ling Zhu, Zehua Zhang and Yuan Guo
J. Mar. Sci. Eng. 2025, 13(5), 878; https://doi.org/10.3390/jmse13050878 - 28 Apr 2025
Viewed by 388
Abstract
This paper mainly investigates the fault-tolerant consensus problem in heterogeneous multi-agent systems. Firstly, a control model of a leader–follower heterogeneous multi-agent system (HMAS) composed of multiple unmanned aerial vehicles (UAVs), multiple unmanned surface vehicles (USVs), and multiple unmanned underwater vehicles (UUVs) is established. [...] Read more.
This paper mainly investigates the fault-tolerant consensus problem in heterogeneous multi-agent systems. Firstly, a control model of a leader–follower heterogeneous multi-agent system (HMAS) composed of multiple unmanned aerial vehicles (UAVs), multiple unmanned surface vehicles (USVs), and multiple unmanned underwater vehicles (UUVs) is established. Then, for the fault-tolerant control (FTC) consensus problem of heterogeneous systems under partial actuator failures and interruption failures, an optimal FTC protocol for heterogeneous multi-agent systems based on the control allocation algorithm is designed. The derived optimal FTC protocol is applied to the heterogeneous system. The asymptotic stability of the protocol is proved by the Lyapunov stability theory. Finally, the effectiveness of the control strategy is verified through simulation tests. Full article
(This article belongs to the Special Issue The Control and Navigation of Autonomous Surface Vehicles)
Show Figures

Figure 1

32 pages, 2540 KiB  
Article
Formation Control of Wheeled Mobile Robots with Fault-Tolerance Capabilities
by Muhammad Shahab, Ali Nasir and Nezar M. Alyazidi
Robotics 2025, 14(5), 59; https://doi.org/10.3390/robotics14050059 - 27 Apr 2025
Cited by 1 | Viewed by 631
Abstract
This research investigates the impact of actuator faults on the formation control of multiple-wheeled mobile robots—a critical aspect in coordinating multi-robot systems for applications such as surveillance, exploration, and transportation. When a fault occurs in any of the robots, it can disrupt the [...] Read more.
This research investigates the impact of actuator faults on the formation control of multiple-wheeled mobile robots—a critical aspect in coordinating multi-robot systems for applications such as surveillance, exploration, and transportation. When a fault occurs in any of the robots, it can disrupt the formation and adversely affect the system’s performance, thereby compromising system efficiency and reliability. While numerous studies have focused on fault-tolerant control strategies to maintain formation integrity, there is a notable gap in the literature regarding the relationship between controller gains and settling time under varying degrees of actuator loss. In this paper, we develop a kinematic model of wheeled mobile robots and implement a leader–follower-based formation control strategy. Actuator faults are systematically introduced with varying levels of effectiveness (e.g., 80%, 60%, and 40% of full capacity) to observe their effects on formation maintenance. We generate data correlating controller gains with settling time under different actuator loss conditions and fit a polynomial curve to derive an equation describing this relationship. Comprehensive MATLAB simulations are conducted to evaluate the proposed methodology. The results demonstrate the influence of actuator faults on the formation control system and provide valuable insights into optimizing controller gains for improved fault tolerance. These findings contribute to the development of more robust multi-robot systems capable of maintaining formation and performance despite the presence of actuator failures. Full article
(This article belongs to the Section Intelligent Robots and Mechatronics)
Show Figures

Figure 1

34 pages, 2272 KiB  
Article
Intelligent Fault-Tolerant Control of Delta Robots: A Hybrid Optimization Approach for Enhanced Trajectory Tracking
by Carlos Domínguez and Claudio Urrea
Sensors 2025, 25(6), 1940; https://doi.org/10.3390/s25061940 - 20 Mar 2025
Viewed by 660
Abstract
The kinematic complexity and multi-actuator dependence of Delta-type manipulators render them vulnerable to performance degradation from faults. This study presents a novel approach to Active Fault-Tolerant Control (AFTC) for Delta-type parallel robots, integrating an advanced fault diagnosis system with a robust control strategy. [...] Read more.
The kinematic complexity and multi-actuator dependence of Delta-type manipulators render them vulnerable to performance degradation from faults. This study presents a novel approach to Active Fault-Tolerant Control (AFTC) for Delta-type parallel robots, integrating an advanced fault diagnosis system with a robust control strategy. In the first stage, a fault diagnosis system is developed, leveraging a hybrid feature extraction algorithm that combines Wavelet Scattering Networks (WSNs), Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA), and Meta-Learning (ML). This system effectively identifies and classifies faults affecting single actuators, sensors, and multiple components under real-time conditions. The proposed AFTC approach employs a hybrid optimization framework that integrates Genetic Algorithms and Gradient Descent to reconfigure a Type-2 fuzzy controller. Results show that the methodology achieves perfect fault diagnosis accuracy across four classifiers and enhances robot performance by reducing critical degradation to moderate levels under multiple faults. These findings validate the robustness and efficiency of the proposed fault-tolerant control strategy, highlighting its potential for enhancing trajectory tracking accuracy in complex robotic systems under adverse conditions. Full article
(This article belongs to the Special Issue Sensing for Automatic Control and Measurement System)
Show Figures

Figure 1

19 pages, 6663 KiB  
Article
The Fault-Tolerant Control Strategy for the Steering System Failure of Four-Wheel Independent By-Wire Steering Electric Vehicles
by Qianlong Han, Chengye Liu, Jingbo Zhao and Haimei Liu
World Electr. Veh. J. 2025, 16(3), 183; https://doi.org/10.3390/wevj16030183 - 18 Mar 2025
Viewed by 680
Abstract
The drive torque of each wheel hub motor of a four-wheel independent wire-controlled steering electric vehicle is independently controllable, representing a typical over-actuated system. Through optimizing the distribution of the drive torque of each wheel, fault-tolerant control can be realized. In this paper, [...] Read more.
The drive torque of each wheel hub motor of a four-wheel independent wire-controlled steering electric vehicle is independently controllable, representing a typical over-actuated system. Through optimizing the distribution of the drive torque of each wheel, fault-tolerant control can be realized. In this paper, the four-wheel independent wire-controlled steering electric vehicle is taken as the research object, aiming at the collaborative control problem of trajectory tracking and yaw stability when the actuator of the by-wire steering system fails, a fault-tolerant control method based on the synergy of differential steering and direct yaw moment is proposed. This approach adopts a hierarchical control system. The front wheel controller predicts the necessary steering angle in accordance with a linear model and addresses the requirements of the front wheels and additional torque. Subsequently, considering the uncertainties in the drive control system and the complexities of the road obstacle model, the differential steering torque is computed via the sliding mode control method; the lower-level controller implements the torque optimization distribution strategy based on the quadratic programming algorithm. Finally, the validity of this approach under multiple working conditions was verified via CarSim 2019 and MATLAB R2023b/Simulink simulation experiments. Full article
Show Figures

Figure 1

24 pages, 6036 KiB  
Article
An Improved Set-Valued Observer and Probability Density Function-Based Self-Organizing Neural Networks for Early Fault Diagnosis in Wind Energy Conversion Systems
by Ruinan Zhao
Symmetry 2025, 17(3), 448; https://doi.org/10.3390/sym17030448 - 17 Mar 2025
Viewed by 282
Abstract
Fault diagnosis is crucial for ensuring the reliability and safety of wind energy conversion systems (WECSs). However, existing methods are often specific to components or specific types of wind turbines and face challenges, such as difficulty in threshold setting and low accuracy in [...] Read more.
Fault diagnosis is crucial for ensuring the reliability and safety of wind energy conversion systems (WECSs). However, existing methods are often specific to components or specific types of wind turbines and face challenges, such as difficulty in threshold setting and low accuracy in diagnosing faults at early stages. To address these challenges, this paper proposes a novel fault diagnosis method based on self-organizing neural networks (SONNs) and probability density functions (PDFs). First, an improved set-valued observer (ISVO) is designed to accurately estimate the states of WECSs, considering the time delay and unknown nonlinearity of overall model. Then, the PDF is derived by fitting the estimation error data to characterize three common multiplicative faults of the pitch system actuators. Two types of SONNs are developed to cluster the parameter sets of the PDF. Finally, the PDFs of the estimation error are reconstructed based on the clustering results, thereby designing fault diagnosis strategies that enable a rapid and highly accurate diagnosis of early-stage faults. Simulation results demonstrate that the proposed strategies achieved an early fault diagnosis accuracy rate of over 90%, with the fastest diagnosis time being approximately 0.11 s. Under the same fault conditions, the diagnosis time is 1 s faster than that of a k-means-based fault diagnosis strategy. This study provides a threshold-free, high-accuracy, and rapid fault diagnosis strategy for early fault diagnosis in WECS. By combining neural networks, the proposed method addresses the issue of threshold dependency in fault diagnosis, with potential applications in improving the reliability and safety of wind power generation. Full article
(This article belongs to the Section Computer)
Show Figures

Figure 1

15 pages, 2986 KiB  
Article
Fault-Tolerant Control of Multi-Clamp Disc Elevator Brakes with Fixed-Time Convergence
by Yefeng Jiang, Wanbin Su, Ke Li, Yuan Zhou and Jing Zhou
Actuators 2025, 14(3), 123; https://doi.org/10.3390/act14030123 - 4 Mar 2025
Viewed by 658
Abstract
This paper proposes a passive fault-tolerant control strategy for a multi-caliper disc elevator brake system subject to unknown external disturbances and multiple actuator faults. Initially, a detailed analysis of the dynamic equations of the actuator in a multi-caliper disc elevator brake system with [...] Read more.
This paper proposes a passive fault-tolerant control strategy for a multi-caliper disc elevator brake system subject to unknown external disturbances and multiple actuator faults. Initially, a detailed analysis of the dynamic equations of the actuator in a multi-caliper disc elevator brake system with actuator faults is conducted. Subsequently, a nonsingular terminal sliding mode fault-tolerant control scheme with rapid fixed-time convergence is proposed, where the settling time is independent of the system’s initial state and can be preset through design parameters. The upper bound of the convergence time is derived using Lyapunov theory, ensuring that the faulty elevator brake control system converges within a predetermined fixed time. Ultimately, theoretical analysis and numerical simulation results confirm that the proposed controller can effectively handle the effects of actuator faults, parametric uncertainties, and external disturbances, ensuring satisfactory tracking accuracy. Full article
(This article belongs to the Section Control Systems)
Show Figures

Figure 1

19 pages, 6583 KiB  
Article
Multiple Fault-Tolerant Control of DC Microgrids Based on Sliding Mode Observer
by Jian Sun, Zewen Li and Minsheng Yang
Electronics 2025, 14(5), 931; https://doi.org/10.3390/electronics14050931 - 26 Feb 2025
Cited by 1 | Viewed by 602
Abstract
Different locations and types of faults affect the safe and reliable operation of DC microgrids. Therefore, this paper proposes a secondary multiple fault-tolerant control scheme for a DC microgrid based on a sliding mode observer to ensure the voltage is restored to the [...] Read more.
Different locations and types of faults affect the safe and reliable operation of DC microgrids. Therefore, this paper proposes a secondary multiple fault-tolerant control scheme for a DC microgrid based on a sliding mode observer to ensure the voltage is restored to the rated value and realize the proportional current sharing of all sources. Firstly, the secondary control model of the DC microgrid is established, considering the multiple faults of actuators and sensors simultaneously. Secondly, the system model is transformed into two subsystems by bilinear coordinate transformation, and multiple faults decoupling between the sensor and actuator is realized. Then, two sliding mode observers are designed for the two transformed subsystems. The sliding mode variable structure equivalent principle is used to reconstruct the faults at different positions without knowing the fault models in advance, which is convenient for subsequent processing. Then, the fault-tolerant controller based on the sliding mode observer is designed, which uses the reconstructed value to offset the influence of sensor and actuator faults on the DC microgrid and realizes the fault-tolerant control of the DC microgrid. Finally, the effectiveness of the proposed control strategy is verified by experiments. Full article
Show Figures

Figure 1

25 pages, 5891 KiB  
Article
Discrete Event System Specification for IoT Applications
by Iman Alavi Fazel and Gabriel Wainer
Sensors 2024, 24(23), 7784; https://doi.org/10.3390/s24237784 - 5 Dec 2024
Cited by 1 | Viewed by 1070
Abstract
The Internet of Things (IoT) has emerged as a transformative technology with a variety of applications across various industries. However, the development of IoT systems is hindered by challenges such as interoperability, system complexity, and the need for streamlined development and maintenance processes. [...] Read more.
The Internet of Things (IoT) has emerged as a transformative technology with a variety of applications across various industries. However, the development of IoT systems is hindered by challenges such as interoperability, system complexity, and the need for streamlined development and maintenance processes. In this study, we introduce a robust architecture grounded in discrete event system specification (DEVS) as a model-driven development solution to overcome these obstacles. Our proposed architecture utilizes the publish/subscribe paradigm, and it also adds to the robustness of the proposed solution with the incorporation of the Brooks–Iyengar algorithm to enhance fault tolerance against unreliable sensor readings. We detail the DEVS specification that is used to define this architecture and validate its effectiveness through a detailed home automation case study that integrates multiple sensors and actuators. Full article
(This article belongs to the Special Issue Wireless Sensor Networks: Signal Processing and Communications)
Show Figures

Figure 1

29 pages, 4318 KiB  
Article
Adaptive Integral Sliding Mode Control with Chattering Elimination Considering the Actuator Faults and External Disturbances for Trajectory Tracking of 4Y Octocopter Aircraft
by Samir Zeghlache, Hilal Rahali, Ali Djerioui, Hemza Mekki, Loutfi Benyettou and Mohamed Fouad Benkhoris
Processes 2024, 12(11), 2431; https://doi.org/10.3390/pr12112431 - 4 Nov 2024
Viewed by 1326
Abstract
This paper presents a control strategy for a 4Y octocopter aircraft that is influenced by multiple actuator faults and external disturbances. The approach relies on a disturbance observer, adaptive type-2 fuzzy sliding mode control scheme, and type-1 fuzzy inference system. The proposed control [...] Read more.
This paper presents a control strategy for a 4Y octocopter aircraft that is influenced by multiple actuator faults and external disturbances. The approach relies on a disturbance observer, adaptive type-2 fuzzy sliding mode control scheme, and type-1 fuzzy inference system. The proposed control approach is distinct from other tactics for controlling unmanned aerial vehicles because it can simultaneously compensate for actuator faults and external disturbances. The suggested control technique incorporates adaptive control parameters in both continuous and discontinuous control components. This enables the production of appropriate control signals to manage actuator faults and parametric uncertainties without relying only on the robust discontinuous control approach of sliding mode control. Additionally, a type-1 fuzzy logic system is used to build a fuzzy hitting control law to eliminate the occurrence of chattering phenomena on the integral sliding mode control. In addition, in order to keep the discontinuous control gain in sliding mode control at a small value, a nonlinear disturbance observer is constructed and integrated to mitigate the influence of external disturbances. Moreover, stability analysis of the proposed control method using Lyapunov theory showcases its potential to uphold system tracking performance and minimize tracking errors under specified conditions. The simulation results demonstrate that the proposed control strategy can significantly reduce the chattering effect and provide accurate trajectory tracking in the presence of actuator faults. Furthermore, the efficacy of the recommended control strategy is shown by comparative simulation results of 4Y octocopter under different failing and uncertain settings. Full article
(This article belongs to the Special Issue Fuzzy Control System: Design and Applications)
Show Figures

Figure 1

25 pages, 685 KiB  
Article
Failure-Distribution-Dependent H Fuzzy Fault-Tolerant Control for Nonlinear Multilateral Teleoperation System with Communication Delays
by Antai Han, Qiyao Yang, Yangjie Chen and Jianning Li
Electronics 2024, 13(17), 3454; https://doi.org/10.3390/electronics13173454 - 30 Aug 2024
Cited by 51 | Viewed by 1183
Abstract
In practice, the time-varying communication delays and actuator failures are the main inevitable issues in nonlinear multilateral teleoperation systems, which can reduce the performance and stability of the considered systems. This article proposed a novel failure-distribution-dependent H fuzzy fault-tolerant control scheme to [...] Read more.
In practice, the time-varying communication delays and actuator failures are the main inevitable issues in nonlinear multilateral teleoperation systems, which can reduce the performance and stability of the considered systems. This article proposed a novel failure-distribution-dependent H fuzzy fault-tolerant control scheme to realize position synchronization and force tracking simultaneously for multilateral teleoperation systems. Firstly, the nonlinear multilateral systems were modeled as a kind of T-S fuzzy systems with multiple time-varying delays. Then, based on the distribution characteristic of failures, by introducing a series of tradeoff coefficients, a novel failure-distribution-dependent fault-tolerant control algorithm was provided to ensure force tracking in spite of failures, and the purpose of position synchronization was achieved (not only the master and slave robot position synchronization but also the position synchronization between each slave robot). Finally, a numerical simulation example was given to show the effectiveness of the proposed method. Full article
Show Figures

Figure 1

18 pages, 1345 KiB  
Article
Decentralized Adaptive Event-Triggered Fault-Tolerant Cooperative Control of Multiple Unmanned Aerial Vehicles and Unmanned Ground Vehicles with Prescribed Performance under Denial-of-Service Attacks
by Shangkun Liu and Jie Huang
Mathematics 2024, 12(17), 2701; https://doi.org/10.3390/math12172701 - 29 Aug 2024
Viewed by 990
Abstract
This paper proposes a decentralized adaptive event-triggered fault-tolerant cooperative control (ET-FTCC) scheme for multiple unmanned aerial vehicles (UAVs) and unmanned ground vehicles (UGVs) with actuator faults and external disturbances under denial-of-service (DoS) attacks. The multiple UAVs and UGVs have a larger search radius, [...] Read more.
This paper proposes a decentralized adaptive event-triggered fault-tolerant cooperative control (ET-FTCC) scheme for multiple unmanned aerial vehicles (UAVs) and unmanned ground vehicles (UGVs) with actuator faults and external disturbances under denial-of-service (DoS) attacks. The multiple UAVs and UGVs have a larger search radius, which is important in both the civilian and military domains. The different dynamics between UAVs and UGVs result in unbalanced interactions in the communication topologies, which increases the complexity of cooperative control. DoS attacks are conducted in both sensor and control channels. The dynamic models of UAVs and UGVs are introduced firstly, and the unified heterogeneous multiagent system model with actuator faults is established. The composite observer is designed to obtain the information of state and lumped disturbance, which is used to design the controller. In order to save the limited communication network resources, the event-triggered mechanism is introduced. The transformed error is presented by using the prescribed performance function (PPF). Then, the sliding-mode manifold is presented by combining the event-triggered control scheme to achieve the tracking purpose with actuator faults, external disturbances, and DoS attacks. Based on the Lyapunov function approach, the tracking errors are bounded within the prescribed boundary. Finally, the effectiveness of the proposed method is verified by qualitative analysis and quantitative analysis of the simulation results. This study can enhance the security and reliability of heterogeneous multiagent systems, providing technical support for the safe operation of unmanned systems. This paper mainly solves the FTCC problem of second-order nonlinear heterogeneous multiagent systems, and further research is needed for the FTCC problem of higher-order nonlinear heterogeneous multi-agent systems. In addition, the system may encounter multiple cyber attacks. As one of the future research works, we can extend the results of this paper to high-order nonlinear systems under multiple cyber attacks, which contain DoS attacks and deception attacks, and achieve fault-tolerant cooperative control of heterogeneous multiagent systems. Full article
Show Figures

Figure 1

20 pages, 2350 KiB  
Article
L1 Adaptive Fault-Tolerant Control for Nonlinear Systems Subject to Input Constraint and Multiple Faults
by Yan Zhou, Huiying Liu and Huijuan Guo
Actuators 2024, 13(7), 258; https://doi.org/10.3390/act13070258 - 9 Jul 2024
Cited by 2 | Viewed by 1164
Abstract
This paper investigates an L1 adaptive fault-tolerant control scheme for nonlinear systems with input constraint, external disturbances, and multiple faults, which include actuator faults and sensor faults. Faults and input constraint are important factors that affect the stability and performance of a control [...] Read more.
This paper investigates an L1 adaptive fault-tolerant control scheme for nonlinear systems with input constraint, external disturbances, and multiple faults, which include actuator faults and sensor faults. Faults and input constraint are important factors that affect the stability and performance of a control system. Actuators and sensors are the most vulnerable components, with the former receiving more attention in comparison. In this paper, sensor faults are first transformed into pseudo-actuator faults through the augmented matrix approach, which facilitates their handling together with actuator faults. Saturation constraints on the control signal are not conducive to the design of the controller. The conversion of an input-saturated function to a time-varying linear system is completed based on function approximation and Lagrange’s mean value theorem. Moreover, a nonlinear system with unknown input gain and uncertainties is constructed using these methods. Next, an L1 adaptive fault-tolerant controller is designed to cope with uncertainties, including system uncertainties, external disturbances, faults, and approximation errors. In the L1 adaptive controller, the online estimation of the time-varying parameters allows for updating of the system state, while the combination of the two is transmitted to the control law such that it can compensate for the effects of the uncertainties. The stability and performance boundaries are further derived using the Lyapunov theory and the L1 reference system. Finally, simulations are carried out to demonstrate the effectiveness of the proposed controller. Full article
(This article belongs to the Special Issue Intelligent Sensing, Control and Actuation in Networked Systems)
Show Figures

Figure 1

16 pages, 4645 KiB  
Article
Fault-Tolerant Control Study of Four-Wheel Independent Drive Electric Vehicles Based on Drive Actuator Faults
by Mingjie Guo, Chunjiang Bao, Qinghua Cao, Fuxing Xu, Xinhong Miao and Jian Wu
Machines 2024, 12(7), 450; https://doi.org/10.3390/machines12070450 - 30 Jun 2024
Cited by 2 | Viewed by 1474
Abstract
Failure of any of the drive systems in a Four-Wheel Independent Drive (4WID) electric vehicle may affect the control performance and driving safety of the whole vehicle. Therefore, in this paper, a fault-tolerant controller (FTC) for 4WID electric vehicles considering drive actuator failures [...] Read more.
Failure of any of the drive systems in a Four-Wheel Independent Drive (4WID) electric vehicle may affect the control performance and driving safety of the whole vehicle. Therefore, in this paper, a fault-tolerant controller (FTC) for 4WID electric vehicles considering drive actuator failures is proposed. First, a comprehensive characterization of multiple fault types is achieved by establishing a generalized fault model and designing a comprehensive fault factor. Second, based on the comprehensive fault factor, an LPV model with faults is constructed. Further, a fault-tolerant controller based on LPV/H∞ output feedback is designed by combining the weighting function. Finally, the effectiveness of the FTC in this paper is verified by simulation and hardware-in-the-loop (HIL) experiments. The experimental results show that the FTC designed in this paper can improve the stability of the vehicle traveling while ensuring tracking accuracy when the drive system fails. Full article
(This article belongs to the Section Automation and Control Systems)
Show Figures

Figure 1

20 pages, 997 KiB  
Article
Image-Based Visual Servoing for Three Degree-of-Freedom Robotic Arm with Actuator Faults
by Jiashuai Li, Xiuyan Peng, Bing Li, Mingze Li and Jiawei Wu
Actuators 2024, 13(6), 223; https://doi.org/10.3390/act13060223 - 13 Jun 2024
Cited by 2 | Viewed by 1490
Abstract
This study presents a novel image-based visual servoing fault-tolerant control strategy aimed at ensuring the successful completion of visual servoing tasks despite the presence of robotic arm actuator faults. Initially, a depth-independent image-based visual servoing model is established to mitigate the effects of [...] Read more.
This study presents a novel image-based visual servoing fault-tolerant control strategy aimed at ensuring the successful completion of visual servoing tasks despite the presence of robotic arm actuator faults. Initially, a depth-independent image-based visual servoing model is established to mitigate the effects of inaccurate camera parameters and missing depth information on the system. Additionally, a robotic arm dynamic model is constructed, which simultaneously considers both multiplicative and additive actuator faults. Subsequently, model uncertainties, unknown disturbances, and coupled actuator faults are consolidated as centralized uncertainties, and an iterative learning fault observer is designed to estimate them. Based on this, suitable sliding surfaces and control laws are developed within the super-twisting sliding mode visual servo controller to rapidly reduce control deviation to near zero and circumvent the chattering phenomenon typically observed in traditional sliding mode control. Finally, through comparative simulation between different control strategies, the proposed method is shown to effectively counteract the effect of actuator faults and exhibit robust performance. Full article
(This article belongs to the Section Actuators for Robotics)
Show Figures

Figure 1

Back to TopTop