Review of Recent Automated Pothole-Detection Methods
Abstract
:1. Introduction
2. Comparison of Automated Pothole-Detection Methods
3. The Three Types of Recent Automated Pothole-Detection Methods
3.1. A Vision-Based Method (Type A)
3.2. Vibration-Based Method (Type B)
3.3. 3D Reconstruction-Based Method (Type C)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yang, C.H.; Kim, J.G.; Shin, S.P. Road Hazard Assessment Using Pothole and Traffic Data in South Korea. J. Adv. Transp. 2021, 2021, 5901203. [Google Scholar] [CrossRef]
- Coenen, T.B.J.; Golroo, A. A review on automated pavement distress detection methods. Cogent Eng. 2017, 4, 1374822. [Google Scholar] [CrossRef]
- Cao, W.; Liu, Q.; He, Z. Review of Pavement Defect Detection Method. IEEE Access 2020, 8, 14531–14544. [Google Scholar] [CrossRef]
- Dib, J.; Sirlantzis, K.; Howells, G. A Review on Negative Road Anomaly Detection Methods. IEEE Access 2020, 8, 57298–57316. [Google Scholar] [CrossRef]
- Peraka, N.S.P.; Biligiri, K.P. Pavement asset management systems and technologies: A review. Autom. Constr. 2020, 119, 103336. [Google Scholar] [CrossRef]
- Sattar, S.; Li, S.; Chapman, M. Developing a near real-time road surface anomaly detection approach for road surface monitoring. Measurement 2021, 185, 109990. [Google Scholar] [CrossRef]
- Sattar, S.; Li, S.; Chapman, M. Road Surface Monitoring Using Smartphone Sensors: A Review. Sensors 2018, 18, 3845. [Google Scholar] [CrossRef] [Green Version]
- Kim, T.; Ryu, S.K. Review and analysis of pothole detection methods. J. Emerg. Trends Comput. Inf. Sci. 2014, 5, 603–608. [Google Scholar]
- Lim, K.S.; Kwon, J.W. Detection of Potholes Using a Deep Convolutional Neural Network. J. Univers. Comput. Sci. 2018, 24, 1244–1257. [Google Scholar]
- Baek, J.-W.; Chung, K. Pothole Classification Model Using Edge Detection in Road Image. Appl. Sci. 2020, 10, 6662. [Google Scholar] [CrossRef]
- Maeda, H.; Sekimoto, Y.; Seto, T.; Kashiyama, T.; Omata, H. Road Damage Detection and Classification Using Deep Neural Networks with Smartphone Images: Road damage detection and classification. Comput. Aided Civ. Infrastruct. Eng. 2018, 33, 1127–1141. Available online: https://github.com/sekilab/RoadDamageDetector (accessed on 19 March 2021). [CrossRef]
- Park, S.-S.; Tran, V.-T.; Lee, D.-E. Application of Various YOLO Models for Computer Vision-Based Real-Time Pothole Detection. Appl. Sci. 2021, 11, 11229. [Google Scholar] [CrossRef]
- Rahman, A.; Patel, S. Annotated Potholes Image Dataset. Kaggle. 2020. Available online: https://www.kaggle.com/chitholian/annotated-potholes-dataset (accessed on 21 November 2021).
- Ye, W.; Jinag, W.; Tong, Z.; Yuann, D.; Xiao, J. Convolutional neural network for pothole detection in asphalt pavement. Road Mater. Pavement Des. 2021, 22, 42–58. [Google Scholar] [CrossRef]
- Chen, H.; Yao, M.; Gu, Q. Pothole detection using location-aware convolutional neural networks. Int. J. Mach. Learn. Cybern. 2020, 11, 599–911. [Google Scholar] [CrossRef]
- Nienaber, S.; Kroon, R.S.; Booysen, M.J. A Comparison of Low-Cost Monocular Vision Techniques for Pothole Distance Estimation. In Proceedings of the IEEE Symposium Series on Computational Intelligence, Cape Town, South Africa, 7–10 December 2015; pp. 419–426. [Google Scholar]
- Nienaber, S.; Booysen, M.J.; Kroon, R.S. Detecting Potholes Using Simple Image Processing Techniques and Real-World Footage. In Proceedings of the 34th South Africa Transport Conference (SATC), Pretoria, South Africa, 6–9 July 2015. [Google Scholar]
- Zhang, L.; Yang, F.; Zhang, Y.D.; Zhu, Y.J. Road crack detection using deep convolutional neural network. In Proceedings of the IEEE International Conference on Image Processing (ICIP), Phoenix, AZ, USA, 25–28 September 2016; pp. 3708–3712. [Google Scholar]
- Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708. [Google Scholar]
- Yang, Z.; Luo, T.; Wang, D.; Hu, Z.; Gao, J.; Wang, L. Learning to navigate for fine-grained classification. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 420–435. [Google Scholar]
- Dewangan, D.K.; Sahu, S.P. PotNet: Pothole detection for autonomous vehicle system using convolutional neural network. Electron. Lett. 2021, 57, 53–56. [Google Scholar] [CrossRef]
- Hoang, N.-D. An Artificial Intelligence Method for Asphalt Pavement Pothole Detection Using Least Squares Support Vector Machine and Neural Network with Steerable Filter-Based Feature Extraction. Adv. Civ. Eng. 2018, 2018, 7419058. [Google Scholar] [CrossRef] [Green Version]
- Bhatia, Y.; Rai, R.; Gupta, V.; Aggarwal, N.; Akula, A. Convolutional neural networks based potholes detection using thermal imaging. J. King Saud Univ. Comput. Inf. Sci. 2022, 34, 578–588. [Google Scholar]
- Varona, B.; Monteserin, A.; Teyseyre, A. A deep learning approach to automatic road surface monitoring and pothole detection. Pers. Ubiquitous Comput. 2020, 24, 519–534. [Google Scholar] [CrossRef]
- Ryu, S.-K.; Kim, T.; Kim, Y.-R. Image-based pothole detection system for ITS service and road management system. Math. Probl. Eng. 2015, 2015, 968361. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.; Hu, Y.; Dai, Y.; Tian, M. Asphalt Pavement Pothole Detection and Segmentation Based on Wavelet Energy Field. Math. Probl. Eng. 2017, 2017, 1604130. [Google Scholar] [CrossRef] [Green Version]
- Koch, C.; Brilakis, B. Pothole detection in asphalt pavement images. Adv. Eng. Inf. 2011, 25, 507–515. [Google Scholar] [CrossRef]
- Yousaf, M.H.; Azhar, K.; Murtaza, F.; Hussain, F. Visual analysis of asphalt pavement for detection and localization of potholes. Adv. Eng. Inf. 2018, 38, 527–537. [Google Scholar] [CrossRef]
- Azhar, K.; Murtaza, F.; Yousaf, M.H.; Habib, H.A. Computer vision based detection and localization of potholes in asphalt pavement images. In Proceedings of the IEEE Canadian Conference on Electrical and Computer Engineering (CCECE), Vancouver, BC, Canada, 15–18 May 2016. [Google Scholar]
- Du, R.; Qiu, G.; Gao, K.; Hu, L.; Liu, L. Abnormal Road Surface Recognition Based on Smartphone Acceleration Sensor. Sensors 2020, 20, 451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allouch, A.; Koubâa, A.; Abbes, T.; Ammar, A. RoadSense: Smartphone Application to Estimate Road Conditions Using Accelerometer and Gyroscope. IEEE Sens. J. 2017, 17, 4231–4238. [Google Scholar] [CrossRef]
- Wu, C.; Wang, Z.; Hu, S.; Lepine, J.; Na, X.; Ainalis, D.; Stettler, M. An Automated Machine-Learning Approach for Road Pothole Detection Using Smartphone Sensor Data. Sensors 2020, 20, 5564. [Google Scholar] [CrossRef]
- Dhiman, A.; Klette, R. Pothole Detection Using Computer Vision and Learning. IEEE Trans. Intell. Transp. Syst. 2020, 21, 3536–3550. [Google Scholar] [CrossRef]
- Guzman, R.; Hayet, J.-B.; Klette, R. Towards Ubiquitous Autonomous Driving: The CCSAD Dataset. In Proceedings of the International Conference on Computer Analysis of Images and Patterns (CAIP), Valletta, Malta, 2–4 September 2015; pp. 582–593. Available online: https://www.dropbox.com/sh/srx8ct7y8phttyy/AAA55hcUwrOd4TcC5S3NSvgWa (accessed on 10 April 2015).
- Grießbach, D.; Baumbach, D.; Zuey, S. Stereo-vision-aided inertial navigation for unknown indoor and outdoor environments. In Proceedings of the International Conference on Indoor Positioning and Indoor Navigation (IPIN), Busan, South Korea, 27–30 October 2014; pp. 709–716. [Google Scholar]
- PNW Dataset. Available online: https://www.youtube.com/watch?v=BQo87tGRM74 (accessed on 25 May 2019).
- Haq, M.U.U.; Ashfaque, M.; Mathayan, S.; Mathavan, S.; Kamal, K.; Ahmed, A. Stereo-Based 3D Reconstruction of Potholes by a Hybrid, Dense Matching Scheme. IEEE Sens. J. 2019, 19, 3807–3817. [Google Scholar] [CrossRef]
- Guan, J.; Yang, X.; Ding, L.; Cheng, X.; Lee, C.S.; Jin, C. Automated pixel-level pavement distress detection based on stereo vision and deep learning. Autom. Constr. 2021, 129, 103788. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), Munich, Germany, 5–9 October 2015; pp. 234–241. [Google Scholar]
- Chen, J.; Liu, G.; Chen, X. Road crack image segmentation using global context Unet. In Proceedings of the International Conference on Computer Science and Artificial Intelligence, Beijing, China, 6–8 December 2019; pp. 181–185. [Google Scholar]
- Zaidi, S.S.A.; Ansari, M.S.; Aslam, A.; Kanwal, N.; Asghar, M.; Lee, B. A survey of modern deep learning based object detection models. Digit. Signal Process. 2022, 126, 103514. [Google Scholar] [CrossRef]
- Maxwell, A.E.; Warner, T.A.; Guillén, L.A. Accuracy Assessment in Convolutional Neural Network-Based Deep Learning Remote Sensing Studies—Part 1: Literature Review. Remote Sens. 2021, 13, 2450. [Google Scholar] [CrossRef]
- Maxwell, A.E.; Warner, T.A.; Guillén, L.A. Accuracy Assessment in Convolutional Neural Network-Based Deep Learning Remote Sensing Studies—Part 2: Recommendations and Best Practices. Remote Sens. 2021, 13, 2591. [Google Scholar] [CrossRef]
Methods | Strengths | Weaknesses |
---|---|---|
Vision-based method |
|
|
Vibration-based method |
|
|
3D reconstruction-based method |
|
|
No. | Authors | Detection Techniques | Dataset | Performance | Experimental Circumstance |
---|---|---|---|---|---|
A1 | Lim et al. [9] |
|
|
|
|
A2 | Baek et al. [10] |
|
|
|
|
A3 | Park et al. [12] |
|
|
|
|
A4 | Wanli Ye et al. [14] |
|
|
|
|
A5 | Hanshen Chen et al. [15] |
|
|
|
|
A6 | Deepak Kumar Dewangan et al. [21] |
|
|
|
|
A7 | Nhat-Duc Hoang [22] |
|
|
|
|
A8 | Penghui Wang et al. [26] |
|
|
|
|
A9 | Muhammad Haroon Yousaf et al. [28] |
|
|
|
|
No. | Authors | Detection Techniques | Dataset | Performance | Experimental Circumstance |
---|---|---|---|---|---|
B1 | Ronghua Du et al. [30] |
|
|
|
|
B2 | Azza Allouch et al. [31] |
|
|
|
|
B3 | Chao Wu et al. [32] |
|
|
|
|
No. | Authors | Detection Techniques | Performance | Experimental Circumstance |
---|---|---|---|---|
C1 | Amita Dhiman et al. [33] |
|
|
|
C2 | Muhammad Uzair Ul Haq et al. [37] |
|
|
|
C3 | Jinchao Guan et al. [38] |
|
|
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, Y.-M.; Kim, Y.-G.; Son, S.-Y.; Lim, S.-Y.; Choi, B.-Y.; Choi, D.-H. Review of Recent Automated Pothole-Detection Methods. Appl. Sci. 2022, 12, 5320. https://doi.org/10.3390/app12115320
Kim Y-M, Kim Y-G, Son S-Y, Lim S-Y, Choi B-Y, Choi D-H. Review of Recent Automated Pothole-Detection Methods. Applied Sciences. 2022; 12(11):5320. https://doi.org/10.3390/app12115320
Chicago/Turabian StyleKim, Young-Mok, Young-Gil Kim, Seung-Yong Son, Soo-Yeon Lim, Bong-Yeol Choi, and Doo-Hyun Choi. 2022. "Review of Recent Automated Pothole-Detection Methods" Applied Sciences 12, no. 11: 5320. https://doi.org/10.3390/app12115320
APA StyleKim, Y.-M., Kim, Y.-G., Son, S.-Y., Lim, S.-Y., Choi, B.-Y., & Choi, D.-H. (2022). Review of Recent Automated Pothole-Detection Methods. Applied Sciences, 12(11), 5320. https://doi.org/10.3390/app12115320