On Modeling Cancer and Tuberculosis Data Using the Birnbaum–Saunders Lifetime Model Established on a Logistic Kernel
Abstract
:1. Introduction
2. Properties of the LBS Distribution
2.1. Fundamental Properties
2.2. Order Statistics
2.3. Statistical Properties
3. Inference for the LBS Distribution
3.1. Maximum Likelihood Estimation
3.2. Modified Moment Estimation
4. Simulation Study
- Model 1: A model without any contamination.
- Model 2: A model with 10% of upper contamination.
- Model 3: A model with 10% of lower contamination.
- Model 4: A model with 20% of two-tailed contamination.
- When there is no contamination in the data, all figures show that when the sample size is increased, all methods perform well;
- The bias values of the parameter increase as the value increases in models 2 and 3;
- In the case of model 4, the bias values show that the MLE method outperforms the MME method, with MLE performing significantly better as the value decreases;
- The RMSE values of the parameter in models 2 and 3 are slightly increased when the value increases in the two methods;
- However, the RMSE values of model 4 indicate that MLE outperforms MME and that this performance improves as decreases;
- In the case of models 1 and 4, the bias values of the parameter appear to be constant around zero for both methods;
- As the value decreases in the MLE method, the bias values of models 2 and 3 approach zero;
- The RMSE values of the parameter perform similarly in the MLE and MME methods, with the values of all models getting closer to zero as the value decreases.
5. Data Analyses
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Langlands, A.O.; Pocock, S.J.; Kerr, G.R.; Gore, S.M. Long-term survival of patients with breast cancer: A study of the curability of the disease. Br. Med. J. 1979, 2, 1247–1251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balakrishnan, N.; Kundu, D. Birnbaum–Saunders distribution: A review of models, analysis, and applications. Appl. Stoch. Model. Bus. Ind. 2019, 35, 4–49. [Google Scholar] [CrossRef] [Green Version]
- Birnbaum, Z.W.; Saunders, S.C. A new family of life distributions. J. Appl. Probab. 1969, 6, 319–327. [Google Scholar] [CrossRef]
- Birnbaum, Z.W.; Saunders, S.C. Estimation for a family of life distributions with applications to fatigue. J. Appl. Probab. 1969, 6, 328–347. [Google Scholar] [CrossRef]
- Diáz-Garciá, J.A.; Leiva-Sánchez, V. A new family of life distributions based on the elliptically contoured distributions. J. Stat. Plan. Infer. 2007, 128, 445–457, Erratum in J. Stat. Plan. Infer. 2007, 137, 1512–1513. [Google Scholar] [CrossRef]
- Leiva, V.; Riquelme, M.; Balakrishnan, N.; Sanhueza, A. Lifetime analysis based on the generalized Birnbaum–Saunders distribution. Comput. Stat. Data Anal. 2008, 52, 2079–2097. [Google Scholar] [CrossRef]
- Sanhueza, A.; Leiva, V.; Balakrishnan, N. The generalized Birnbaum–Saunders distribution and its theory, methodology, and application. Commun. Stat. Methods 2008, 37, 645–670. [Google Scholar] [CrossRef]
- Lawson, C.; Keats, J.B.; Montgomery, D.C. Comparison of robust and least-squares regression in computer-generated probability plots. IEEE Trans. Reliab. 1997, 46, 108–115. [Google Scholar] [CrossRef]
- Boudt, K.; Caliskan, D.; Croux, C. Robust explicit estimators of Weibull parameters. Metrika 2011, 73, 187–209. [Google Scholar] [CrossRef] [Green Version]
- Agostinelli, C.; Marazzi, A.; Yohai, V.J. Robust estimators of the generalized log-gamma distribution. Technometrics 2014, 56, 92–101. [Google Scholar] [CrossRef]
- Wang, M.; Park, C.; Sun, X. Simple robust parameter estimation for the Birnbaum–Saunders distribution. J. Stat. Distrib. Appl. 2015, 2, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Alam, F.M.A.; Nassar, M. On Modeling Concrete Compressive Strength Data Using Laplace Birnbaum–Saunders Distribution Assuming Contaminated Information. Crystals 2021, 11, 830. [Google Scholar] [CrossRef]
- Balakrishnan, N. Handbook of the Logistic Distribution; CRC Press: Boca Raton, FL, USA, 1991. [Google Scholar]
- Xu, X.; Wang, R.; Gu, B. Statistical Analysis of Two-Parameter Generalized BS-Logistic Fatigue Life Distribution. J. Syst. Sci. Complex. 2019, 32, 1231–1250. [Google Scholar] [CrossRef]
- Alam, F.M.A.; Almalki, A.M. The hazard rate function of the logistic Birnbaum–Saunders distribution: Behavior, associated inference, and application. J. King Saud Univ.-Sci. 2021, 33, 101580. [Google Scholar] [CrossRef]
- Watson, G.; Wells, W. On the possibility of improving the mean useful life of items by eliminating those with short lives. Technometrics 1961, 3, 281–298. [Google Scholar] [CrossRef]
- Gupta, R.C.; Bradley, D.M. Representing the mean residual life in terms of the failure rate. Math. Comput. Model. 2003, 37, 1271–1280. [Google Scholar] [CrossRef] [Green Version]
- David, H.A.; Nagaraja, H.N. Order Statistics; John Wiley & Sons: Hoboken, NJ, USA, 2004. [Google Scholar]
- Ng, H.; Kundu, D.; Balakrishnan, N. Modified moment estimation for the two-parameter Birnbaum–Saunders distribution. Comput. Stat. Data Anal. 2003, 43, 283–298. [Google Scholar] [CrossRef]
- Dupuis, D.J.; Mills, J.E. Robust estimation of the Birnbaum–Saunders distribution. IEEE Trans. Reliab. 1998, 47, 88–95. [Google Scholar] [CrossRef]
- Efron, B. Logistic regression, survival analysis, and the Kaplan-Meier curve. J. Am. Stat. Assoc. 1988, 83, 414–425. [Google Scholar] [CrossRef]
- Gupta, C.R.; Kannan, N.; Raychaudhuri, A. Analysis of lognormal survival data. Math. Biosci. 1997, 139, 103–115. [Google Scholar] [CrossRef]
7 | 91 | 140 | 160 | 248 | 440 |
34 | 108 | 140 | 165 | 273 | 523 |
42 | 112 | 146 | 173 | 277 | 583 |
63 | 129 | 149 | 176 | 297 | 594 |
64 | 133 | 154 | 218 | 405 | 1101 |
83 | 133 | 157 | 225 | 417 | 1146 |
84 | 139 | 160 | 241 | 420 | 1417 |
12 | 44 | 60 | 70 | 95 | 146 |
15 | 48 | 60 | 72 | 96 | 175 |
22 | 52 | 60 | 73 | 98 | 175 |
24 | 53 | 60 | 75 | 99 | 221 |
24 | 54 | 61 | 76 | 109 | 233 |
32 | 54 | 62 | 76 | 110 | 258 |
32 | 55 | 63 | 81 | 121 | 258 |
33 | 56 | 65 | 83 | 127 | 263 |
34 | 57 | 65 | 84 | 129 | 297 |
38 | 58 | 67 | 85 | 131 | 341 |
38 | 58 | 68 | 87 | 143 | 341 |
43 | 59 | 70 | 91 | 146 | 376 |
Model | AIC | BIC | ||||||
---|---|---|---|---|---|---|---|---|
Value | Bias | RMSE | Value | Bias | RMSE | |||
Exponential | - | - | - | 280.1667 | 0 | 46.7732 | 559.3724 | 561.1101 |
Rayleigh | - | - | - | 410.1102 | −7.6502 | 79.2048 | 601.3328 | 603.0705 |
Weibull | 1.0918 | 0.0491 | 0.13 | 290.9757 | 6.558 | 43.4886 | 560.7841 | 564.2595 |
BS | 1.1724 | −0.0684 | 0.2855 | 162.4521 | 9.8421 | 45.9678 | 565.1072 | 568.5826 |
LBS | 0.5736 | 0.0485 | 0.1076 | 179.6688 | 37.6861 | 27.0372 | 557.3078 | 560.7831 |
Model | AIC | BIC | ||||||
---|---|---|---|---|---|---|---|---|
Value | Bias | RMSE | Value | Bias | RMSE | |||
Exponential | - | - | - | 99.81944 | 0 | 9.5598 | 808.8843 | 811.1610 |
Rayleigh | - | - | - | 128.2679 | −0.7152 | 13.5447 | 818.5921 | 820.8688 |
Weibull | 1.39295 | 0.0168 | 0.0995 | 110.5393 | −2.8794 | 10.0684 | 798.2955 | 802.8488 |
BS | 0.75999 | −0.0099 | 0.0740 | 77.52778 | 0.2859 | 6.7819 | 785.8348 | 790.3881 |
LBS | 0.41460 | −0.0033 | 0.0457 | 76.01035 | 1.1905 | 6.1102 | 783.7526 | 788.3060 |
Q1 | Q2 | Q3 | Mean | Kurtosis | Skewness | SD | |
---|---|---|---|---|---|---|---|
Sample | 130 | 160 | 292 | 280.1667 | 8.0993 | 2.3223 | 303.1249 |
Exponential | 80.5989 | 194.1967 | 388.3935 | 280.1667 | 9 | 2 | 280.1667 |
Rayleigh | 4311.0799 | 482.8679 | 682.8783 | 363.4507 | 3.2451 | 0.6311 | 268.6781 |
Weibull | 92.9533 | 208.0012 | 392.4504 | 281.4662 | 7.4714 | 1.7535 | 258.0723 |
BS | 75.1050 | 162.4521 | 351.3837 | 274.0991 | 14.7086 | 2.7626 | 314.0061 |
LBS | 96.6347 | 179.6688 | 334.0506 | 276.9076 | 23.1251 | 11.8393 | 323.9002 |
Q1 | Q2 | Q3 | Mean | Kurtosis | Skewness | SD | |
---|---|---|---|---|---|---|---|
Sample | 54.7500 | 69.1896 | 112.7500 | 99.81944 | 5.6144 | 1.7962 | 81.1180 |
Exponential | 28.7163 | 70 | 138.3791 | 99.81944 | 9 | 2 | 99.8194 |
Rayleigh | 97.2947 | 151.0239 | 213.5801 | 113.6745 | 3.2451 | 0.6311 | 84.0330 |
Weibull | 45.1928 | 84.9660 | 139.7509 | 100.8287 | 4.8757 | 1.2081 | 73.3186 |
BS | 46.6880 | 77.5278 | 128.7388 | 99.9169 | 9.8454 | 2.0774 | 77.3171 |
LBS | 48.3869 | 76.0104 | 119.4038 | 97.5030 | 10.5492 | 5.6765 | 81.7657 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alam, F.M.A.; Almalki, A.M. On Modeling Cancer and Tuberculosis Data Using the Birnbaum–Saunders Lifetime Model Established on a Logistic Kernel. Appl. Sci. 2022, 12, 5000. https://doi.org/10.3390/app12105000
Alam FMA, Almalki AM. On Modeling Cancer and Tuberculosis Data Using the Birnbaum–Saunders Lifetime Model Established on a Logistic Kernel. Applied Sciences. 2022; 12(10):5000. https://doi.org/10.3390/app12105000
Chicago/Turabian StyleAlam, Farouq Mohammad A., and Abeer Mansour Almalki. 2022. "On Modeling Cancer and Tuberculosis Data Using the Birnbaum–Saunders Lifetime Model Established on a Logistic Kernel" Applied Sciences 12, no. 10: 5000. https://doi.org/10.3390/app12105000
APA StyleAlam, F. M. A., & Almalki, A. M. (2022). On Modeling Cancer and Tuberculosis Data Using the Birnbaum–Saunders Lifetime Model Established on a Logistic Kernel. Applied Sciences, 12(10), 5000. https://doi.org/10.3390/app12105000