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Abstract

:

Due to their importance in representing, explaining, and analyzing phenomena, statistical lifetime distributions are widely used in science. As a result, this paper discusses a modern lifetime model called Birnbaum–Saunders logistic distribution. This distribution extends the Birnbaum–Saunders distribution, as it has proven to be characterized by great flexibility in data modeling in practice. Different features of this distribution have been discussed. The parameters of the model are estimated using the maximum likelihood and modified moment estimation methods. To evaluate the performance of the methods, a simulation study with data contamination scenarios is presented. Finally, the new model’s flexibility is tested using real datasets.
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1. Introduction


Lifetime models are a probability distribution with either a non-negative or positive support which are considered in survival analysis. In the literature, there exist many well-known life models, including, but not limited to, the exponential distribution and its generalization; the Weibull distribution. The main limitation of these two models is that they are not suitable for data with non-monotonic hazard rates. Examples of non-monotonic hazard rates are the bathtub and the upside-down hazard rates. From a medical perspective, the bathtub hazard rate represents three life phases. The first phase is called the infant mortality period which is a duration of time with decreasing hazard rate. The second part is the normal life period in which a constant hazard rate is maintained. The final phase is a period of time in which the hazard rate increases due to aging. Additionally, the upside-down hazard rate can be considered to describe the behavior of malicious diseases, such as cancer. In fact, ref. [1] observed such a hazard rate in the case of a certain type of breast cancer. They concluded that the mortality (i.e., hazard) rate increased to its highest peak which was approximately three years after the cancer was diagnosed. Afterwards, they observed that over a specified amount of time, the mortality rate decreases slowly.



In the literature, skewed life distributions such as the inverse Gaussian, the log-Gaussian, and the Birnbaum–Saunders distribution have been used to model phenomena with an upside-down hazard rate [2]. The latter model, however, received considerable attention from many researchers due to its desirable properties and physical interpretation. In fact, at least 200 articles and a single study monograph have previously been published detailing many aspects and advancements connected to this lifetime model. For more details, see [2]. The Birnbaum–Saunders (BS) distribution [3,4] belongs to a generalized BS (GBS) distribution, which was presented by [5] and later discussed by [6,7].



Researchers today deal with a variety of types and huge amounts of data from different fields, due to recent developments in applied sciences. In practice, there’s no guarantee that these data are free of contamination, such as outliers, since contamination might originate from a variety of sources. Accordingly, estimation efficiency may be affected by this contamination. Therefore, the pollution aspect in data has motivated many researchers to suggest alternative estimators to those derived by the maximum likelihood theory for many distributions; see, for example, [8,9,10,11,12], among other papers.



This paper’s aim is to study a specific instance of the GBS distribution; namely, the BS distribution established on a logistic kernel [13]. The considered model will henceforth be called the Logistic BS (LBS) distribution. The LBS distribution is considered for several reasons: the first is to investigate the behavior of LBS distribution compared to BS distribution in terms of distribution properties such as hazard (failure rate) function (HF). The second is to compare the application of LBS distribution to BS and other well-known distributions by analyzing two real-life medical datasets. Alongside these reasons, we are going to study the properties of the distribution and derive estimators for the model parameters using two estimation methods. Although the LBS distribution was considered previously by [14], this study differs from the latter contribution in a few points. First and foremost, the latter contribution pointed out that the hazard rate has a single nonmonotonic shape (i.e., inverse bathtub shape), while our study indicates that the hazard rate has two forms as shown in a later section. Second, while both [14] and this study derived similar statistical properties (e.g., mean, median, etc.), we have discussed some distributional aspects of the LBS distribution such as the corresponding mean residual life of the LBS distribution as well as the distribution of order statistics. Third, in terms of estimation, Ref. [14] considered six methods of estimation alongside interval estimation. In our study, however, we adopted the maximum likelihood method which is a vital method that was not considered by the previously mentioned study. Finally, ref. [14] analyzed simulated data, while our study analyzed real datasets to examine the distribution’s application. The remaining parts of this article are presented in the following manner: in Section 2, the LBS distribution’s fundamental and statistical properties are described. We also discuss the inference for the distribution by using two methods: Maximum likelihood estimation (MLE) and modified moment estimation (MME) in Section 3. In Section 4, a Monte Carlo simulation study is conducted, followed by a presentation of the real data analysis in Section 5.




2. Properties of the LBS Distribution


This section discusses the LBS distribution’s fundamental and statistical properties.



2.1. Fundamental Properties


If a non-negative random variable X follows the GBS distribution established on an elliptically contoured kernel; say,   G ( · )   with shape parameter   α > 0  , scale parameter   β > 0  , and a location parameter  γ , then the associated cumulative distribution function (CDF) is:


  F  ( x ; α , β , γ )  = G   1 α      x − γ  β   −   β  x − γ      ,  x > γ ≥ 0 ,  α , β > 0 .  



(1)







Now, assuming   γ = 0  , we can substitute the CDF of the logistic distribution    ( 1 +  e  [ − z ]   )   − 1    for the kernel   G ( · )   in (1), then the CDF of a non-negative random variable X represented as:


  F  ( x ; α , β )  =  1  1 +  e  −  1 α     x β   −   β x        ,  



(2)




is said to follow the two-parameter LBS distribution with   α > 0   and   β > 0   as shape and scale parameters, i.e.,   X ∼ LBS ( α , β )  , and the probability density function (PDF) that corresponds to it is:


  f  ( x ; α , β )  =  1  2 α x      x β   +   β x      e  −  1 α     x β   −   β x        1 +  e  −  1 α     x β   −   β x       2   .  



(3)







For different values of  α  and  β , Figure 1, Figure 2, Figure 3 and Figure 4 show the various shapes of the PDF and HF of the LBS distribution.



Evidently, if   X ∼ LBS ( α , β )   the quantile function is then as follows:


   F  − 1    ( u , α , β )  =  β 4    α  q  − 1    ( u )  +     [ α  q  − 1    ( u )  ]  2  + 4    2  ,  0 < u < 1 .  



(4)







Clearly, using the inverse probability integral transform on the CDF (2), Equation (4) can be used to construct random variables having   LBS ( α , β )   as its distribution, where    q  − 1    ( u )    is the inverse of the CDF of the standard logistic distribution. Accordingly, the median will be equal to  β .



Upon using Equations (2) and (3), the HF can be obtained, which is defined as:


  h  ( x ; α , β )  =   1  2 α x      x β   +   β x     1  1 +  e  −  1 α     x β   −   β x         .  



(5)







The HF in (5) is unimodal when   α → 0   and decreases when   α → ∞  .



Lemma 1.

To study the shape of HF, let us consider the following:



a. The HF is decreasing for all values of x as   α → ∞  .



b. If   α ↛ ∞  , then the HF is an upside down function with critical point; say   c  α , β   , such that    c  α , β   ≥  ( < )  β   when   α ≤ ( > ) 0.5  . For the proof of Lemma 1, see [15].





In the reliability analysis, the reliability (survival) function and the mean residual life (MRL) are significant characteristics of a lifetime model. On this basis and using the CDF we can obtain the reliability (survival) function as shown below:


  R  ( x ; α , β )  = P  ( X ≥ x )  =   e  −  1 α     x β   −   β x       1 +  e  −  1 α     x β   −   β x        ,  



(6)




and


  m  ( t ; α , β )  = E  ( X − t | X > t )  =  ∫  R    e x p  −  ∫  t   t + x   h  ( τ ;  α , β  )  d τ  d x ,  



(7)




respectively, where   h ( τ ; μ , σ )   is the considered distribution’s HF; see [16,17] in this regard. Hence, it can readily conclude from the MRL expression that it has an opposite attitude to the HF.




2.2. Order Statistics


Order statistics are another significant concept in the field of reliability analysis. Therefore, the rth order statistic’s PDF can be computed as follows: Let    X 1  ,  X 2  , . . . ,  X n    denote an n-sized random sample having the LBS distribution and   X  r : n    indicate the rth order statistic. Ref. [18] define the density of the order statistic,   X  r : n   , as:


   f  r : n    ( x )  =   f ( x )   B ( r , n − r + 1 )    ∑  i = 1   n − r     ( − 1 )  i     n − r  i     [ F  ( x )  ]   r + i − 1   ,  



(8)




where   B ( a , b )   refers to the beta function. The    f  r : n    ( x )    of the LBS distribution is produced by substituting Equations (2) and (3) into Equation (8).


   f  r : n    ( x )  =  1  B ( r , n − r + 1 ) ( 2 α )    ∑  i = 1   n − r      ( − 1 )  i  x     n − r  i      x β   +   β x      e  −  1 α     x β   −   β x        1 +  e  −  1 α     x β   −   β x        r + i + 1    .  



(9)








2.3. Statistical Properties


Property 1.

If T follows standard logistic distribution, i.e.,   T ∼ L o g i s t i c ( 0 , 1 )  , then:


   X =  β 4    α T +     [ α T ]  2  + 4    2  ∼ L B S  ( α , β )  .   













Property 1 was used to calculate the LBS distribution’s expected value, variance, skewness, and kurtosis.



Property 2.

If   T ∼ L B S ( α , β )  , then



1.    1 α     X β   −   β X    ∼ L o g i s t i c  ( 0 , 1 )   ;



2.   c X ∼ L B S ( α , c β )  ;



3.    X  − 1   ∼ L B S  ( α ,  β  − 1   )   .





Property 3.

If   T ∼ L B S ( α , β )  , then, we can show that   E  ( X )  = β  (  1 6   α 2   π 2  + 1 )  ,     V  ( X )  =    ( α π β )  2  3   (  37 60   π 2   α 2  + 1 )  ,      γ 1   ( X )  =   30   ( 155  α 6   π 6  + 294  α 4   π 4  + 315  α 2   π 2  + 210 )  2    49   ( 7  α 4   π 4  + 20  α 2   π 2  + 30 )  3      and    γ 2   ( X )  =   30 ( 889  α 8   π 8  + 1240  α 6   π 6  + 980  α 4   π 4  + 560  α 2   π 2  + 210 )   7   ( 7  α 4   π 4  + 20  α 2   π 2  + 30 )  2     . We also can easily obtain   E  (  X  − 1   )  =  β  − 1    (  1 6   α 2   π 2  + 1 )    and   V  (  X  − 1   )  =    ( α π  β  − 1   )  2  3   (  37 60   π 2   α 2  + 1 )    by using Property 2.







3. Inference for the LBS Distribution


This section examines the inference for the LBS distribution using two methods: MLE and MME.



3.1. Maximum Likelihood Estimation


The MLEs for LBS distribution parameters are discussed in this section. Let   (  x 1  ,  x 2  , . . . ,  x n  )   denote an n-sized random sample having the LBS distribution with unknown parameter vector   ζ =   ( α , β )  T   . Then, for  ζ , the log-likelihood function was constructed as follows:


     ℓ ( ζ ) =      − n ln ( 2 α )  −  ∑  i = 1  n  ln  (  x i  )  +  ∑  i = 1  n  ln     x i  + β    β  x i      −  1 α   ∑  i = 1  n      x i  β   −   β  x i     − 2  ∑  i = 1  n  ln  1 +  e  −  1 α      x i  β   −   β  x i             =     − n ln ( 2 α )  −  ∑  i = 1  n  ln  (  x i  )  +  ∑  i = 1  n  ln  (  x i  + β )  −  n 2  ln  ( β )  −  1 2   ∑  i = 1  n  ln  (  x i  )  −  1 α   ∑  i = 1  n      x i  β   −   β  x i            − 2  ∑  i = 1  n  ln  1 +  e  −  1 α      x i  β   −   β  x i        .     



(10)







The MLEs    ζ ^  =   (  α ^  ,  β ^  )  T    of   ζ =   ( α , β )  T    are found by solving the nonlinear systems of equations shown below:


       ∂ ℓ ( ζ )   ∂ α   =     −  n α  +  1  α 2    ∑  i = 1  n      x i  β   −   β  x i     −  2  α 2    ∑  i = 1  n       x i  β   −   β  x i      1 +  e   1 α      x i  β   −   β  x i         = 0     



(11)






       ∂ ℓ ( ζ )   ∂ β   =      ∑  i = 1  n    1   x i  + β    −  n  2 β   +  1  2 α β    ∑  i = 1  n     β  x i    +    x i  β    −  1  α β    ∑  i = 1  n      β  x i    +    x i  β     1 +  e   1 α      x i  β   −   β  x i         = 0 .     



(12)







The second derivatives of ℓ can be calculated in the following way:


        ∂ 2  ℓ  ( ζ )    ∂  α 2    =      n  α 2   −  2  α 3    ∑  i = 1  n      x i  β   −   β  x i              +  ∑  i = 1  n    2     x i  β   −   β  x i         β  x i    −    x i  β   + 2 α   e   1 α      x i  β   −   β  x i       + 2 α     α 4    1 +  e   1 α      x i  β   −   β  x i        2    =  A 1  ,     



(13)






        ∂ 2  ℓ  ( ζ )    ∂ α ∂ β   =     −  1  2  α 2  β    ∑  i = 1  n     β  x i    +    x i  β             +  ∑  i = 1  n      x i 2    β  x i    +  β 2     x i  β        β  x i    −    x i  β   + α   e   1 α      x i  β   −   β  x i       + α     α 3   β 2   x i     x i  β     β  x i      1 +  e   1 α      x i  β   −   β  x i        2    =  A 2  ,     



(14)






        ∂ 2  ℓ  ( ζ )    ∂  β 2    =     −   ∑  i = 1  n     1   (  x i  + β )  2    +  n  2  β 2    −  1  4 α  β 2      ∑  i = 1  n    3   β  x i    +    x i  β             −   ∑  i = 1  n          x i  β   − 3 α   x i 4    (  β  x i   )   3 2   +    β  x i    − α   β 4    (   x i  β  )   3 2   + 2  x i 2   β 2    e   1 α      x i  β   −   β  x i       − 3 α  x i 4    (  β  x i   )   3 2   − α  β 4    (   x i  β  )   3 2     2  α 2   β 4   x i    (   x i  β  )   3 2     (  β  x i   )   3 2     1 +  e   1 α      x i  β   −   β  x i        2             =  A 3  .     



(15)







The observed information matrix is then calculated as follows:


       I 11     I 12       I 21     I 22      = −      A 1     A 2       A 2     A 3      .  











Then, we can approximate the observed variance-covariance matrix as:


     V =      V 11     V 12       V 21     V 22          =       I 11     I 12       I 21     I 22       − 1            =  1  det  I        I 22     −  I 21        −  I 21       I 11  .      .     











Accordingly,   α ^   and   β ^   asymptotic joint distribution is approximately bivariate normal, as shown by:


       α ^       β ^      ≈ N          α     β     ,      V 11     V 12       V 21      V 22  .           .  



(16)








3.2. Modified Moment Estimation


The MMEs were proposed by [19] for BS distribution. Inspired by their research, the MMEs for LBS are proposed here by equalizing   E ( T )   and   E (  1 T  )   with the relevant sample moments. In this process, the MMEs for  α  and  β , represented by   α ˜   and   β ˜  , are procured as follows:


   α ˜  =    6  π 2      (  s r  )   1 2   − 1    1 2    and   β ˜  =   ( s r )   1 2   ,  



(17)




where   s =  1 n   ∑  i = 1  n   x i    and   r =   [  1 n   ∑  i = 1  n   x i  − 1   ]   − 1   .  



The strong law of large numbers states that s and r, respectively, converge to   E ( T )   and   E (  T  − 1   )  . The asymptotic joint distribution of   α ˜   and   β ˜   can be determined using CLT as shown below:


      n       s − E ( T )        r  − 1   − E  (  T  − 1   )       ∼ N          0      0 ,      ∑      ,     








where


  ∑ =         ( α π β )  2  3   ( 1 +  37 60   π 2   α 2  )      1 −   ( 1 +   π 2  6   α 2  )  2        1 −   ( 1 +   π 2  6   α 2  )  2         ( α π  β  − 1   )  2  3   ( 1 +  37 60   π 2   α 2  )  .      .  



(18)







By using Taylor’s expansion, we get:


   α ˜  ≈ α +  1  4 α β   s +  β  4 α    r  − 1    and   β ˜  ≈ β +  1  2 ( 1 +   π 2  6   α 2  )   s −   β 2   2 ( 1 +   π 2  6   α 2  )    r  − 1   .  











We can now calculate the asymptotic joint distribution of   (  α ˜  ,  β ˜  )   by utilizing the asymptotic joint distribution of   ( s ,  r  − 1   )  .


          α ˜       β ˜      ∼ N          α     β     ,        π 4   α 2    45 n     0     0      ( π α β )  2     3 ( 20 + 7  π 2   α 2  )   5 n   ( 6 +  π 2   α 2  )  2     .               













4. Simulation Study


As previously mentioned, it is necessary to assess the estimators’ performance when the data are contaminated. In a similar way to [11,20], we take the following scenarios into consideration:




	
Model 1: A model without any contamination.



	
Model 2: A model with 10% of upper contamination.



	
Model 3: A model with 10% of lower contamination.



	
Model 4: A model with 20% of two-tailed contamination.








Therefore, this section presents the findings of the MC simulations study based on M = 10,000 simulation runs with various combinations of shape parameter and sample size values. By multiplying the upper or lower order statistics by 5 or 1/5, data contamination was achieved. In addition, the simulation study uses   n = 30 , 50 , 100 , 150 , 200 , 500  ,   α  =  0.5 , 0.75 , 1 , 1.5 , 2.0  , and   β = 1   for each scenario, with no loss of generality. It should be mentioned that all calculations were carried out using an R program, which is accessible from the authors upon request.



The simulated bias and root mean squared error (RMSE) are generated to assess estimation efficiency.


  Bias  ( α )  =  1 M   ∑  i = 1  M   (   α ^  i  − α )  ,  Bias  ( β )  =  1 M   ∑  i = 1  M   (   β ^  i  − β )  ,  








and


  RMSE  ( α )  =    1 M   ∑  i = 1  M    (   α ^  i  − α )  2    ,  RMSE  ( β )  =    1 M   ∑  i = 1  M    (   β ^  i  − β )  2    .  











The simulation study’s results are visually presented in Figure 5, Figure 6, Figure 7 and Figure 8, and from these figures, we can note the following:




	
When there is no contamination in the data, all figures show that when the sample size is increased, all methods perform well;



	
The bias values of the  α  parameter increase as the  α  value increases in models 2 and 3;



	
In the case of model 4, the bias values show that the MLE method outperforms the MME method, with MLE performing significantly better as the  α  value decreases;



	
The RMSE values of the  α  parameter in models 2 and 3 are slightly increased when the  α  value increases in the two methods;



	
However, the RMSE values of model 4 indicate that MLE outperforms MME and that this performance improves as  α  decreases;



	
In the case of models 1 and 4, the bias values of the  β  parameter appear to be constant around zero for both methods;



	
As the  α  value decreases in the MLE method, the bias values of models 2 and 3 approach zero;



	
The RMSE values of the  β  parameter perform similarly in the MLE and MME methods, with the values of all models getting closer to zero as the  α  value decreases.









5. Data Analyses


We perform two data analyses in this section to compare the performance of LBS distribution with some other well-known distributions. The first set of data under examination consists of the lifetimes of 42 individuals who were diagnosed with head and neck cancer, which had previously been used by [21]. Cancer that evolves in the mouth, throat, nose, salivary glands or other parts of the head and neck is referred to as head and neck cancer. Table 1 presents the dataset:



It is important to mention that we eliminated data based on participants being lost to follow-up, as indicated by [21]; that is, we have omitted the censored data and considered the remaining ones as a complete sample. Modeling the actual data by [21] (i.e., the case of censored data) is considered for future research.



The second set of data under examination represents the lifetimes of 72 Cavia Porcellus (guinea pigs) injected with various doses of Mycobacterium tuberculosis, which was previously studied by [22] among others researchers. Mycobacterium tuberculosis is a bacterium that causes tuberculosis, a contagious disease that primarily affects the lungs. Table 2 displays the dataset:



First, we estimate the MLEs, Bias, and RMSE of parameters, AIC and BIC of Exponential, Rayleigh, Weibull, BS, and LBS distributions, then depending on the considered dataset, we compute many explanatory data analysis (EDA) measurements, as well as their approximations based on the estimated model parameters.



Table 3 and Table 4 list the estimators of the models’ parameters as well as the AIC and BIC, while Table 5 and Table 6 present the outcomes of EDA measurements. Overall, when comparing these tables, one can observe that the estimated EDA measurements assuming the LBS distribution were very near to their observed counterparts which are calculated from the sample directly. Furthermore, the AIC and BIC indicate that the LBS distribution is a better fit. In comparison to the fitted PDFs, Figure 9 and Figure 10 show the histogram of the datasets. As can be seen in the two figures, the LBS distribution fits the data better than other distributions.




6. Conclusions


The features of the LBS distribution and certain associated inferential methods have been discussed in this paper. The PDF of the LBS distribution might take on many shapes due to the inclusion of the shape parameter. It has either a decreasing or a unimodal HF function. When there is no contamination in the data, all approaches perform well, according to the MC simulations study. The contamination in the data may have an impact on the shape and scale parameters, with the exception of two-tailed contamination, which has no impact on the scale parameter. Finally, based on the results of the real data analysis, it is concluded that the LBS distribution, as compared to the well-known distributions, may provide a better fit to real-life data. In practice, data contamination is not the only issue researchers encounter. Another significant research challenge that needs to be addressed in future studies is data censoring, since it negatively impacts estimation efficiency and robustness. Comparing the examined estimators to Bayesian estimation in terms of performance is the last study area that one may consider.
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Figure 1. The PDF for the LBS distribution with different values for  α  and   β = 1  . 
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Figure 2. The PDF for the LBS distribution with different values for  β  and   α = 1  . 
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Figure 3. The HF for the LBS distribution with different values for  α  and   β = 1  . 
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Figure 4. The HF for the LBS distribution with different values for  β  and   α = 1  . 
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Figure 5. Simulated biases for the estimators of  α . 
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Figure 6. Simulated RMSEs for the estimators of  α . 
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Figure 7. Simulated biases for the estimators of  β . 
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Figure 8. Simulated RMSEs for the estimators of  β . 
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Figure 9. The fitted PDFs based on Head and Neck Cancer data. 






Figure 9. The fitted PDFs based on Head and Neck Cancer data.



[image: Applsci 12 05000 g009]







[image: Applsci 12 05000 g010 550] 





Figure 10. The fitted PDFs based on Cavia Porcellus data. 
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Table 1. Lifetimes of individuals who were diagnosed with Head and Neck Cancer.
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	7
	91
	140
	160
	248
	440



	34
	108
	140
	165
	273
	523



	42
	112
	146
	173
	277
	583



	63
	129
	149
	176
	297
	594



	64
	133
	154
	218
	405
	1101



	83
	133
	157
	225
	417
	1146



	84
	139
	160
	241
	420
	1417










[image: Table] 





Table 2. Lifetimes of Cavia Porcellus injected with various doses of Mycobacterium Tuberculosis.
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	12
	44
	60
	70
	95
	146



	15
	48
	60
	72
	96
	175



	22
	52
	60
	73
	98
	175



	24
	53
	60
	75
	99
	221



	24
	54
	61
	76
	109
	233



	32
	54
	62
	76
	110
	258



	32
	55
	63
	81
	121
	258



	33
	56
	65
	83
	127
	263



	34
	57
	65
	84
	129
	297



	38
	58
	67
	85
	131
	341



	38
	58
	68
	87
	143
	341



	43
	59
	70
	91
	146
	376
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Table 3. Values of MLEs, AIC and BIC of Exponential, Rayleigh, Weibull, BS, LBS and Laplace BS distributions for Head and Neck Cancer data.
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Model

	
   α   

	
   β   

	
AIC

	
BIC




	
Value

	
Bias

	
RMSE

	
Value

	
Bias

	
RMSE






	
Exponential

	
-

	
-

	
-

	
280.1667

	
0

	
46.7732

	
559.3724

	
561.1101




	
Rayleigh

	
-

	
-

	
-

	
410.1102

	
−7.6502

	
79.2048

	
601.3328

	
603.0705




	
Weibull

	
1.0918

	
0.0491

	
0.13

	
290.9757

	
6.558

	
43.4886

	
560.7841

	
564.2595




	
BS

	
1.1724

	
−0.0684

	
0.2855

	
162.4521

	
9.8421

	
45.9678

	
565.1072

	
568.5826




	
LBS

	
0.5736

	
0.0485

	
0.1076

	
179.6688

	
37.6861

	
27.0372

	
557.3078

	
560.7831
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Table 4. Values of MLEs, AIC and BIC of Exponential, Rayleigh, Weibull, BS, LBS and Laplace BS distributions for Cavia Porcellus data.
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Model

	
   α   

	
   β   

	
AIC

	
BIC




	
Value

	
Bias

	
RMSE

	
Value

	
Bias

	
RMSE






	
Exponential

	
-

	
-

	
-

	
99.81944

	
0

	
9.5598

	
808.8843

	
811.1610




	
Rayleigh

	
-

	
-

	
-

	
128.2679

	
−0.7152

	
13.5447

	
818.5921

	
820.8688




	
Weibull

	
1.39295

	
0.0168

	
0.0995

	
110.5393

	
−2.8794

	
10.0684

	
798.2955

	
802.8488




	
BS

	
0.75999

	
−0.0099

	
0.0740

	
77.52778

	
0.2859

	
6.7819

	
785.8348

	
790.3881




	
LBS

	
0.41460

	
−0.0033

	
0.0457

	
76.01035

	
1.1905

	
6.1102

	
783.7526

	
788.3060
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Table 5. EDA outcomes based on Head and Neck Cancer data.
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	Q1
	Q2
	Q3
	Mean
	Kurtosis
	Skewness
	SD





	Sample
	130
	160
	292
	280.1667
	8.0993
	2.3223
	303.1249



	Exponential
	80.5989
	194.1967
	388.3935
	280.1667
	9
	2
	280.1667



	Rayleigh
	4311.0799
	482.8679
	682.8783
	363.4507
	3.2451
	0.6311
	268.6781



	Weibull
	92.9533
	208.0012
	392.4504
	281.4662
	7.4714
	1.7535
	258.0723



	BS
	75.1050
	162.4521
	351.3837
	274.0991
	14.7086
	2.7626
	314.0061



	LBS
	96.6347
	179.6688
	334.0506
	276.9076
	23.1251
	11.8393
	323.9002
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Table 6. EDA outcomes based on Cavia Porcellus data.
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	Q1
	Q2
	Q3
	Mean
	Kurtosis
	Skewness
	SD





	Sample
	54.7500
	69.1896
	112.7500
	99.81944
	5.6144
	1.7962
	81.1180



	Exponential
	28.7163
	70
	138.3791
	99.81944
	9
	2
	99.8194



	Rayleigh
	97.2947
	151.0239
	213.5801
	113.6745
	3.2451
	0.6311
	84.0330



	Weibull
	45.1928
	84.9660
	139.7509
	100.8287
	4.8757
	1.2081
	73.3186



	BS
	46.6880
	77.5278
	128.7388
	99.9169
	9.8454
	2.0774
	77.3171



	LBS
	48.3869
	76.0104
	119.4038
	97.5030
	10.5492
	5.6765
	81.7657
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