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Abstract: Due to their importance in representing, explaining, and analyzing phenomena, statistical
lifetime distributions are widely used in science. As a result, this paper discusses a modern lifetime
model called Birnbaum–Saunders logistic distribution. This distribution extends the Birnbaum–
Saunders distribution, as it has proven to be characterized by great flexibility in data modeling in
practice. Different features of this distribution have been discussed. The parameters of the model are
estimated using the maximum likelihood and modified moment estimation methods. To evaluate
the performance of the methods, a simulation study with data contamination scenarios is presented.
Finally, the new model’s flexibility is tested using real datasets.

Keywords: logistic Birnbaum–Saunders; hazard rate; critical value; maximum likelihood estimation;
moment estimation; data contamination

1. Introduction

Lifetime models are a probability distribution with either a non-negative or positive
support which are considered in survival analysis. In the literature, there exist many
well-known life models, including, but not limited to, the exponential distribution and
its generalization; the Weibull distribution. The main limitation of these two models is
that they are not suitable for data with non-monotonic hazard rates. Examples of non-
monotonic hazard rates are the bathtub and the upside-down hazard rates. From a medical
perspective, the bathtub hazard rate represents three life phases. The first phase is called the
infant mortality period which is a duration of time with decreasing hazard rate. The second
part is the normal life period in which a constant hazard rate is maintained. The final phase
is a period of time in which the hazard rate increases due to aging. Additionally, the upside-
down hazard rate can be considered to describe the behavior of malicious diseases, such as
cancer. In fact, ref. [1] observed such a hazard rate in the case of a certain type of breast
cancer. They concluded that the mortality (i.e., hazard) rate increased to its highest peak
which was approximately three years after the cancer was diagnosed. Afterwards, they
observed that over a specified amount of time, the mortality rate decreases slowly.

In the literature, skewed life distributions such as the inverse Gaussian, the log-
Gaussian, and the Birnbaum–Saunders distribution have been used to model phenomena
with an upside-down hazard rate [2]. The latter model, however, received considerable
attention from many researchers due to its desirable properties and physical interpretation.
In fact, at least 200 articles and a single study monograph have previously been published
detailing many aspects and advancements connected to this lifetime model. For more
details, see [2]. The Birnbaum–Saunders (BS) distribution [3,4] belongs to a generalized BS
(GBS) distribution, which was presented by [5] and later discussed by [6,7].

Researchers today deal with a variety of types and huge amounts of data from different
fields, due to recent developments in applied sciences. In practice, there’s no guarantee
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that these data are free of contamination, such as outliers, since contamination might
originate from a variety of sources. Accordingly, estimation efficiency may be affected by
this contamination. Therefore, the pollution aspect in data has motivated many researchers
to suggest alternative estimators to those derived by the maximum likelihood theory for
many distributions; see, for example, [8–12], among other papers.

This paper’s aim is to study a specific instance of the GBS distribution; namely, the BS
distribution established on a logistic kernel [13]. The considered model will henceforth be
called the Logistic BS (LBS) distribution. The LBS distribution is considered for several rea-
sons: the first is to investigate the behavior of LBS distribution compared to BS distribution
in terms of distribution properties such as hazard (failure rate) function (HF). The second is
to compare the application of LBS distribution to BS and other well-known distributions
by analyzing two real-life medical datasets. Alongside these reasons, we are going to
study the properties of the distribution and derive estimators for the model parameters
using two estimation methods. Although the LBS distribution was considered previously
by [14], this study differs from the latter contribution in a few points. First and foremost,
the latter contribution pointed out that the hazard rate has a single nonmonotonic shape
(i.e., inverse bathtub shape), while our study indicates that the hazard rate has two forms as
shown in a later section. Second, while both [14] and this study derived similar statistical
properties (e.g., mean, median, etc.), we have discussed some distributional aspects of the
LBS distribution such as the corresponding mean residual life of the LBS distribution as
well as the distribution of order statistics. Third, in terms of estimation, Ref. [14] considered
six methods of estimation alongside interval estimation. In our study, however, we adopted
the maximum likelihood method which is a vital method that was not considered by the
previously mentioned study. Finally, ref. [14] analyzed simulated data, while our study
analyzed real datasets to examine the distribution’s application. The remaining parts of
this article are presented in the following manner: in Section 2, the LBS distribution’s
fundamental and statistical properties are described. We also discuss the inference for the
distribution by using two methods: Maximum likelihood estimation (MLE) and modified
moment estimation (MME) in Section 3. In Section 4, a Monte Carlo simulation study is
conducted, followed by a presentation of the real data analysis in Section 5.

2. Properties of the LBS Distribution

This section discusses the LBS distribution’s fundamental and statistical properties.

2.1. Fundamental Properties

If a non-negative random variable X follows the GBS distribution established on an
elliptically contoured kernel; say, G(·) with shape parameter α > 0, scale parameter β > 0,
and a location parameter γ, then the associated cumulative distribution function (CDF) is:

F(x; α, β, γ) = G

(
1
α

[√
x− γ

β
−

√
β

x− γ

])
, x > γ ≥ 0, α, β > 0. (1)

Now, assuming γ = 0, we can substitute the CDF of the logistic distribution (1 +
e[−z])−1 for the kernel G(·) in (1), then the CDF of a non-negative random variable X
represented as:

F(x; α, β) =
1

1 + e
− 1

α

(√
x
β−
√

β
x

) , (2)
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is said to follow the two-parameter LBS distribution with α > 0 and β > 0 as shape
and scale parameters, i.e., X ∼ LBS(α, β), and the probability density function (PDF) that
corresponds to it is:

f (x; α, β) =
1

2αx

(√
x
β
+

√
β

x

)
e
− 1

α

(√
x
β−
√

β
x

)
1 + e

− 1
α

[√
x
β−
√

β
x

]2 . (3)

For different values of α and β, Figures 1–4 show the various shapes of the PDF and
HF of the LBS distribution.
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Figure 1. The PDF for the LBS distribution with different values for α and β = 1.
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Figure 2. The PDF for the LBS distribution with different values for β and α = 1.
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Figure 3. The HF for the LBS distribution with different values for α and β = 1.
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Figure 4. The HF for the LBS distribution with different values for β and α = 1.

Evidently, if X ∼ LBS(α, β) the quantile function is then as follows:

F−1(u, α, β) =
β

4

(
αq−1(u) +

√
[αq−1(u)]2 + 4

)2
, 0 < u < 1. (4)

Clearly, using the inverse probability integral transform on the CDF (2), Equation (4)
can be used to construct random variables having LBS(α, β) as its distribution, where
q−1(u) is the inverse of the CDF of the standard logistic distribution. Accordingly, the
median will be equal to β.

Upon using Equations (2) and (3), the HF can be obtained, which is defined as:

h(x; α, β) =
1

2αx

(√
x
β
+

√
β

x

)
1

1 + e
− 1

α

(√
x
β−
√

β
x

) . (5)

The HF in (5) is unimodal when α→ 0 and decreases when α→ ∞.
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Lemma 1. To study the shape of HF, let us consider the following:
a. The HF is decreasing for all values of x as α→ ∞.
b. If α 9 ∞, then the HF is an upside down function with critical point; say cα,β, such that

cα,β ≥ (<)β when α ≤ (>)0.5. For the proof of Lemma 1, see [15].

In the reliability analysis, the reliability (survival) function and the mean residual life
(MRL) are significant characteristics of a lifetime model. On this basis and using the CDF
we can obtain the reliability (survival) function as shown below:

R(x; α, β) = P(X ≥ x) =
e
− 1

α

(√
x
β−
√

β
x

)

1 + e
− 1

α

(√
x
β−
√

β
x

) , (6)

and

m(t; α, β) = E(X− t|X > t) =
∫
R

exp
(
−
∫ t+x

t
h(τ; α, β)dτ

)
dx, (7)

respectively, where h(τ; µ, σ) is the considered distribution’s HF; see [16,17] in this regard.
Hence, it can readily conclude from the MRL expression that it has an opposite attitude to
the HF.

2.2. Order Statistics

Order statistics are another significant concept in the field of reliability analysis. There-
fore, the rth order statistic’s PDF can be computed as follows: Let X1, X2, ..., Xn denote an
n-sized random sample having the LBS distribution and Xr:n indicate the rth order statistic.
Ref. [18] define the density of the order statistic, Xr:n, as:

fr:n(x) =
f (x)

B(r, n− r + 1)

n−r

∑
i=1

(−1)i
(

n− r
i

)
[F(x)]r+i−1, (8)

where B(a, b) refers to the beta function. The fr:n(x) of the LBS distribution is produced by
substituting Equations (2) and (3) into Equation (8).

fr:n(x) =
1

B(r, n− r + 1)(2α)

n−r

∑
i=1

(−1)i

x

(
n− r

i

)(√
x
β
+

√
β

x

)
e
− 1

α

(√
x
β−
√

β
x

)
1 + e

− 1
α

[√
x
β−
√

β
x

]r+i+1 . (9)

2.3. Statistical Properties

Property 1. If T follows standard logistic distribution, i.e., T ∼ Logistic(0, 1), then:

X =
β

4

(
αT +

√
[αT]2 + 4

)2
∼ LBS(α, β).

Property 1 was used to calculate the LBS distribution’s expected value, variance,
skewness, and kurtosis.

Property 2. If T ∼ LBS(α, β), then

1. 1
α

(√
X
β −

√
β
X

)
∼ Logistic(0, 1);

2. cX ∼ LBS(α, cβ);
3. X−1 ∼ LBS(α, β−1).
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Property 3. If T ∼ LBS(α, β), then, we can show that E(X) = β( 1
6 α2π2 + 1), V(X) =

(απβ)2

3 ( 37
60 π2α2 + 1), γ1(X) = 30(155α6π6+294α4π4+315α2π2+210)2

49(7α4π4+20α2π2+30)3 and

γ2(X) = 30(889α8π8+1240α6π6+980α4π4+560α2π2+210)
7(7α4π4+20α2π2+30)2 . We also can easily obtain

E(X−1) = β−1( 1
6 α2π2 + 1) and V(X−1) = (απβ−1)2

3 ( 37
60 π2α2 + 1) by using Property 2.

3. Inference for the LBS Distribution

This section examines the inference for the LBS distribution using two methods: MLE
and MME.

3.1. Maximum Likelihood Estimation

The MLEs for LBS distribution parameters are discussed in this section. Let (x1, x2, ..., xn)
denote an n-sized random sample having the LBS distribution with unknown parameter
vector ζ = (α, β)T. Then, for ζ, the log-likelihood function was constructed as follows:

`(ζ) =−nln(2α)−
n

∑
i=1

ln(xi) +
n

∑
i=1

ln

(
xi + β√

βxi

)
− 1

α

n

∑
i=1

(√
xi
β
−

√
β

xi

)
− 2

n

∑
i=1

ln

1 + e
− 1

α

[√
xi
β −
√

β
xi

]
=−nln(2α)−

n

∑
i=1

ln(xi) +
n

∑
i=1

ln(xi + β)− n
2

ln(β)− 1
2

n

∑
i=1

ln(xi)−
1
α

n

∑
i=1

(√
xi
β
−

√
β

xi

)

− 2
n

∑
i=1

ln

1 + e
− 1

α

[√
xi
β −
√

β
xi

]. (10)

The MLEs ζ̂ = (α̂, β̂)T of ζ = (α, β)T are found by solving the nonlinear systems of
equations shown below:

∂`(ζ)

∂α
=− n

α
+

1
α2

n

∑
i=1

(√
xi
β
−

√
β

xi

)
− 2

α2

n

∑
i=1

(√
xi
β −

√
β
xi

)
1 + e

1
α

[√
xi
β −
√

β
xi

] = 0 (11)

∂`(ζ)

∂β
=

n

∑
i=1

(
1

xi + β

)
− n

2β
+

1
2αβ

n

∑
i=1

(√
β

xi
+

√
xi
β

)
− 1

αβ

n

∑
i=1

(√
β
xi
+
√

xi
β

)
1 + e

1
α

[√
xi
β −
√

β
xi

] = 0. (12)

The second derivatives of ` can be calculated in the following way:
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∂2`(ζ)

∂α2 =
n
α2 −

2
α3

n

∑
i=1

(√
xi
β
−

√
β

xi

)

+
n

∑
i=1

2
(√

xi
β −

√
β
xi

)(√ β
xi
−
√

xi
β + 2α

)
e

1
α

(√
xi
β −
√

β
xi

)
+ 2α


α4

1 + e
1
α

[√
xi
β −
√

β
xi

]2 = A1, (13)

∂2`(ζ)

∂α∂β
=− 1

2α2β

n

∑
i=1

(√
β

xi
+

√
xi
β

)

+
n

∑
i=1

(
x2

i

√
β
xi
+ β2

√
xi
β

)(√ β
xi
−
√

xi
β + α

)
e

1
α

(√
xi
β −
√

β
xi

)
+ α


α3β2xi

√
xi
β

√
β
xi

1 + e
1
α

[√
xi
β −
√

β
xi

]2 = A2, (14)

∂2`(ζ)

∂β2 =−
n

∑
i=1

(
1

(xi + β)2

)
+

n
2β2 −

1
4αβ2

n

∑
i=1

(
3

√
β

xi
+

√
xi
β

)

−
n

∑
i=1

[(√
xi
β − 3α

)
x4

i (
β
xi
)

3
2 +

(√
β
xi
− α

)
β4( xi

β )
3
2 + 2x2

i β2
]

e
1
α

(√
xi
β −
√

β
xi

)
− 3αx4

i (
β
xi
)

3
2 − αβ4( xi

β )
3
2

2α2β4xi(
xi
β )

3
2 ( β

xi
)

3
2

1 + e
1
α

[√
xi
β −
√

β
xi

]2

= A3. (15)

The observed information matrix is then calculated as follows:(
I11 I12
I21 I22

)
= −

(
A1 A2
A2 A3

)
.

Then, we can approximate the observed variance-covariance matrix as:

V =

(
V11 V12
V21 V22

)
=

(
I11 I12
I21 I22

)−1

=
1

det I

(
I22 −I21
−I21 I11.

)
.

Accordingly, α̂ and β̂ asymptotic joint distribution is approximately bivariate normal,
as shown by: (

α̂

β̂

)
≈ N

[(
α
β

)
,
(

V11 V12
V21 V22.

)]
. (16)

3.2. Modified Moment Estimation

The MMEs were proposed by [19] for BS distribution. Inspired by their research,
the MMEs for LBS are proposed here by equalizing E(T) and E( 1

T ) with the relevant
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sample moments. In this process, the MMEs for α and β, represented by α̃ and β̃, are
procured as follows:

α̃ =

[
6

π2

[
(

s
r
)

1
2 − 1

]] 1
2

and β̃ = (sr)
1
2 , (17)

where s = 1
n ∑n

i=1 xi and r = [ 1
n ∑n

i=1 x−1
i ]−1.

The strong law of large numbers states that s and r, respectively, converge to E(T)
and E(T−1). The asymptotic joint distribution of α̃ and β̃ can be determined using CLT as
shown below:

√
n
(

s− E(T)
r−1 − E(T−1)

)
∼ N

[(
0
0,

)
∑
]

,

where

∑ =

[
(απβ)2

3 (1 + 37
60 π2α2) 1− (1 + π2

6 α2)2

1− (1 + π2

6 α2)2 (απβ−1)2

3 (1 + 37
60 π2α2).

]
. (18)

By using Taylor’s expansion, we get:

α̃ ≈ α +
1

4αβ
s +

β

4α
r−1 and β̃ ≈ β +

1

2(1 + π2

6 α2)
s− β2

2(1 + π2

6 α2)
r−1.

We can now calculate the asymptotic joint distribution of (α̃, β̃) by utilizing the asymp-
totic joint distribution of (s, r−1).

(
α̃
β̃

)
∼ N

[(
α
β

)
,

(
π4α2

45n 0

0 (παβ)2
(

3(20+7π2α2)
5n(6+π2α2)2

)
.

)]

4. Simulation Study

As previously mentioned, it is necessary to assess the estimators’ performance when
the data are contaminated. In a similar way to [11,20], we take the following scenarios into
consideration:

Model 1: A model without any contamination.
Model 2: A model with 10% of upper contamination.
Model 3: A model with 10% of lower contamination.
Model 4: A model with 20% of two-tailed contamination.

Therefore, this section presents the findings of the MC simulations study based on
M = 10,000 simulation runs with various combinations of shape parameter and sample
size values. By multiplying the upper or lower order statistics by 5 or 1/5, data contami-
nation was achieved. In addition, the simulation study uses n = 30, 50, 100, 150, 200, 500,
α = 0.5, 0.75, 1, 1.5, 2.0, and β = 1 for each scenario, with no loss of generality. It should be
mentioned that all calculations were carried out using an R program, which is accessible
from the authors upon request.

The simulated bias and root mean squared error (RMSE) are generated to assess
estimation efficiency.

Bias(α) =
1
M

M

∑
i=1

(α̂i − α), Bias(β) =
1
M

M

∑
i=1

(β̂i − β),

and

RMSE(α) =

√√√√ 1
M

M

∑
i=1

(α̂i − α)2, RMSE(β) =

√√√√ 1
M

M

∑
i=1

(β̂i − β)2.
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The simulation study’s results are visually presented in Figures 5–8, and from these
figures, we can note the following:

• When there is no contamination in the data, all figures show that when the sample
size is increased, all methods perform well;

• The bias values of the α parameter increase as the α value increases in models 2 and 3;
• In the case of model 4, the bias values show that the MLE method outperforms the

MME method, with MLE performing significantly better as the α value decreases;
• The RMSE values of the α parameter in models 2 and 3 are slightly increased when

the α value increases in the two methods;
• However, the RMSE values of model 4 indicate that MLE outperforms MME and that

this performance improves as α decreases;
• In the case of models 1 and 4, the bias values of the β parameter appear to be constant

around zero for both methods;
• As the α value decreases in the MLE method, the bias values of models 2 and 3

approach zero;
• The RMSE values of the β parameter perform similarly in the MLE and MME methods,

with the values of all models getting closer to zero as the α value decreases.

Figure 5. Simulated biases for the estimators of α.
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Figure 6. Simulated RMSEs for the estimators of α.
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Figure 7. Simulated biases for the estimators of β.



Appl. Sci. 2022, 12, 5000 12 of 16

Figure 8. Simulated RMSEs for the estimators of β.

5. Data Analyses

We perform two data analyses in this section to compare the performance of LBS distri-
bution with some other well-known distributions. The first set of data under examination
consists of the lifetimes of 42 individuals who were diagnosed with head and neck cancer,
which had previously been used by [21]. Cancer that evolves in the mouth, throat, nose,
salivary glands or other parts of the head and neck is referred to as head and neck cancer.
Table 1 presents the dataset:

Table 1. Lifetimes of individuals who were diagnosed with Head and Neck Cancer.

7 91 140 160 248 440
34 108 140 165 273 523
42 112 146 173 277 583
63 129 149 176 297 594
64 133 154 218 405 1101
83 133 157 225 417 1146
84 139 160 241 420 1417

It is important to mention that we eliminated data based on participants being lost to
follow-up, as indicated by [21]; that is, we have omitted the censored data and considered
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the remaining ones as a complete sample. Modeling the actual data by [21] (i.e., the case of
censored data) is considered for future research.

The second set of data under examination represents the lifetimes of 72 Cavia Porcellus
(guinea pigs) injected with various doses of Mycobacterium tuberculosis, which was
previously studied by [22] among others researchers. Mycobacterium tuberculosis is a
bacterium that causes tuberculosis, a contagious disease that primarily affects the lungs.
Table 2 displays the dataset:

Table 2. Lifetimes of Cavia Porcellus injected with various doses of Mycobacterium Tuberculosis.

12 44 60 70 95 146
15 48 60 72 96 175
22 52 60 73 98 175
24 53 60 75 99 221
24 54 61 76 109 233
32 54 62 76 110 258
32 55 63 81 121 258
33 56 65 83 127 263
34 57 65 84 129 297
38 58 67 85 131 341
38 58 68 87 143 341
43 59 70 91 146 376

First, we estimate the MLEs, Bias, and RMSE of parameters, AIC and BIC of Expo-
nential, Rayleigh, Weibull, BS, and LBS distributions, then depending on the considered
dataset, we compute many explanatory data analysis (EDA) measurements, as well as their
approximations based on the estimated model parameters.

Tables 3 and 4 list the estimators of the models’ parameters as well as the AIC and
BIC, while Tables 5 and 6 present the outcomes of EDA measurements. Overall, when
comparing these tables, one can observe that the estimated EDA measurements assuming
the LBS distribution were very near to their observed counterparts which are calculated
from the sample directly. Furthermore, the AIC and BIC indicate that the LBS distribution
is a better fit. In comparison to the fitted PDFs, Figures 9 and 10 show the histogram of the
datasets. As can be seen in the two figures, the LBS distribution fits the data better than
other distributions.

Table 3. Values of MLEs, AIC and BIC of Exponential, Rayleigh, Weibull, BS, LBS and Laplace BS
distributions for Head and Neck Cancer data.

Model
α β

AIC BIC
Value Bias RMSE Value Bias RMSE

Exponential - - - 280.1667 0 46.7732 559.3724 561.1101

Rayleigh - - - 410.1102 −7.6502 79.2048 601.3328 603.0705

Weibull 1.0918 0.0491 0.13 290.9757 6.558 43.4886 560.7841 564.2595

BS 1.1724 −0.0684 0.2855 162.4521 9.8421 45.9678 565.1072 568.5826

LBS 0.5736 0.0485 0.1076 179.6688 37.6861 27.0372 557.3078 560.7831
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Table 4. Values of MLEs, AIC and BIC of Exponential, Rayleigh, Weibull, BS, LBS and Laplace BS
distributions for Cavia Porcellus data.

Model
α β

AIC BIC
Value Bias RMSE Value Bias RMSE

Exponential - - - 99.81944 0 9.5598 808.8843 811.1610

Rayleigh - - - 128.2679 −0.7152 13.5447 818.5921 820.8688

Weibull 1.39295 0.0168 0.0995 110.5393 −2.8794 10.0684 798.2955 802.8488

BS 0.75999 −0.0099 0.0740 77.52778 0.2859 6.7819 785.8348 790.3881

LBS 0.41460 −0.0033 0.0457 76.01035 1.1905 6.1102 783.7526 788.3060

Table 5. EDA outcomes based on Head and Neck Cancer data.

Q1 Q2 Q3 Mean Kurtosis Skewness SD

Sample 130 160 292 280.1667 8.0993 2.3223 303.1249

Exponential 80.5989 194.1967 388.3935 280.1667 9 2 280.1667

Rayleigh 4311.0799 482.8679 682.8783 363.4507 3.2451 0.6311 268.6781

Weibull 92.9533 208.0012 392.4504 281.4662 7.4714 1.7535 258.0723

BS 75.1050 162.4521 351.3837 274.0991 14.7086 2.7626 314.0061

LBS 96.6347 179.6688 334.0506 276.9076 23.1251 11.8393 323.9002
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Figure 9. The fitted PDFs based on Head and Neck Cancer data.
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Table 6. EDA outcomes based on Cavia Porcellus data.

Q1 Q2 Q3 Mean Kurtosis Skewness SD

Sample 54.7500 69.1896 112.7500 99.81944 5.6144 1.7962 81.1180

Exponential 28.7163 70 138.3791 99.81944 9 2 99.8194

Rayleigh 97.2947 151.0239 213.5801 113.6745 3.2451 0.6311 84.0330

Weibull 45.1928 84.9660 139.7509 100.8287 4.8757 1.2081 73.3186

BS 46.6880 77.5278 128.7388 99.9169 9.8454 2.0774 77.3171

LBS 48.3869 76.0104 119.4038 97.5030 10.5492 5.6765 81.7657
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Figure 10. The fitted PDFs based on Cavia Porcellus data.

6. Conclusions

The features of the LBS distribution and certain associated inferential methods have
been discussed in this paper. The PDF of the LBS distribution might take on many shapes
due to the inclusion of the shape parameter. It has either a decreasing or a unimodal
HF function. When there is no contamination in the data, all approaches perform well,
according to the MC simulations study. The contamination in the data may have an
impact on the shape and scale parameters, with the exception of two-tailed contamination,
which has no impact on the scale parameter. Finally, based on the results of the real
data analysis, it is concluded that the LBS distribution, as compared to the well-known
distributions, may provide a better fit to real-life data. In practice, data contamination is
not the only issue researchers encounter. Another significant research challenge that needs
to be addressed in future studies is data censoring, since it negatively impacts estimation
efficiency and robustness. Comparing the examined estimators to Bayesian estimation in
terms of performance is the last study area that one may consider.
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