Polyurethane Treated in Ar/C2H2/Ar Plasma: Towards Deformable Coating with Improved Albumin Adsorption
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Stüber, M.; Niederberger, L.; Danneil, F.; Leiste, H.; Ulrich, S.; Welle, A.; Marin, M.; Fischer, H. Surface topography, surface energy and wettability of magnetron-sputtered amorphous carbon (a-C) films and their relevance for platelet adhesion. Adv. Eng. Mater. 2007, 9, 1114–1122. [Google Scholar] [CrossRef]
- Ishige, H.; Akaike, S.; Hayakawa, T.; Hiratsuka, M.; Nakamura, Y. Evaluation of protein adsorption to diamond-like carbon (DLC) and fluorinedoped DLC films using the quartz crystal microbalance method. Dent. Mater. J. 2019, 38, 424–429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zelzer, M.; Albutt, D.; Alexander, M.R.; Russell, N.A. The role of albumin and fibronectin in the adhesion of fibroblasts to plasma polymer surfaces. Plasma Process. Polym. 2012, 9, 149–156. [Google Scholar] [CrossRef]
- Recek, N. Biocompatibility of plasma-treated polymeric implants. Materials 2019, 12, 240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, P.; Huang, N.; Leng, Y.X.; Yao, Z.Q.; Zhou, H.F.; Maitz, M.; Leng, Y.; Chu, P.K. Wettability and biocompatibility of nitrogen-doped hydrogenated amorphous carbon films: Effect of nitrogen. Nucl. Instrum. Meth. B 2006, 242, 22–25. [Google Scholar] [CrossRef]
- Alekhin, A.P.; Boleiko, G.M.; Gudkova, S.A.; Markeev, A.M.; Sigarev, A.A.; Toknova, V.F.; Kirilenko, A.G.; Lapshin, R.V.; Kozlov, E.N.; Tetyukhin, D.V. Synthesis of biocompatible surfaces by nanotechnology methods. Nanotechnologies Russ. 2010, 5, 696–708. [Google Scholar] [CrossRef] [Green Version]
- Morozov, I.A.; Mamaev, A.S.; Osorgina, I.V.; Lemkina, L.M.; Korobov, V.P.; Belyaev, A.Y.; Porozova, S.E.; Sherban, M.G. Structural-mechanical and antibacterial properties of a soft elastic polyurethane surface after plasma immersion N2+ implantation. Mat. Sci. Eng. C–Mater. 2016, 62, 242–248. [Google Scholar] [CrossRef] [PubMed]
- Katsikogianni, M.G.; Missirlis, Y.F. Interactions of bacteria with specific biomaterial surface chemistries under flow conditions. Acta Biomater. 2010, 6, 1107–1118. [Google Scholar] [CrossRef]
- Patel, J.D.; Ebert, M.; Ward, R.; Anderson, J.M.S. epidermidis biofilm formation: Effects of biomaterial surface chemistry and serum proteins. J. Biomed. Mater. Res. A 2007, 80, 742–751. [Google Scholar] [CrossRef]
- Morozov, I.A.; Kamenetskikh, A.S.; Beliaev, A.Y.; Scherban, M.G.; Lemkina, L.M.; Eroshenko, D.V.; Korobov, V.P. The effect of damage of a plasma-treated polyurethane surface on bacterial adhesion. Biophysics 2019, 64, 527–535. [Google Scholar] [CrossRef]
- Chung, J.Y.; Nolte, A.J.; Stafford, C.M. Surface wrinkling: A versatile platform for measuring thin-film properties. Adv. Mater. 2011, 23, 349–368. [Google Scholar] [CrossRef]
- Zhang, H.; Zhu, H.; Liang, X.; Liu, P.; Zhang, Q.; Zhu, S. Wrinkled smart surfaces: Enhanced switchable wettability and directional liquid transportation. Appl. Surf. Sci. 2020, 513, 145810. [Google Scholar] [CrossRef]
- Khang, D.Y.; Rogers, J.A.; Lee, H.H. Mechanical buckling: Mechanics, metrology, and stretchable electronics. Adv. Funct. Mater. 2009, 19, 1526–1536. [Google Scholar] [CrossRef]
- Volynskii, A.L.; Panchuk, D.A.; Sadakbaeva, Z.K.; Bol’shakova, A.V.; Kechek’yan, A.S.; Yarysheva, L.M.; Bakeev, N.F. Formation of a regular microrelief in deformation of plasma-treated polymer films. Dokl. Phys. Chem. 2009, 427, 133–135. [Google Scholar] [CrossRef]
- Panchuk, D.A.; Sadakbaeva, Z.K.; Bagrov, D.V.; Kechek’yan, A.S.; Bol’shakova, A.V.; Abramchuk, S.S.; Yarysheva, L.M.; Volynskii, A.L.; Bakeev, N.F. Specific features of surface structuring during deformation of plasma-treated polymer films. Polym. Sci. Ser. A+ 2010, 52, 794–800. [Google Scholar] [CrossRef] [Green Version]
- Tsubone, D.; Hasebe, T.; Kamijo, A.; Hotta, A. Fracture mechanics of diamond-like carbon (DLC) films coated on flexible polymer substrates. Surf. Coat. Tech. 2007, 201, 6423–6430. [Google Scholar] [CrossRef]
- Chudinov, V.; Kondyurina, I.; Terpugov, V.; Kondyurin, A. Weakened foreign body response to medical polyureaurethane treated by plasma immersion ion implantation. Nucl. Instrum. Meth. B 2019, 440, 163–174. [Google Scholar] [CrossRef]
- Morozov, I.A.; Mamaev, A.S.; Bannikov, M.V.; Beliaev, A.Y.; Osorgina, I.V. The fracture of plasma-treated polyurethane surface under fatigue loading. Coatings 2018, 8, 75. [Google Scholar] [CrossRef] [Green Version]
- Alves, P.; Pinto, S.; de Sousa, H.C.; Gil, M.H. Surface modification of a thermoplastic polyurethane by low-pressure plasma treatment to improve hydrophilicity. J. Appl. Polym. Sci. 2011, 122, 2302–2308. [Google Scholar] [CrossRef]
- Sanchis, M.R.; Calvo, O.; Fenollar, O.; Garcia, D.; Balart, R. Characterization of the surface changes and the aging effects of low-pressure nitrogen plasma treatment in a polyurethane film. Polym. Test. 2008, 27, 75–83. [Google Scholar] [CrossRef]
- Ozdemir, Y.; Hasirci, N.; Serbetci, K. Oxygen plasma modification of polyurethane membranes. J. Mater. Sci.-Mater. Med. 2002, 13, 1147–1152. [Google Scholar] [CrossRef]
- Bilek, M.M.M.; McKenzie, D.R. A comprehensive model of stress generation and relief processes in thin films deposited with energetic ions. Surf. Coat. Technol. 2006, 200, 4345–4354. [Google Scholar] [CrossRef]
- Michelmore, A.; Whittle, J.D.; Short, R.D. The importance of ions in low pressure PECVD plasmas. Front. Phys. 2015, 3, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Cuong, N.K.; Tahara, M.; Yamauchi, N.; Sone, T. Diamond-like carbon films deposited on polymers by plasma-enhanced chemical vapor deposition. Surf. Coat. Technol. 2003, 174–175, 1024–1028. [Google Scholar] [CrossRef]
- Barz, J.; Haupt, M.; Oehr, C.; Hirth, T.; Grimmer, P. Stability and water wetting behavior of superhydrophobic polyurethane films created by hot embossing and plasma etching and coating. Plasma Process. Polym. 2019, 16, 1800214. [Google Scholar] [CrossRef]
- Carvalho, F.H.O.; Vaz, A.R.; Moshkalev, S.; Gelamo, R.V. Syntesis of carbon nanostructures near room temperature using microwave PECVD. Mater. Res. 2015, 18, 860–866. [Google Scholar] [CrossRef] [Green Version]
- Morozov, I.A. Nanoindentation of polyurethane with phase-separated fibrillar structure. Polym. Test. 2021, 94, 107038. [Google Scholar] [CrossRef]
- Morozov, I.A.; Kamenetskikh, A.S. Structural-mechanical AFM study of inhomogeneous stiff nanocoating of soft polymer substrate. IOP Conf. Ser.-Mat. Sci. 2019, 699, 012031. [Google Scholar] [CrossRef]
- Miller, C.E.; Archibald, D.D.; Myrick, M.L.; Angel, S.M. Determination of physical properties of reaction-injection-molded polyurethanes by NIR-FT-Raman spectroscopy. Appl. Spectrosc. 1990, 44, 1297–1300. [Google Scholar] [CrossRef]
- Chu, P.K.; Li, L. Characterization of amorphous and nanocrystalline carbon films. Mater. Chem. Phys. 2006, 96, 253–277. [Google Scholar] [CrossRef]
- Wu, J.-B.; Lin, M.-L.; Cong, X.; Liu, H.-N.; Tan, P.-H. Raman spectroscopy of graphene-based materials and its applications in related devices. Chem. Soc. Rev. 2018, 47, 1822–1873. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeyachandran, Y.L.; Mielczarski, E.; Rai, B.; Mielczarski, J.A. Quantitative and qualitative evaluation of adsorption/desorption of bovine serum albumin on hydrophilic and hydrophobic surfaces. Langmuir 2009, 25, 11614–11620. [Google Scholar] [CrossRef]
- Michiardi, A.; Aparicio, C.; Ratner, B.D.; Planell, J.A.; Gil, J. The influence of surface energy on competitive protein adsorption on oxidized NiTi surfaces. Biomaterials 2007, 28, 586–594. [Google Scholar] [CrossRef]
- Akkas, T.; Citak, C.; Sirkecioglu, A.; Güner, F.S. Which is more effective for protein adsorption: Surface roughness, surface wettability or swelling? Case study of polyurethane films prepared from castor oil and poly(ethylene glycol): Protein adsorption on polyurethane films. Polym. Int. 2013, 62, 1202–1209. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morozov, I.A.; Kamenetskikh, A.S.; Beliaev, A.Y.; Izumov, R.I.; Scherban, M.G.; Lemkina, L.M.; Kiselkov, D.M. Polyurethane Treated in Ar/C2H2/Ar Plasma: Towards Deformable Coating with Improved Albumin Adsorption. Appl. Sci. 2021, 11, 9793. https://doi.org/10.3390/app11219793
Morozov IA, Kamenetskikh AS, Beliaev AY, Izumov RI, Scherban MG, Lemkina LM, Kiselkov DM. Polyurethane Treated in Ar/C2H2/Ar Plasma: Towards Deformable Coating with Improved Albumin Adsorption. Applied Sciences. 2021; 11(21):9793. https://doi.org/10.3390/app11219793
Chicago/Turabian StyleMorozov, Ilya A., Alexander S. Kamenetskikh, Anton Y. Beliaev, Roman I. Izumov, Marina G. Scherban, Larisa M. Lemkina, and Dmitriy M. Kiselkov. 2021. "Polyurethane Treated in Ar/C2H2/Ar Plasma: Towards Deformable Coating with Improved Albumin Adsorption" Applied Sciences 11, no. 21: 9793. https://doi.org/10.3390/app11219793
APA StyleMorozov, I. A., Kamenetskikh, A. S., Beliaev, A. Y., Izumov, R. I., Scherban, M. G., Lemkina, L. M., & Kiselkov, D. M. (2021). Polyurethane Treated in Ar/C2H2/Ar Plasma: Towards Deformable Coating with Improved Albumin Adsorption. Applied Sciences, 11(21), 9793. https://doi.org/10.3390/app11219793