# Exploiting Modern Chladni Plates to Analogously Manifest the Point Interaction

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Theoretical Model for the Point Interaction

## 3. Exploring the Point Interactions in Modern Chladni Plates

## 4. Applications

^{3}[38]. Using these material properties and h = 1 mm, the theoretical coefficient $C/2\pi $ can be calculated to be 0.248. We employed the parabolic formula in Equation (16) to make the best fit to the experimental results obtained in Figure 5 and Figure 6. The fitting coefficient $C/2\pi $ is approximately 0.228, as shown in Figure 8. The experimentally determined coefficient $C/2\pi $ can be found to agree with the theoretical value very well. This good agreement validates that the point-interaction model can be utilized not only to explore the formation of modern Chladni patterns, but also to determine the dispersion relation between the resonant frequency and the wave number for the vibration of plates. As the dispersion relation in Equation (16) includes the information of the flexural rigidity D as well as the Young modulus E, the proposed theoretical model is believed to be practically useful for measuring the acoustic properties of plates.

## 5. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## References

- Chladni, E.F.F. Entdeckungen über die Theorie des Klanges; Breitkopf und Härtel: Leipzig, Germany, 1787. [Google Scholar]
- Chladni, E.F.F. Die Akustik; Breitkopf und Härtel: Leipzig, Germany, 1802. [Google Scholar]
- Gough, C. The violin: Chladni patterns, plates, shells and sounds. Eur. Phys. J. Spec. Top.
**2007**, 145, 77–101. [Google Scholar] [CrossRef] - Dorrestijn, M.; Bietsch, A.; Açıkalın, T.; Raman, A.; Hegner, M.; Meyer, E.; Gerber, C. Chladni figures revisited based on nanomechanics. Phys. Rev. Lett.
**2007**, 98, 026102. [Google Scholar] [CrossRef][Green Version] - Wood, C.D.; Cunningham, J.E.; O’Rorke, R.; Wälti, C.; Linfield, E.H.; Davies, A.G.; Evans, S.D. Formation and manipulation of two-dimensional arrays of micron-scale particles in microfluidic systems by surface acoustic waves. Appl. Phys. Lett.
**2009**, 94, 054101. [Google Scholar] [CrossRef] - Jenny, H. Cymatics: A Study of Wave Phenomena and Vibration; Macromedia: Newmarket, NH, USA, 2001. [Google Scholar]
- Tuan, P.H.; Wen, C.P.; Chiang, P.Y.; Yu, Y.T.; Liang, H.C.; Huang, K.F.; Chen, Y.F. Exploring the resonant vibration of thin plates: Reconstruction of Chladni patterns and determination of resonant wave numbers. J. Acoust. Soc. Am.
**2015**, 137, 2113. [Google Scholar] [CrossRef] - Tuan, P.H.; Liang, H.C.; Tung, J.C.; Chiang, P.Y.; Huang, K.F.; Chen, Y.F. Manifesting the evolution of eigenstates from quantum billiards to singular billiards in the strongly coupled limit with a truncated basis by using RLC networks. Phys. Rev. E
**2015**, 92, 062906. [Google Scholar] [CrossRef] [PubMed][Green Version] - Tuan, P.H.; Tung, J.C.; Liang, H.C.; Chiang, P.Y.; Huang, K.F.; Chen, Y.F. Resolving the formation of modern Chladni figures. Europhys. Lett.
**2015**, 111, 64004. [Google Scholar] [CrossRef][Green Version] - Tuan, P.H.; Lai, Y.H.; Wen, C.P.; Huang, K.F.; Chen, Y.F. Point-driven modern Chladni figures with symmetry breaking. Sci. Rep.
**2018**, 8, 1–13. [Google Scholar] [CrossRef] [PubMed] - Tuan, P.H.; Wen, C.P.; Yu, Y.T.; Liang, H.C.; Huang, K.F.; Chen, Y.F. Exploring the distinction between experimental resonant modes and theoretical eigenmodes: From vibrating plates to laser cavities. Phys. Rev. E
**2014**, 89, 022911. [Google Scholar] [CrossRef][Green Version] - Albeverio, S.; Gesztesy, F.; Høegh-Krohn, R.; Holden, H. Solvable Models in Quantum Mechanics, 2nd ed.; AMS Chelsea Publishing: Providence, RI, USA, 2004. [Google Scholar]
- Schmidt, A.G.M.; Cheng, B.K.; da Luz, M.G.E. Green functions for generalized point interactions in one dimension: A scattering approach. Phys. Rev. A
**2002**, 66, 062712. [Google Scholar] [CrossRef][Green Version] - Arnbak, H.; Christiansen, P.L.; Gaididei, Y.B. Non-relativistic and relativistic scattering by short-range potentials. Philos. Trans. R. Soc. A
**2011**, 369, 1228–1244. [Google Scholar] [CrossRef] [PubMed][Green Version] - Kruppa, A.T.; Varga, K.; Révai, J. Local realizations of contact interactions in two-and three-body problems. Phys. Rev. C
**2001**, 63, 064301. [Google Scholar] [CrossRef][Green Version] - Demkov, Y.; Ostrovskii, V.N. Zero-Range Potentials and Their Applications in Atomic Physics; Plenum: New York, NY, USA, 1989. [Google Scholar]
- Doniach, S.; Sondheimer, E.H. Green’s Functions for Solid State Physicists; Benjamin: Reading, MA, USA, 1974. [Google Scholar]
- Thorn, C. Quark confinement in the infinite-momentum frame. Phys. Rev. D
**1979**, 19, 639. [Google Scholar] [CrossRef] - Šeba, P. Wave Chaos in Singular Quantum Billiard. Phys. Rev. Lett.
**1990**, 64, 1855. [Google Scholar] [CrossRef] - Shigehara, T. Conditions for the appearance of wave chaos in quantum singular systems with a pointlike scatterer. Phys. Rev. E
**1994**, 50, 4357. [Google Scholar] [CrossRef] - Šeba, P.; Exner, P. Point interactions in two and three dimensions as models of small scatterers. Physics Letters A
**1996**, 222, 1–4. [Google Scholar] - Bogomolny, E.; Gerland, U.; Schmit, C. Singular statistics. Phys. Rev. E
**2001**, 63, 036206. [Google Scholar] [CrossRef][Green Version] - Berkolaiko, G.; Keating, J.P.; Winn, B. Intermediate wave function statistics. Phys. Rev. Lett.
**2003**, 91, 134013. [Google Scholar] [CrossRef] [PubMed][Green Version] - Tudorovskiy, T.; Kuhl, U.; Stöckmann, H.-J. Singular statistics revised. New J. Phys.
**2010**, 12, 123021. [Google Scholar] [CrossRef][Green Version] - Rudnick, Z.; Ueberschär, H. Statistics of wave functions for a point scatterer on the torus. Commun. Math. Phys.
**2012**, 316, 763–782. [Google Scholar] [CrossRef][Green Version] - Jackiw, R.M.A.B. Bég Memorial Volume; Ali, A., Hoodbhoy, P., Eds.; World Scientific: Singapore, 1991. [Google Scholar]
- Phillips, D.R.; Beane, S.R.; Cohen, T.D. Nonperturbative regularization and renormalization: Simple examples from nonrelativistic quantum mechanics. Ann. Phys.
**1998**, 263, 255–275. [Google Scholar] [CrossRef][Green Version] - Henderson, R.J.; Rajeev, S.G. Renormalized contact potential in two dimensions. J. Math. Phys.
**1998**, 39, 749–759. [Google Scholar] [CrossRef][Green Version] - Adhikari, S.K.; Frederico, T. Renormalization group in potential scattering. Phys. Rev. Lett.
**1995**, 74, 4572. [Google Scholar] [CrossRef] [PubMed][Green Version] - Weaver, R.L.; Sornette, D. Range of spectral correlations in pseudointegrable systems: Gaussian-orthogonal-ensemble statistics in a rectangular membrane with a point scatterer. Phys. Rev. E
**1995**, 52, 3341. [Google Scholar] [CrossRef] [PubMed] - Shigehara, T.; Cheon, T. Wave chaos in quantum billiards with a small but finite-size scatterer. Phys. Rev. E
**1996**, 54, 1321. [Google Scholar] [CrossRef][Green Version] - Chakraverty, S. Vibration of Plates; CRC Press: Taylor and Francis Group: Boca Raton, FL, USA, 2009. [Google Scholar]
- Ventsel, E.; Krauthammer, T. Thin Plates and Shells; Dekker: New York, NY, USA, 2004; pp. 1–14. [Google Scholar]
- Rayleigh, L. Theory of Sound; Dover: New York, NY, USA, 1945; pp. 367–380. [Google Scholar]
- Waller, M.D. Vibrations of free square plates: Part I. Normal vibrating modes. Proc. Phys. Soc.
**1939**, 51, 831–844. [Google Scholar] [CrossRef] - Snowdon, J.C. Forced vibration of internally damped rectangular and square plates with simply supported boundaries. J. Acoust. Soc. Am.
**1974**, 56, 1177–1184. [Google Scholar] [CrossRef] - Stöckmann, H.-J. Quantum Chaos. An Introduction; University Press: Cambridge, UK, 1999. [Google Scholar]
- Van Vlack, L. Elements of Material Science and Engineering; Addison-Wesley: Reading, MA, USA, 1980. [Google Scholar]
- Luo, Y.; Feng, R.; Li, X.D.; Liu, D.H. A simple approach to determine the mode shapes of Chladni plates based on the optical lever method. Eur. J. Phys.
**2019**, 40, 065001. [Google Scholar] [CrossRef] - Lei, J.; Cheng, F.; Liu, G.; Li, K.; Gou, Z. Dexterous formation of unconventional Chladni patterns using standing bulk acoustic waves. Appl. Phys. Lett.
**2020**, 117, 184101. [Google Scholar] [CrossRef]

**Figure 2.**Calculated result for $\xi (k)$ in Equation (8) as a function of k with ${r}_{s}=(L/2,L/2)$ and N = 50.

**Figure 3.**Calculated results for ${\left[1+\alpha \xi (k)\right]}^{-1}$ as a function of k for different N increasing from 10 to 50 for (

**a**) $\alpha =5$ and (

**b**) $\alpha =10$.

**Figure 4.**(

**a**) Eigenvalue with the coupling parameter α for a specific case of ${k}_{7,7}^{(p)}$. (

**b**) Dependence of the wave patterns of the eigenfunctions on the parameter α. (

**c**) Nodal-line patterns corresponding to the wave patterns in (

**b**). (

**d**) Contribution of original eigenfunctions ${\mathsf{\psi}}_{n,m}(r)$ in the perturbed eigenfunction $\mathsf{\Psi}(r;k)$.

**Figure 5.**(

**a**) Experimental nodal-line patterns for fixing the plate at ${r}_{s}=(0.5L,0.5L)$(on the center). (

**b**) Numerical nodal-line patterns corresponding to the experimental results.

**Figure 6.**(

**a**) Experimental nodal-line patterns for fixing the plate at ${r}_{s}=(0.57L,0.57L)$ (off the center). (

**b**) Numerical nodal-line patterns corresponding to the experimental results.

**Figure 7.**Dependence of the coupling strength on the resonant frequency by means of the best reconstruction of experimental patterns.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Tseng, Y.-C.; Hsu, Y.-H.; Lai, Y.-H.; Yu, Y.-T.; Liang, H.-C.; Huang, K.-F.; Chen, Y.-F. Exploiting Modern Chladni Plates to Analogously Manifest the Point Interaction. *Appl. Sci.* **2021**, *11*, 10094.
https://doi.org/10.3390/app112110094

**AMA Style**

Tseng Y-C, Hsu Y-H, Lai Y-H, Yu Y-T, Liang H-C, Huang K-F, Chen Y-F. Exploiting Modern Chladni Plates to Analogously Manifest the Point Interaction. *Applied Sciences*. 2021; 11(21):10094.
https://doi.org/10.3390/app112110094

**Chicago/Turabian Style**

Tseng, Yu-Chen, Yu-Hsin Hsu, Yu-Hsiang Lai, Yan-Ting Yu, Hsing-Chih Liang, Kai-Feng Huang, and Yung-Fu Chen. 2021. "Exploiting Modern Chladni Plates to Analogously Manifest the Point Interaction" *Applied Sciences* 11, no. 21: 10094.
https://doi.org/10.3390/app112110094