# Analysis of Electromagnetic Coupling Characteristics of Balise Transmission System Based on Digital Twin

^{1}

^{2}

^{3}

^{4}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Modeling Foundation of the Digital Twin

#### 2.1. Basic Working Principle of the BTS

#### 2.2. Factor Analysis of Electromagnetic Coupling Process

## 3. DT Model of the Electromagnetic Coupling Process of the BTS

#### 3.1. Structural Design of DT Model of Electromagnetic Coupling Process of the BTS

#### 3.2. Mutual Inductance Calculation between the OAU and the Balise

#### 3.3. Modeling and Analysis of Matching Circuit

#### 3.4. Equivalent Model of Passive Balise Transmitting Current

#### 3.5. DT Model of Electromagnetic Coupling Process of BTS

## 4. Experimental Verification of the Digital Twin Model

#### 4.1. Verification of the Tele-Powering Field Conformity

#### 4.2. Verification of the Uplink Field Conformity

## 5. Quantitative Evaluation of the Influence of Some Typical Parameters on the Balise Uplink Signal

## 6. Discussion and Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- UNISIG. SUBSET-036: FFFIS for EuroBalise 3.0.0; UNISIG: Brussels, Belgium, 2012. [Google Scholar]
- UNISIG. SUBSET-085: Test Specification for EuroBalise FFFIS V3.0.0; UNISIG: Brussels, Belgium, 2012. [Google Scholar]
- TB/T3485-2017: Technical Specification of Balise Transmission System; China State Railway Group Co., Ltd.: Beijing, China, 2017.
- Guo, Y.H.; Zhang, J.B. Analysis of electromagnetic compatibility of EMU onboard BTM equipment. J. China Railw. Soc.
**2016**, 38, 75–79. [Google Scholar] - Li, Z.J.; Cai, B.G.; Dai, S.H.; Lu, D.B.; Liu, J. Reliability evaluation of balise transmission system considering train velocity. J. China Railw. Soc.
**2017**, 39, 86–93. [Google Scholar] - Zhao, L.H.; Jiang, Y. Odeling and simulation of balise up-link data transmission based on finite element method. J. Theor. Appl. Inf. Technol.
**2012**, 46, 867–874. [Google Scholar] - Zhao, L.H.; Jiang, Y. Modeling and optimization research for dynamic transmission process of balise tele-powering signal in high-speed railways. Prog. Electromagn. Res.
**2013**, 140, 563–588. [Google Scholar] [CrossRef][Green Version] - Lee, S.B.; Lyou, J. Analysis of air-gap interface transmission characteristics for improving reliability in ATP system. In Proceedings of the 2020 International Conference on Electronics, Information, and Communication (ICEIC), Barcelona, Spain, 19–22 January 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–8. [Google Scholar]
- Wang, T.; Zhao, L.H. Modeling and optimization for balise coupling process in high speed railway. In Proceedings of the 2017 7th IEEE International Symposium on Microwave, Antenna, Propagation, and EMC Technologies (MAPE), Xi’an, China, 24–27 October 2017; IEEE: Piscataway, NJ, USA, 2020; pp. 176–179. [Google Scholar]
- Liang, D.; Zhao, H.; Quan, H.; Zhang, Y. Research on electromagnetic coupling mechanism and mounting parameter optimization of balise transmission system. J. China Railw. Soc.
**2014**, 36, 64–70. [Google Scholar] - Li, Z.J.; Cai, B.G.; Liu, J.; Lu, D.B.; Zhu, L.F.; Liu, H. Research on performance evaluation method of down-link signal in balise based on equivalent impedance model. J. China Railw. Soc.
**2020**, 42, 85–92. [Google Scholar] - Wang, T.; Zhao, L.H. Cause analysis and application of balise system side-lobe based on electromagnetic induction. J. China Railw. Soc.
**2019**, 41, 111–117. [Google Scholar] - Grieves, M. Digital Twin: Manufacturing Excellence through Virtual Factory Replication; White Paper; NASA: Washington, DC, USA, 2014. [Google Scholar]
- Lin, K.; Xu, Y.L.; Lu, X.; Guan, Z.; Li, J. Digital twin-based collapse fragility assessment of a long-span cable-stayed bridge under strong earthquakes. Autom. Constr.
**2021**, 123, 103547. [Google Scholar] [CrossRef] - Qu, X.; Song, Y.; Liu, D.; Cui, X.; Peng, Y. Lithium-ion battery performance degradation evaluation in dynamic operating conditions based on a digital twin model. Microelectron. Reliab.
**2020**, 114, 113857. [Google Scholar] [CrossRef] - Coraddu, A.; Oneto, L.; Baldi, F.; Cipollini, F.; Atlar, M.; Savio, S. Data-driven ship digital twin for estimating the speed loss caused by the marine fouling. Ocean. Eng.
**2019**, 186, 106063. [Google Scholar] [CrossRef] - Fera, M.; Greco, A.; Caterino, M.; Gerbino, S.; Caputo, F.; Macchiaroli, R.; D’Amato, E. Towards digital twin implementation for assessing production line performance and balancing. Sensors
**2020**, 20, 97. [Google Scholar] [CrossRef] [PubMed][Green Version] - Millwater, H.; Ocampo, J.; Crosby, N. Probabilistic methods for risk assessment of airframe digital twin structures. Eng. Fract. Mech.
**2019**, 221, 106674. [Google Scholar] [CrossRef] - Kaewunruen, S.; Sresakoolchai, J.; Ma, W.; Phil-Ebosie, O. Digital twin aided vulnerability assessment and risk-based maintenance planning of bridge infrastructures exposed to extreme conditions. Sustainability
**2021**, 13, 2051. [Google Scholar] [CrossRef] - Grieves, M.; Vickers, J. Digital twin: Mitigating unpredictable, undesirable emergent behavior in complex systems. In Transdisciplinary Perspectives on Complex Systems; Springer: Berlin, Germany, 2017; pp. 85–113. [Google Scholar]
- Tao, F.; Zhang, M.; Liu, Y.; Nee, A.Y. Digital twin driven prognostics and health management for complex equipment. Cirp Ann.
**2018**, 67, 169–172. [Google Scholar] [CrossRef] - Zhu, L.F. Antenna Modeling and Optimization Research of Rail Traffic Balise Transmission System. Ph.D. Dissertation, Department of Electronic Engineering, Beijing Jiaotong University, Beijing, China, 2018. [Google Scholar]
- Wu, D.H.; Huang, C.; Yang, F.; Sun, Q.S. Analytical calculations of self-and mutual inductances for rectangular coils with lateral misalignment in IPT. IET Power Electron.
**2019**, 12, 4054–4062. [Google Scholar] - Jin, Z.Y. The Design, Optimization and Implementation of RFID Antenna in Train Control System. Master’s Thesis, Department of Electronic. Engineering, Beijing University of Posts and Telecommunications, Beijing, China, 2017. [Google Scholar]
- Fujita, A.; Sato, J.R.; Demasi, M.A.; Sogayar, M.C.; Ferreira, C.E.; Miyano, S. Comparing Pearson, Spearman and Hoeffding’s D measure for gene expression association analysis. J. Bioinform. Comput. Biol.
**2009**, 7, 663–684. [Google Scholar] [CrossRef] [PubMed] - Reshef, D.N.; Reshef, Y.A.; Finucane, H.K.; Grossman, S.R.; McVean, G.; Turnbaugh, P.J.; Lander, E.S.; Mitzenmacher, M.; Sabeti, P.C. Sabeti. Detecting novel associations in large data sets. Science
**2011**, 334, 1518–1524. [Google Scholar] [CrossRef] [PubMed][Green Version]

**Figure 17.**Variation of uplink received signal power with different installation modes (active balise).

**Figure 18.**Variation of uplink received signal power at different vertical distances between the OAU and the balise.

**Figure 19.**Variation of uplink received signal power at different lateral deviation between the OAU and the balise.

**Figure 20.**Variation of uplink received signal power with different uplink transmitting current intensity (active balise).

**Figure 21.**Variation of uplink received signal power with different tele-powering signal current intensity (passive balise).

**Figure 22.**Variation of uplink received signal power with different installation modes (passive balise).

Tele-Powering Magnetic Flux (nVs) | Loop Current (mA) |
---|---|

${\varphi}_{\mathrm{d}1}=4.9$ | ${I}_{\mathrm{u}1}=37$ |

${\varphi}_{\mathrm{d}2}=7.7$ | ${I}_{\mathrm{u}2}=59$ |

${\varphi}_{\mathrm{d}3}=5.8$ | ${I}_{\mathrm{u}3}=186$ |

${\varphi}_{\mathrm{d}4}=130$ | ${I}_{\mathrm{u}3}=186$ |

${\varphi}_{\mathrm{d}5}=250$ | Non-permanent damage |

2x_{0}(mm) | 2y_{0}(mm) | 2x_{1}(mm) | 2y_{1}(mm) | Δz (mm) | Δy (mm) | i_{d}(mA) |
---|---|---|---|---|---|---|

200 | 390 | 300 | 370 | 340 | 0 | 1000 |

${\mathit{Q}}_{\mathbf{r}}$ | ${\mathit{A}}_{\mathbf{z}}$ | Δz (mm) | Δy (mm) |
---|---|---|---|

3 | 0.5 | 340 | 0 |

Variable | Value | Variable | Value |
---|---|---|---|

${x}_{0}$ | 100 mm | $\mathsf{\Delta}y$ | 0 mm |

${y}_{0}$ | 195 mm | ${i}_{1}$ | 59 mA |

${x}_{1}$ | 100 mm | ${i}_{\mathrm{d}}$ | 1500 mA |

${y}_{1}$ | 160 mm | ${Q}_{\mathrm{r}}$ | 3 |

$\mathsf{\Delta}z$ | 340 mm | ${A}_{\mathrm{z}}$ | 0.5 |

OAU | Balise | |
---|---|---|

Installation Type-1 | lateral | lateral |

Installation Type-2 | longitudinal | lateral |

Installation Type-3 | lateral | longitudinal |

Installation Type-4 | longitudinal | longitudinal |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Geng, Q.; Wen, Y.; Zhang, D.; Xiao, J.; Zhu, Y.; Zhu, L.
Analysis of Electromagnetic Coupling Characteristics of Balise Transmission System Based on Digital Twin. *Appl. Sci.* **2021**, *11*, 6002.
https://doi.org/10.3390/app11136002

**AMA Style**

Geng Q, Wen Y, Zhang D, Xiao J, Zhu Y, Zhu L.
Analysis of Electromagnetic Coupling Characteristics of Balise Transmission System Based on Digital Twin. *Applied Sciences*. 2021; 11(13):6002.
https://doi.org/10.3390/app11136002

**Chicago/Turabian Style**

Geng, Qi, Yinghong Wen, Dan Zhang, Jianjun Xiao, Yun Zhu, and Linfu Zhu.
2021. "Analysis of Electromagnetic Coupling Characteristics of Balise Transmission System Based on Digital Twin" *Applied Sciences* 11, no. 13: 6002.
https://doi.org/10.3390/app11136002