Reducing Acidity of Tropical Acid Soil to Improve Phosphorus Availability and Zea mays L. Productivity through Efficient Use of Chicken Litter Biochar and Triple Superphosphate
Abstract
:Featured Application
Abstract
1. Introduction
- Phosphorus availability in a mineral acid soil using the right amounts of CLB and TSP,
- Phosphorus uptake, agronomic efficiency, and dry matter yield of Zea mays L. using the right amounts of CLB and TSP.
2. Materials and Methods
2.1. Experiment Setup
Chemical Properties of Chicken Litter Biochar
2.2. Harvesting of Maize Plants
2.3. Soil Chemical Analysis before and after Pot Study
2.4. Roots and Above Ground Biomass Analysis
- AEN = Agronomic efficiency of applied P,
- REN = Crop recovery efficiency of applied P,
- Fp—amount of (fertilizer) P applied (kg ha−1),
- Yp—crop yield with applied P (kg ha−1),
- Y0—crop yield (kg ha−1) in a control treatment with no P,
- Up—total plant P uptake in aboveground biomass at maturity (kg ha−1) in a plot that received P,
- U0—the total P uptake in aboveground biomass at maturity (kg ha−1) in a plot that received no P.
2.5. Statistical Analysis
3. Results and Discussion
3.1. Effects of Different Rates of Chicken Litter Biochar and Phosphorus on Plant Growth Variables
3.2. Effects of Different Amounts of Chicken Litter Biochar and Phosphorus on Plant Nutrient Uptake
3.3. Crop Recovery and Agronomic Efficiency of Triple Superphosphate Applied in Pot Trial
3.4. Effects of Different Amounts of Chicken Litter Biochar and Phosphorus on Soil Physico-Chemical Properties at Fifty Days after Sowing
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sharif, M.; Arif, M.; Burni, T.; Khan, F.; Jan, B.; Khan, I. Growth and phosphorus uptake of sorghum plants in salt affected soil as affected by organic materials Composted with rock phosphate. Pak. J. Bot. 2014, 46, 173–180. [Google Scholar]
- Sato, S. Phosphorus Sorption and Desorption in a Brazilian Ultisol: Effects of pH and Organic Anions on Phosphorus Bioavailability. Ph.D. Thesis, University of Florida, Gainesville, FL, USA, 2003; p. 124. [Google Scholar]
- Bomans, E.; Fransen, K.; Gobin, A.; Mertens, J.; Michiels, P.; Vandendriessche, H.; Vogels, N. Addressing Phosphorus Related Problems in Farm Practice; European Commission DG ENV: Brussels, Belgium, 2005. [Google Scholar]
- Adnan, A.; Mavinic, D.S.; Koch, F.A. Pilot-scale study of phosphorus recovery through struvite crystallization examining the process feasibility. J. Environ. Eng. Sci. 2003, 2, 315–324. [Google Scholar] [CrossRef]
- Rahman, Z.A.; Gikonyo, E.; Silek, B.; Goh, K.J.; Soltangheis, A. Evaluation of phosphate rock sources and rate of application on oil palm yield grown on peat soils of Sarawak, Malaysia. J. Agron. 2014, 13, 12–22. [Google Scholar] [CrossRef] [Green Version]
- Ch’ng, H.Y.; Ahmed, O.H.; Majid, N.M.A. Biochar and compost influence the phosphorus availability, nutrients uptake, and growth of maize (Zea mays L.) in tropical acid soil. Pak. J. Agric. Sci. 2014, 51, 797–806. [Google Scholar]
- Ch’ng, H.Y.; Ahmed, O.H.; Majid, N.M.A. Improving phosphorus availability, nutrient uptake and dry matter production of Zea mays L. on a tropical acid soil using poultry manure biochar and pineapple leaves compost. Exp. Agric. 2016, 52, 447–465. [Google Scholar] [CrossRef]
- Lehmann, J.; Gaunt, J.; Rondon, M. Bio-char sequestration in terrestrial ecosystems–A review. Mitig. Adapt. Strateg. Glob. Chang. 2006, 11, 395–419. [Google Scholar] [CrossRef]
- Zeng, F.; Ali, S.; Zhang, H.; Ouyang, Y.; Qiu, B.; Wu, F.; Zhang, G. The influence of pH and organic matter content in paddy soil on heavy metal availability and their uptake by rice plants. Environ. Pollut. 2011, 159, 84–91. [Google Scholar] [CrossRef] [PubMed]
- Antal, M.J.; Grønli, M. The art, science, and technology of charcoal production. Ind. Eng. Chem. Res. 2003, 42, 1619–1640. [Google Scholar] [CrossRef]
- Demirbas, A. Effects of temperature and particle size on bio-char yield from pyrolysis of agricultural residues. J. Anal. Appl. Pyrolysis 2004, 72, 243–248. [Google Scholar] [CrossRef]
- Ch’ng, H.Y.; Ahmed, O.H.; Majid, N.M.A. Improving phosphorus availability in an acid soil using organic amendments produced from agroindustrial wastes. Sci. World J. 2014. [Google Scholar] [CrossRef]
- Malaysian Agricultural Research and Development Institute (MARDI). Jagung Manis Baru (New Sweet Corn): Masmadu; MARDI: Kuala Lumpur, Malaysia, 1993.
- Deal, C.; Brewer, C.E.; Brown, R.C.; Okure, M.A.; Amoding, A. Comparison of kiln-derived and gasifier-derived biochars as soil amendments in the humid tropics. Biomass Bioenergy 2012, 37, 161–168. [Google Scholar] [CrossRef]
- Maru, A.; Haruna, O.A.; Charles Primus, W. Coapplication of chicken litter biochar and urea only to improve nutrients use efficiency and yield of Oryza sativa L. cultivation on a tropical acid soil. Sci. World J. 2015, 2015, 943853. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Latifah, O.; Ahmed, O.H.; Majid, N.M.A. Short Term Enhancement of Nutrients Availability in Zea mays L. Cultivation on an Acid Soil Using Compost and Clinoptilolite Zeolite. Compost Sci. Util. 2017, 25, 22–35. [Google Scholar] [CrossRef]
- Susilawati, K.; Osumanu, H.A.; Nik, M.; Mohd, K.Y.; Mohamadu, B.J. Effect of organic based N fertilizer on dry matter (Zea mays L.), ammonium and nitrate recovery in an acid soil of Sarawak, Malaysia. Am. J. Appl. Sci. 2009, 6, 1289–1294. [Google Scholar] [CrossRef]
- Palanivell, P.; Ahmed, O.H.; Ab Majid, N.M.; Jalloh, M.B.; Susilawati, K. Improving lowland rice (O. sativa L. cv. MR219) plant growth variables, nutrients uptake, and nutrients recovery using crude humic substances. Sci. World J. 2015, 2015, 906094. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peech, H.M. Hydrogen-ion Activity. In Method of Soil Analysis, Part 2; Black, C.A., Evan, D.D., Ensminger, L.E., White, J.L., Clark, F.E., Dinauer, R.C., Eds.; American society of Agronomy: Madison, WI, USA, 1965; pp. 914–926. [Google Scholar]
- Chefetz, B.; Hatcher, P.G.; Hadar, Y.; Chen, Y. Chemical and biological characterization of organic matter during composting of municipal solid waste. J. Environ. Qual. 1996, 25, 776–785. [Google Scholar] [CrossRef]
- Cottenie, A. Soil testing and plant testing as a basis of fertilizer recommendation. FAO Soils Bull. 1980, 38, 70–73. [Google Scholar]
- Yamato, M.; Okimori, Y.; Wibowo, I.F.; Anshori, S.; Ogawa, M. Effects of the application of charred bark of Acacia mangium on the yield of maize, cowpea and peanut, and soil chemical properties in South Sumatra, Indonesia. Soil Sci. Plant Nutr. 2006, 52, 489–495. [Google Scholar] [CrossRef]
- Tan, K.H. Soil Sampling, Preparation and Analysis, 2nd ed.; Taylor and Francis Group: Boca Raton, FL, USA, 2005; pp. 154–174. [Google Scholar]
- Mehlich, A. Determination of P, Ca, Mg, K, Na and NH4; North Carolina State University Soil Test Division: Raleigh, NC, USA, 1953. [Google Scholar]
- Murphy, J.; Riley, J.P. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 1962, 27, 31–36. [Google Scholar] [CrossRef]
- Rowell, D.L. Soil Science: Methods and Applications; University of Reading: Reading, UK, 1994. [Google Scholar]
- SAS. SAS/STAT Software. In SAS Institute, 2nd ed.; SAS Institute Inc.: Cary, NC, USA, 2013. [Google Scholar]
- Fageria, N.K.; Baligar, V.C. Ameliorating soil acidity of tropical Oxisols by liming for sustainable crop production. Adv. Agron. 2008, 99, 345–399. [Google Scholar]
- Akinrinde, E.A. Strategies for improving crops’ use-efficiencies of fertilizer nutrients in sustainable agricultural systems. Pak. J. Nutr. 2006, 5, 185–193. [Google Scholar] [CrossRef] [Green Version]
- Patel, P.C.; Yadav, N.K. Effect of Biochar on Growth, Dry Matter Yield and Nutrition of Corn (Zea mays L.) Grown on Sandy Loam of Middle Gujarat. Ph.D. Thesis, Anand Agricultural University, Anand, India, 2015. [Google Scholar]
- Ndor, E.; Jayeoba, J.O.; Asadu, C.L.A.; Iheshiulo, E.M.-A. Growth, nutrient uptake and dry matter yield of maize (Zea mays L.) grown in soil amended with rice husk and sawdust biochar. Int. J. Sci. Res. Agric. Sci. 2016, 3, 99–103. [Google Scholar] [CrossRef]
- Mau, A.E.; Utami, S.R. Effects of biochar amendment and arbuscular mycorrhizal fungi inoculation on availability of soil phosphorus and growth of maize. J. Degrad. Min. Lands Manag. 2014, 1, 69–74. [Google Scholar] [CrossRef]
- Nekesa, A.O.; Okaebo, J.R.; Otheno, C.O.; Thuita, M.N.; Kipsat, M.; Batiano, A.; Sanginga, N.; Kimettu, J.; Vanlauwe, B. The potential of Minjingu phosphate rock from Tanzania as a liming material: Effect on maize and bean intercrop on acid soils of western Kenya. Afr. Crop Sci. Conf. Proc. 2005, 7, 1121–1128. [Google Scholar]
- Manickam, T.; Cornelissen, G.; Bachmann, R.; Ibrahim, I.; Mulder, J.; Hale, S. Biochar application in Malaysian sandy and acid sulfate soils: Soil amelioration effects and improved crop production over two cropping seasons. Sustainability 2015, 7, 16756–16770. [Google Scholar] [CrossRef] [Green Version]
- Cui, L.; Li, L.; Zhang, A.; Pan, G.; Bao, D.; Chang, A. Biochar amendment greatly reduces rice Cd uptake in a contaminated paddy soil: A two-year field experiment. BioResources 2011, 6, 2605–2618. [Google Scholar] [CrossRef]
- Sanchez, P.A.; Swaminathan, M.S. Cutting world hunger in half. Science 2005, 307, 357–359. [Google Scholar] [CrossRef] [Green Version]
- Sanchez, P.A.; Swaminathan, M.S. Hunger in Africa: The link between unhealthy people and unhealthy soils. Lancet 2005, 365, 442–444. [Google Scholar] [CrossRef]
- Dempster, D.N.; Gleeson, D.B.; Solaiman, Z.I.; Jones, D.L.; Murphy, D.V. Decreased soil microbial biomass and nitrogen mineralisation with Eucalyptus biochar addition to a coarse textured soil. Plant Soil 2012, 354, 311–324. [Google Scholar] [CrossRef]
- Dempster, D.N.; Jones, D.L.; Murphy, D.V. Clay and biochar amendments decreased inorganic but not dissolved organic nitrogen leaching in soil. Soil Res. 2012, 50, 216–221. [Google Scholar] [CrossRef]
- Taghizadeh-Toosi, A.; Clough, T.J.; Sherlock, R.R.; Condron, L.M. Biochar adsorbed ammonia is bioavailable. Plant Soil 2012, 350, 57–69. [Google Scholar] [CrossRef]
- Wang, X.D.; Chen, X.N.; Ali, A.; Liu, S.; Lu, L.L. Dynamics of humic substance-complexed copper and copper leaching during composting of chicken manure. Pedosphere 2010, 20, 245–251. [Google Scholar] [CrossRef]
- Mahadi, M.A. Growth, nutrient uptake and yield of maize (Zea mays L.) as influenced by weed control and poultry manure. Int. J. Sci. Nat. 2014, 5, 94–102. [Google Scholar]
- Major, J.; Lehmann, J.; Rondon, M.; Goodale, C. Fate of soil-applied black carbon: Downward migration, leaching and soil respiration. Glob. Chang. Biol. 2010, 16, 1366–1379. [Google Scholar] [CrossRef]
- Van Zwieten, L.; Kimber, S.; Morris, S.; Downie, A.; Berger, E.; Rust, J.; Scheer, C. Influence of biochars on flux of N2O and CO2 from Ferrosol. Soil Res. 2010, 48, 555–568. [Google Scholar] [CrossRef]
- Pordesimo, L.O.; Edens, W.C.; Sokhansanj, S. Distribution of above ground biomass in corn stover. In 2002 ASAE Annual Meeting (p. 1); American Society of Agricultural and Biological Engineers: St Joseph, MI, USA, 2002. [Google Scholar]
- Cui, H.J.; Wang, M.K.; Fu, M.L.; Ci, E. Enhancing phosphorus availability in phosphorus-fertilized zones by reducing phosphate adsorbed on ferrihydrite using rice straw-derived biochar. J. Soils Sediments 2011, 11, 1135. [Google Scholar] [CrossRef]
- Nèble, S.; Calvert, V.; Le Petit, J.; Criquet, S. Dynamics of phosphatase activities in a cork oak litter (Quercus suber L.) following sewage sludge application. Soil Biol. Biochem. 2007, 39, 2735–2742. [Google Scholar] [CrossRef]
- Jin, Y.; Liang, X.; He, M.; Liu, Y.; Tian, G.; Shi, J. Manure biochar influence upon soil properties, phosphorus distribution and phosphatase activities: A microcosm incubation study. Chemosphere 2016, 142, 128–135. [Google Scholar] [CrossRef]
- Zhang, A.; Liu, Y.; Pan, G.; Hussain, Q.; Li, L.; Zheng, J.; Zhang, X. Effect of biochar amendment on maize yield and greenhouse gas emissions from a soil organic carbon poor calcareous loamy soil from Central China Plain. Plant. Soil 2012, 351, 263–275. [Google Scholar] [CrossRef]
- Khan, S.; Chao, C.; Waqas, M.; Arp, H.P.H.; Zhu, Y.G. Sewage sludge biochar influence upon rice (Oryza sativa L.) yield, metal bioaccumulation and greenhouse gas emissions from acidic paddy soil. Environ. Sci. Technol. 2013, 47, 8624–8632. [Google Scholar] [CrossRef]
- Khan, S.; Reid, B.J.; Li, G.; Zhu, Y.G. Application of biochar to soil reduces cancer risk via rice consumption: A case study in Miaoqian village, Longyan, China. Environ. Int. 2014, 68, 154–161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lal, R. Black and buried carbons’ impacts on soil quality and ecosystem services. Soil Tillage Res. 2008, 99, 1–3. [Google Scholar] [CrossRef]
- Sohi, S.P.; Krull, E.; Lopez-Capel, E.; Bol, R. A review of biochar and its use and function in soil. Adv. Agron. 2010, 105, 47–82. [Google Scholar] [CrossRef]
- Gaskin, J.W.; Steiner, C.; Harris, K.; Das, K.C.; Bibens, B. Effect of low-temperature pyrolysis conditions on biochar for agricultural use. Trans. ASABE 2008, 51, 2061–2069. [Google Scholar] [CrossRef]
- Chan, K.Y.; Van Zwieten, L.; Meszaros, I.; Downie, A.; Joseph, S. Using poultry litter biochars as soil amendments. Soil Res. 2008, 46, 437–444. [Google Scholar] [CrossRef]
- Novak, J.M.; Busscher, W.J.; Laird, D.L.; Ahmedna, M.; Watts, D.W.; Niandou, M.A. Impact of biochar amendment on fertility of a south-eastern coastal plain soil. Soil Sci. 2009, 174, 105–112. [Google Scholar] [CrossRef] [Green Version]
- Atkinson, C.J.; Fitzgerald, J.D.; Hipps, N.A. Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: A review. Plant Soil 2010, 337, 1–18. [Google Scholar] [CrossRef]
- Steiner, C.; Teixeira, W.G.; Lehmann, J.; Nehls, T.; de Macêdo, J.L.V.; Blum, W.E.; Zech, W. Long term effects of manure, charcoal and mineral fertilization on crop production and fertility on a highly weathered Central Amazonian upland soil. Plant Soil 2007, 291, 275–290. [Google Scholar] [CrossRef] [Green Version]
- Yuan, J.H.; Xu, R.K. The amelioration effects of low temperature biochar generated from nine crop residues on an acidic Ultisol. Soil Use Manag. 2011, 27, 110–115. [Google Scholar] [CrossRef]
- Yuan, J.H.; Xu, R.K.; Wang, N.; Li, J.Y. Amendment of acid soils with crop residues and biochars. Pedosphere 2011, 21, 302–308. [Google Scholar] [CrossRef]
- Van Zwieten, L.; Kimber, S.; Downie, A.; Chan, K.Y.; Cowie, A.; Wainberg, R.; Morris, S. Papermill char: Benefits to soil health and plant production. In Proceedings of the Conference of the International Agrichar Initiative, Terrigal, Australia, 27 April–2 May 2007; Volume 30. [Google Scholar]
- Hammond, D.S.; Steege, H.T.; Van Der Borg, K. Upland soil charcoal in the wet tropical forests of central Guyana. Biotropica 2007, 39, 153–160. [Google Scholar] [CrossRef]
- Brown, R. Biochar production technology. In Biochar for Environmental Management: Science and Technology; Lehmann, J., Joseph, S., Eds.; Earthscan: London, UK, 2009; pp. 127–146. [Google Scholar]
- McLaughlin, M.J.; McBeath, T.M.; Smernik, R.; Stacey, S.P.; Ajiboye, B.; Guppy, C. The chemical nature of P accumulation in agricultural soils—Implications for fertiliser management and design: An Australian perspective. Plant Soil 2011, 349, 69–87. [Google Scholar] [CrossRef]
- Koopmans, G.F.; Chardon, W.J.; Van der Salm, C. Disturbance of water-extractable phosphorus determination by colloidal particles in a heavy clay soil from the Netherlands. J. Environ. Qual. 2005, 34, 1446–1450. [Google Scholar] [CrossRef] [PubMed]
- Parvage, M.M.; Ulén, B.; Eriksson, J.; Strock, J.; Kirchmann, H. Phosphorus availability in soils amended with wheat residue char. Biol. Fertil. Soils 2013, 49, 245–250. [Google Scholar] [CrossRef] [Green Version]
- Cusack, D.F.; Silver, W.L.; Torn, M.S.; Burton, S.D.; Firestone, M.K. Changes in microbial community characteristics and soil organic matter with nitrogen additions in two tropical forests. Ecology 2011, 92, 621–632. [Google Scholar] [CrossRef] [Green Version]
- Verheijen, F.; Jeffery, S.; Bastos, A.C.; Van der Velde, M.; Diafas, L. Biochar application to soils. Crit. Sci. Rev. Eff. Soil Prop. Process. Funct. EUR. 2010, 24099, 162. [Google Scholar]
- DeLuca, T.H.; MacKenzie, M.D.; Gundale, M.J. Biochar effects on soil nutrient transformation. In Biochar for Environmental Management Science and Technology; Lehmann, J., Joseph, S., Eds.; Earthscan: London, UK, 2009; Chapter 14; pp. 251–270. [Google Scholar]
- Havlin, J.L.; Beaton, J.D.; Tisdale, S.L.; Nelson, W.L. Soil Fertility and Fertilizers: An Introduction to Nutrient Management; Pearson Prentice Hall: Upper Saddle River, NJ, USA, 2005; Volume 515, pp. 97–141. [Google Scholar]
- Taghizadeh-Toosi, A.; Clough, T.J.; Condron, L.M.; Sherlock, R.R.; Anderson, C.R.; Craigie, R.A. Biochar incorporation into pasture soil suppresses in situ nitrous oxide emissions from ruminant urine patches. J. Environ. Qual. 2011, 40, 468–476. [Google Scholar] [CrossRef] [Green Version]
Treatment Code | Treatments | |
---|---|---|
Biochar (5 t h−1) | P (60 kg h−1) | |
T1 | 0% | 0% |
T2 | 0% | 100% |
T3 | 100% | 0% |
T4 | 75% | 25% |
T5 | 50% | 25% |
T6 | 25% | 25% |
T7 | 75% | 50% |
T8 | 50% | 50% |
T9 | 25% | 50% |
T10 | 75% | 75% |
T11 | 50% | 75% |
T12 | 25% | 75% |
Treatment Code | Biochar Rate | Fertilizers Rate |
---|---|---|
g plant−1 | ||
TSP | ||
T1 | 0 | 0 |
T2 | 0 | 4.8 |
T3 | 180 | 0 |
T4 | 135 | 3.6 |
T5 | 90 | 3.6 |
T6 | 45 | 3.6 |
T7 | 135 | 2.4 |
T8 | 90 | 2.4 |
T9 | 45 | 2.4 |
T10 | 135 | 1.2 |
T11 | 90 | 1.2 |
T12 | 45 | 1.2 |
Macro Nutrients | Micro Nutrients | ||||
---|---|---|---|---|---|
pH | 8.5 | Av. Particle Size | 0.5–2 mm | ||
% | mg kg−1 | ||||
Total organic carbon | 63.7 | Silicon | 2.3 | Magnesium oxide | 6.7 |
Fixed Carbon | 61.2 | Aluminium | 1.5 | Arsenic | 2.1 |
Nitrogen | 2.8 | Potassium oxide | 16.3 | Cadmium | 0.7 |
Phosphate | 2.6 | Boron | 62 | Chromium | 9.6 |
Potassium | 3.9 | Copper | 167 | Mercury | 0.06 |
Calcium | 5.9 | Manganese | 1130 | Nickel | 14 |
Sulphur | 0.59 | Zinc | 856 | Lead | 12 |
Ash content | 23.7 |
Soil Properties | Data Obtained (0–25 cm Depth) | Standard Data Range (0–36 cm Depth) |
---|---|---|
pH in water | 4.44 | 4.6–4.9 |
pH in KCL | 3.83 | 3.8–4.0 |
Total C (%) | 1.2 | 0.57–2.51 |
Total N (%) | 0.08 | 0.08–0.17 |
Total P (g kg−1) | 0.18 | Nd |
Available P (g kg−1) | 0.005 | Nd |
Bulk density (g cm−3) | 1.18 | Nd |
cmol kg−1 | ||
Available K | 0.14 | 0.05–0.19 |
CEC | 5.22 | 3.86–8.46 |
Total acidity | 0.51 | Nd |
Exchangeable AL | 0.35 | Nd |
Exchangeable H | 0.19 | Nd |
Exchangeable Ca | 0.25 | 0.01 |
Exchangeable Mg | 0.34 | 0.07–0.21 |
Exchangeable Na | 0.22 | 0.01 |
Exchangeable Fe | 0.19 | Nd |
Leaves | Stems | Roots | Total N Uptake | |
---|---|---|---|---|
% pot−1 | ||||
T1 | 6.44h ± 0.19 | 1.44 d ± 0.17 | 4.75e ± 0.08 | 12.62f ± 0.11 |
T2 | 36.7cde ± 0.4 | 17.05c ± 0.38 | 16.45ab ± 0.87 | 70.2d ± 1.1 |
T3 | 17.53g ± 0.47 | 14.6c ± 0.59 | 12.05d ± 1.2 | 44.18e ± 1.21 |
T4 | 34.62def ± 0.34 | 24.86b ± 1.41 | 13.91bcd ± 0.53 | 73.39d ± 1.77 |
T5 | 43.4abc ± 0.45 | 24.78b ± 2.82 | 14.16bcd ± 0.88 | 82.34bc ± 1.49 |
T6 | 29.1f ± 1.63 | 25.73b ± 0.71 | 19.4a ± 0.52 | 74.24cd ± 0.82 |
T7 | 46.66a ± 2.36 | 36.26a ± 1.48 | 16.07abc ± 0.43 | 98.99a ± 3.07 |
T8 | 33.03def ± 1.75 | 24.57b ± 0.78 | 11.87d ± 0.96 | 69.47d ± 1.43 |
T9 | 38.98bcd ± 2.05 | 17.61c ± 0.31 | 12.64cd ± 0.5 | 69.23d ± 2.32 |
T10 | 36.86cde ± 1.71 | 24.62b ± 1.34 | 12.7cd ± 0.5 | 74.19cd ± 1.58 |
T11 | 45.53ab ± 1.43 | 34.18a ± 0.49 | 10.6d ± 0.76 | 90.31d ± 0.54 |
T12 | 30.91ef ± 0.59 | 32.05a ± 0.96 | 11.49d ± 0.41 | 74.45cd ± 1.19 |
Leaves | Stems | Roots | Total K Uptake | |
---|---|---|---|---|
mg pot−1 | ||||
T1 | 43.65g ± 0.70 | 24.43g ± 0.66 | 53.86g ± 1.18 | 121.95f ± 1.78 |
T2 | 371.37cd ± 12.30 | 730.99cd ± 4.70 | 196.85cde ± 10.59 | 1299.22c ± 5.01 |
T3 | 569.47a ± 8.81 | 824.61bc ± 4.86 | 212.48cd ± 5.65 | 1606.56b ± 18.47 |
T4 | 446.77b ± 11.79 | 1323.34a ± 36.95 | 229.98c ± 7.82 | 2000.10a ± 40.67 |
T5 | 538.21a ± 20.91 | 994.76b ± 25.96 | 171.03e ± 0.99 | 1703.99b ± 34.34 |
T6 | 421.73bc ± 3.23 | 693.26cde ± 7.05 | 184.90de ± 5.58 | 129.99c ± 15.17 |
T7 | 426.42bc ± 12.94 | 948.88b ± 26.62 | 194.95cde ± 14.50 | 1570.26b ± 31.10 |
T8 | 306.03ef ± 11.56 | 586.16def ± 12.51 | 174.76e ± 5.95 | 1066.949de ± 2.51 |
T9 | 338.01de ± 12.56 | 476.28f ± 14.15 | 106.32f ± 2.65 | 920.62e ± 8.78 |
T10 | 361.55de ± 10.37 | 505.92ef ± 6.29 | 206.56cde ± 6.15 | 1074.05de ± 21.39 |
T11 | 303.67ef ± 50.90 | 557.40def ± 10.06 | 406.97a ± 3.14 | 1268.03cd ± 7.32 |
T12 | 269.66f ± 18.02 | 562.00def ± 12.26 | 343.22b ± 4.31 | 1174.89cd ± 129.07 |
Leaves | Stems | Roots | Total Ca Uptake | |
---|---|---|---|---|
mg pot−1 | ||||
T1 | 4.15f ± 0.05 | 4.11h ± 0.03 | 8.79d ± 0.11 | 17.06f ± 0.12 |
T2 | 27.98e ± 1.16 | 64.85g ± 1.63 | 26.06c ± 3.76 | 118.90e ± 2.18 |
T3 | 24.51e ± 0.28 | 98.50def ± 0.02 | 39.46b ± 0.78 | 162.48d ± 1.60 |
T4 | 32.84d ± 0.72 | 133.72ab ± 3.61 | 43.25ab ± 0.97 | 209.83ab ± 4.68 |
T5 | 35.51d ± 1.17 | 108.08cde ± 1.59 | 41.21b ± 0.27 | 184.81c ± 0.28 |
T6 | 24.35e ± 1.17 | 116.36bcd ± 2.29 | 44.38ab ± 1.49 | 185.09c ± 3.48 |
T7 | 52.12b ± 1.35 | 124.63abc ± 4.19 | 40.03b ± 4.41 | 216.79a ± 1.46 |
T8 | 44.83c ± 0.79 | 136.09a ± 4.61 | 39.12b ± 0.92 | 220.05a ± 4.70 |
T9 | 45.56c ± 0.91 | 85.63f ± 0.70 | 19.38c ± 0.99 | 150.58d ± 5.63 |
T10 | 48.18bc ± 1.76 | 133.55ab ± 6.13 | 37.54b ± 5.64 | 219.29a ± 5.34 |
T11 | 45.61c ± 1.04 | 112.15cde ± 2.71 | 40.58b ± 2.92 | 198.35bc ± 2.92 |
T12 | 56.58a ± 1.77 | 96.31ef ± 6.99 | 51.27a ± 1.16 | 204.17ab ± 5.96 |
Leaves | Stems | Roots | Total Na Uptake | |
---|---|---|---|---|
mg pot−1 | ||||
T1 | 12.76e ± 0.28 | 0.38e ± 0.06 | 0.72h ± 0.007 | 13.87g ± 0.28 |
T2 | 97.44d ± 2.05 | 7.34d ± 0.15 | 3.53f ± 0.27 | 108.31ef ± 2.09 |
T3 | 108.65cd ± 9.36 | 22.49a ± 0.65 | 5.96a ± 0.05 | 137.10de ± 9.07 |
T4 | 142.23b ± 4.59 | 13.57c ± 0.35 | 4.41cd ± 0.06 | 160.22bcd ± 4.67 |
T5 | 140.50b ± 8.84 | 6.61d ± 0.11 | 2.57g ± 0.05 | 149.69cd ± 8.72 |
T6 | 90.24d ± 0.72 | 7.35d ± 1..65 | 4.68cd ± 0.11 | 102.28f ± 1.89 |
T7 | 166.89ab ± 5.94 | 16.61b ± 866.5 | 5.50ab ± 0.15 | 189.01ab ± 6.62 |
T8 | 136.86bc ± 5.70 | 6.69d ± 0.005 | 4.29de ± 0.09 | 147.85d ± 5.76 |
T9 | 182.48a ± 5.37 | 7.08d ± 0.10 | 3.36f ± 0.08 | 192.94a ± 5.31 |
T10 | 175.98a ± 3.63 | 6.40d ± 0.08 | 4.95bc ± 0.04 | 187.34ab ± 3.71 |
T11 | 174.25a ± 7.06 | 8.97d ± 0.05 | 3.72ef ± 0.03 | 186.95ab ± 7.07 |
T12 | 166.19ab ± 8.30 | 8.80d ± 0.66 | 4.64cd ±0.11 | 179.64abc ± 7.71 |
Leaves | Stems | Roots | Total Mg Uptake | |
---|---|---|---|---|
mg pot−1 | ||||
T1 | 3.16f ± 0.01 | 2.21f ± 0.13 | 4.58g ± 0.11 | 9.95f ± 0.16 |
T2 | 27.01ab ± 0.31 | 24.91e ± 0.65 | 11.85f ± 1.49 | 63.77e ± 1.32 |
T3 | 16.43e ± 0.47 | 34.07d ± 1.44 | 18.48de ± 0.46 | 68.98e ± 2.06 |
T4 | 17.40e ± 0.74 | 60.20ab ± 0.47 | 25.98ab ± 0.46 | 103.58b ± 0.85 |
T5 | 22.25cd ± 0.69 | 45.75c ± 1.60 | 18.63de ± 0.83 | 86.63cd ± 2.72 |
T6 | 18.46de ± 0.36 | 58.66b ± 0.25 | 28.23a ± 0.11 | 105.35b± 0.52 |
T7 | 23.49bc ± 1.22 | 58.21b ± 1.32 | 24.82b ± 0.59 | 106.53ab ± 2.14 |
T8 | 18.49de ± 0.63 | 44.43c ± 0.67 | 20.47cd ± 0.46 | 8.34d ± 0.52 |
T9 | 29.78a ± 0.73 | 44.97c ± 1.14 | 16.84e ± 0.23 | 91.60c ± 1.87 |
T10 | 23.02bc ± 1.33 | 44.48c ± 1.23 | 23.32bc ± 0.74 | 90.82cd ± 0.84 |
T11 | 23.12bc ± 0.85 | 64.84a ± 0.42 | 26.00ab ± 0.22 | 113.96a ± 1.08 |
T12 | 24.98bc ± 1.22 | 36.28d ± 0.46 | 25.38ab ± 0.61 | 86.63cd ± 1.73 |
TSP | Total P Uptake | Dry Matter Yield | Crop Recovery Efficiency of Applied P | Agronomic Efficiency of Applied P | % Increase in Yield | |
---|---|---|---|---|---|---|
g pot−1 | % | |||||
T1 | 0.00 | 0.01 | 6.89 | 0 | 0.00 | 0.00 |
T2 | 4.80 | 0.15 | 47.91 | 0.03 | 8.55 | 85.62 |
T3 | 0.00 | 0.14 | 65.28 | 0 | 0.00 | 89.45 |
T4 | 1.80 | 0.15 | 77.67 | 0.08 | 39.32 | 91.13 |
T5 | 1.80 | 0.13 | 75.86 | 0.07 | 38.31 | 90.92 |
T6 | 1.80 | 0.12 | 72.24 | 0.07 | 36.31 | 90.46 |
T7 | 1.20 | 0.16 | 86.33 | 0.12 | 66.20 | 92.02 |
T8 | 1.20 | 0.13 | 63.27 | 0.10 | 46.99 | 89.11 |
T9 | 1.20 | 0.13 | 67.22 | 0.10 | 50.28 | 89.75 |
T10 | 0.60 | 0.19 | 68.09 | 0.30 | 101.99 | 89.88 |
T11 | 0.60 | 0.16 | 79.82 | 0.25 | 121.55 | 91.37 |
T12 | 0.60 | 0.12 | 74.83 | 0.18 | 113.23 | 90.79 |
Total N | Exchangeable K | Exchangeable Ca | Exchangeable Mg | Exchangeable Na | |
---|---|---|---|---|---|
% | cmol kg−1 | ||||
T1 | 4.72a ± 0.02 | 0.81e ± 0.05 | 0.5f ± 0.01 | 0.1g ± 0.004 | 0.0046g ± 0.0001 |
T2 | 4.61a ± 0.03 | 1.33 e± 0.04 | 0.51e ± 0.01 | 0.11g ± 0.007 | 0.0049g ± 0.0001 |
T3 | 5.51a ± 0.09 | 2.90ab ± 0.08 | 1.46a ± 0.07 | 0.39a ± 0.01 | 0.0024a ± 0.0002 |
T4 | 5.245a ± 0.03 | 2.43d ± 0.06 | 1.23ab ± 0.02 | 0.356bc ± 0.003 | 0.0011ab ± 0.0001 |
T5 | 5.01a ± 0.02 | 1.87de ± 0.03 | 0.95cd ± 0.03 | 0.29e ± 0.008 | 0.0042cd ± 0.0003 |
T6 | 4.86a ± 0.02 | 1.28c ± 0.05 | 0.7ef ± 0.02 | 0.1f ± 0.006 | 0.0051f ± 0.0003 |
T7 | 5.20a ± 0.02 | 2.38ab ± 0.2 | 1.14abc ± 0.06 | 0.32bcd ± 0.007 | 0.002bc ± 0.0001 |
T8 | 5.17a ± 0.02 | 2.24ab ± 0.12 | 1.04bc ± 0.05 | 0.25de ± 0.013 | 0.0055de ± 0.0003 |
T9 | 4.99a ± 0.08 | 1.65bc ± 0.16 | 0.74de ± 0.04 | 0.2f ± 0.008 | 0.003ef ± 0.0003 |
T10 | 5.22a ± 0.02 | 2.51a ± 0.06 | 1.28ab ± 0.03 | 0.37b ± 0.014 | 0.0026ab ± 0.0002 |
T11 | 5.06a ± 0.02 | 2.36abc ± 0.1 | 1.06bc ± 0.02 | 0.32cde ± 0.009 | 0.0028bc ± 0.0004 |
T12 | 4.95a ± 0.06 | 1.69bc ± 0.09 | 0.77de ± 0.03 | 0.22f ± 0.015 | 0.0015e ± 0.0001 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maru, A.; Haruna, A.O.; Asap, A.; Majid, N.M.A.; Maikol, N.; Jeffary, A.V. Reducing Acidity of Tropical Acid Soil to Improve Phosphorus Availability and Zea mays L. Productivity through Efficient Use of Chicken Litter Biochar and Triple Superphosphate. Appl. Sci. 2020, 10, 2127. https://doi.org/10.3390/app10062127
Maru A, Haruna AO, Asap A, Majid NMA, Maikol N, Jeffary AV. Reducing Acidity of Tropical Acid Soil to Improve Phosphorus Availability and Zea mays L. Productivity through Efficient Use of Chicken Litter Biochar and Triple Superphosphate. Applied Sciences. 2020; 10(6):2127. https://doi.org/10.3390/app10062127
Chicago/Turabian StyleMaru, Ali, Ahmed Osumanu Haruna, Audrey Asap, Nik Muhamad Abd. Majid, Nathaniel Maikol, and Alicia Vanessa Jeffary. 2020. "Reducing Acidity of Tropical Acid Soil to Improve Phosphorus Availability and Zea mays L. Productivity through Efficient Use of Chicken Litter Biochar and Triple Superphosphate" Applied Sciences 10, no. 6: 2127. https://doi.org/10.3390/app10062127
APA StyleMaru, A., Haruna, A. O., Asap, A., Majid, N. M. A., Maikol, N., & Jeffary, A. V. (2020). Reducing Acidity of Tropical Acid Soil to Improve Phosphorus Availability and Zea mays L. Productivity through Efficient Use of Chicken Litter Biochar and Triple Superphosphate. Applied Sciences, 10(6), 2127. https://doi.org/10.3390/app10062127