Superhydrophobic Polypyrrole-Coated Cigarette Filters for Effective Oil/Water Separation
Abstract
:1. Introduction
2. Experimental Sections
2.1. Materials
2.2. Preparation of Superhydrophobic Cigarette Filters
2.3. Characteristics of the Superhydrophobic Cigarette Filters
2.4. Measurements of Oil Separation and Absorption
3. Results and Discussion
3.1. Surface Morphology and Characterization of Superhydrophobic Cigarette Filters
3.2. Surface Wettability
3.3. Oil Separation Ability
3.4. Oil Absorption Capacity
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wang, B.; Liang, W.; Guo, Z.; Liu, W. Biomimetic super-lyophobic and super-lyophilic materials applied for oil/water separation: A new strategy beyond nature. Chem. Soc. Rev. 2015, 44, 336–361. [Google Scholar] [CrossRef]
- Zhao, Y.; Yu, C.; Lan, H.; Cao, M.; Jiang, L. Improved interfacial floatability of superhydrophobic/superhydrophilic janus sheet inspired by lotus leaf. ADV Funct. Mater. 2017, 27, 1466–1472. [Google Scholar] [CrossRef]
- Chen, F.; Song, J.; Liu, Z. Atmospheric pressure plasma functionalized polymer mesh: An environmentally friendly and efficient tool for oil/water separation. Chem. Eng. 2016, 4, 6828–6837. [Google Scholar] [CrossRef]
- Yu, Z.; Ni, J.; Fang, L. Multilayer three-dimensional structure made of modified stainless steel mesh for in situ continuous separation of spilled oil. Chem. Res. 2015, 54, 11838–11843. [Google Scholar] [CrossRef]
- Zhu, H.; Chen, D.; An, W.; Li, N.; Xu, Q.; Li, H.; He, J.; Lu, J. A robust and cost-effective superhydrophobic graphene foam for efficient oil and organic solvent recovery. Small 2015, 11, 5222–5229. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; He, W.D.; Tai, N.H. A comparative study on superhydrophobic sponges and their application as fluid channel for continuous separation of oils and organic solvents from water. Compos. Part B 2016, 101, 99–106. [Google Scholar] [CrossRef]
- Li, Z.T.; Wu, H.T.; Chen, W.Y.; He, F.A.; Li, D.H. Preparation of magnetic superhydrophobic melamine sponges for effective oil-water separation. Sep. Purif. Technol. 2019, 212, 40–50. [Google Scholar] [CrossRef]
- Su, X.J.; Li, H.Q.; Lai, X.J.; Zhang, L.; Wang, J.; Liao, X.F.; Zeng, X.R. Vapor–liquid sol–gel approach to fabricating highly durable and robust superhydrophobic polydimethylsiloxane@silica surface on polyester textile for oil-water separation. ACS Appl. Mater. Inter. 2017, 33, 28089–28099. [Google Scholar] [CrossRef]
- Cao, C.Y.; Cheng, J. Fabrication of robust surfaces with special wettability on porous copper substrates for various oil/water separations. Chem. Eng. J. 2018, 347, 585–594. [Google Scholar] [CrossRef]
- Zhang, W.F.; Li, X.Y.; Qu, R.X. Janus membrane decorated via a versatile immersion-spray route: Controllable stabilized oil/water emulsion separation satisfying industrial emission and purification criteria. J. Mater. Chem. A 2019, 7, 4941–4949. [Google Scholar] [CrossRef]
- Chen, Q.; Yu, Z.; Li, F. A novel photocatalytic membrane decorated with RGO-Ag-TiO 2 for dye degradation and oil-water emulsion separation. J. Chem. Technol. 2018, 93, 761–775. [Google Scholar] [CrossRef]
- Liu, L.; Lei, J.; Li, L.; Zhang, R.; Mi, N.; Chen, H.; Huang, D.; Li, N. A facile method to fabricate the superhydrophobic magnetic sponge for oil-water separation. Mater. Lett. 2017, 195, 66–70. [Google Scholar] [CrossRef]
- Gary, J.D.; Matt, W.E.; Tomoya, S.; Chihiro, U.; Atsushi, H. Programmable Oil/Water Separation Meshes: Water or Oil Selectivity Using Contact Angle Hysteresis. Macromol. Mater. Eng. 2016, 301, 1032–1036. [Google Scholar]
- Raju, K.G.; Gary, J.D.; Matt, W.E. Oil/water separation techniques: A review of recent progresses and future directions. J. Mater. Chem. A 2017, 5, 16025–16058. [Google Scholar]
- Gary, J.D.; Chihiro, U.; Tomoya, S.; Matt, W.E.; Atsushi, H. Continuous, High-speed and Efficient Oil/Water Separation using Meshes with Antagonistic Wetting Properties. ACS Appl. Mater. Interfaces 2015, 7, 18915–18919. [Google Scholar]
- Chen, T.C.; Liu, H.T.; Yang, H.F.; Yan, W.; Zhu, W.; Liu, H.; Guo, K.J. Laser-induced stainless steel mesh for high effective water/oil separation. Micro Nano Lett. 2018, 13, 72–76. [Google Scholar] [CrossRef]
- Zhang, W.; Shi, Z.; Zhang, F. Superhydrophobic and superoleophilic PVDF membranes for effective separation of water-in-oil emulsions with high flux. Adv. Mater. 2013, 25, 2071–2076. [Google Scholar] [CrossRef]
- Lee, M.W.; An, S.; Latthe, S.S. Electrospun polystyrene nanofiber membrane with superhydrophobicity and superoleophilicity for selective separation of water and low viscous oil. ACS Appl. Mater. Inter. 2013, 21, 10597–10604. [Google Scholar] [CrossRef]
- Zhang, L.; Li, L.L.; Dang, Z.M. Bio-inspired durable, superhydrophobic magnetic particles for oil/water separation. J. Colloid Interface Sci. 2016, 463, 266–271. [Google Scholar] [CrossRef]
- Wang, J.; Zheng, Y. Oil/water mixtures and emulsions separation of stearic acid functionalized sponge fabricated via a facile one-step coating method. Sep. Purif. Technol. 2017, 181, 183–191. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, H.; Qiao, W. Reduced graphene-based superhydrophobic sponges modified by hexadecyltrimethoxysilane for oil adsorption. Colloid Surface A 2020, 589, 124–133. [Google Scholar] [CrossRef]
- Ge, J.; Shi, L.A.; Wang, Y.C. Joule-heated graphene-wrapped sponge enables fast clean-up of viscous crude-oil spill. Nat. Nanotechnol. 2017, 12, 434–440. [Google Scholar] [PubMed]
- Wang, J.; Geng, G. Highly recyclable superhydrophobic sponge suitable for the selective sorption of high viscosity oil from water. Mar. Pollut. Bull. 2015, 97, 118–124. [Google Scholar] [CrossRef] [PubMed]
- Slaughter, E.; Gersberg, R.M.; Watanabe, K.; Rudolph, J.; Stransky, C.; Novotny, T.E. Toxicity of cigarette butts, and their chemical components, to marine and freshwater fish. Tob. Control 2011, 20, 25–29. [Google Scholar] [CrossRef] [PubMed]
- Novotny, T.E.; Lum, K.; Smith, E.; Wang, V.; Barnes, R. Cigarettes Butts and the Case for an Environmental Policy on Hazardous CigaretteWaste. Int. J. Environ. Res. Public Health 2009, 6, 1691–1705. [Google Scholar] [CrossRef]
- Liu, C.; Chen, B.; Yang, J. One-step fabrication of superhydrophobic and superoleophilic cigarette filters for oil–water separation. J. Adhes. Sci. Technol. 2015, 29, 2399–2407. [Google Scholar] [CrossRef]
- Xiong, Q.; Bai, Q.; Li, C.; Lei, H.; Liu, C.; Shen, Y.; Uyama, H. Cost-effective, highly selective and environmentally friendly superhydrophobic absorbent from cigarette filters for oil spillage clean up. Polymers 2018, 10, 1101. [Google Scholar] [CrossRef] [Green Version]
- Ou, J.; Wan, B.; Wang, F. Superhydrophobic fibers from cigarette filters for oil spill cleanup. RSC Adv. 2016, 50, 44469–44474. [Google Scholar] [CrossRef]
- Shen, S.L.; Zhuang, J.; Xu, X.X.; Nisar, A.; Hu, S.; Wang, X. Size effects in the oriented-attachment growth process: The case of cu nanoseeds. Inorg. Chem. 2009, 48, 5117–5128. [Google Scholar] [CrossRef]
- Wang, B.; Liu, H.T.; Chen, C.; Chen, T.C.; Zhang, H.Q. Polypyrrole coated membranes with tunable surface wettability for effective oil-water separation by chemical oxidation. Mater. Res. Express 2018, 6, 355–365. [Google Scholar] [CrossRef]
- Cheng, Z.; Ding, C.; Liu, H. A facile bacterial assisted electrochemical self-assembly of polypyrrole micro-pillars: Towards underwater low adhesive superoleophobicity. Nanoscale 2014, 6, 190–194. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.C.; Liu, H.T.; Yang, H.F.; Yan, W.; Zhu, W.; Liu, H. Biomimetic fabrication of robust self-assembly superhydrophobic surfaces with corrosion resistance properties on stainless steel substrate. RSC. Adv. 2016, 6, 43937–43949. [Google Scholar] [CrossRef]
- Lu, X.Y.; Kong, Z.; Xiao, G.Z.; Teng, C.; Li, Y.N.; Ren, G.Y.; Wang, S.B.; Zhu, Y.; Jiang, L. Polypyrrole whelk-like arrays toward robust controlling manipulation of organic droplets underwater. Small 2017, 13, 1938–1951. [Google Scholar] [CrossRef] [PubMed]
- Yao, K.X.; Yin, M.X.; Wang, T.H.; Zeng, H.C. Synthesis, Selfassembly, Disassembly, and Reassembly of Two Types of Cu2O Nanocrystals Unifaceted with {001} or {110} Planes. J. Am. Chem. Soc. 2010, 132, 6131–6144. [Google Scholar] [CrossRef]
- Coates, M.; Nyokong, T. X-ray photoelectron spectroscopy analysis of the effect of alkylthio and arylthio substituents on manganese phthalocyanines for self-assembled monolayer formation on gold. Electrochem. Commun. 2013, 31, 104–107. [Google Scholar] [CrossRef]
- Hong, H.R.; Kim, J.; Park, C.H. Facile fabrication of multifunctional fabrics: Use of copper and silver nanoparticles for antibacterial, superhydrophobic, conductive fabrics. RSC Adv. 2018, 73, 41782–41794. [Google Scholar] [CrossRef] [Green Version]
- Volmer, M.; Statmann, M.; Viefhaus, H. Electrochemical and electron spectroscopic investigations of iron surfaces modified with thiols. Surf. Interface Anal. 1990, 16, 278–282. [Google Scholar] [CrossRef]
- Xu, L.Q.; Yang, W.J.; Neoh, K.G.; Kang, E.T.; Fu, G.D. Dopamine-Induced reduction and functionalization of graphene oxide nanosheets. Macromolecules 2010, 43, 8336–8339. [Google Scholar] [CrossRef]
- Khosravi, M.; Azizian, S. Synthesis of a novel highly oleophilic and highly hydrophobic sponge for rapid oil spill cleanup. ACS Appl. Mater. Inter. 2015, 45, 25326–25333. [Google Scholar] [CrossRef]
- Masaki, Y.; Shojiro, S.; Shinya, S.; Tsuyoshi, C.; Nobuyuki, I.; Morihisa, H. Fabrication of nano-periodic structures and modification of the Wenzel model to estimate contact angle. Sens. Actuat. A-Phys. 2014, 212, 87–92. [Google Scholar]
- Chen, T.C.; Yan, W.; Liu, H.T.; Zhu, W.; Guo, K.J.; Li, J.D. Synthesis of a novel highly oleophilic and highly hydrophobic sponge for rapid oil spill cleanup. J. Mater. Sci. 2017, 52, 4675–4686. [Google Scholar] [CrossRef]
- Mi, H.Y.; Jing, X.; Xie, H.; Huanga, H.X.; Turng, L.S. Magnetically driven superhydrophobic silica sponge decorated with hierarchical cobalt nanoparticles for selective oil absorption and oil/water separation. Chem. Eng. J. 2018, 337, 541–551. [Google Scholar] [CrossRef]
- Sai, H.; Fu, R.; Xing, L.; Xiang, J.; Li, Z.; Li, F.; Zhang, T. Surface modification of bacterial cellulose aerogels’web-like skeleton for oil/water separation. ACS Appl. Mater. Inter. 2015, 7, 7373–7381. [Google Scholar] [CrossRef] [PubMed]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Xu, H.; Guo, J.; Chen, T.; Liu, H. Superhydrophobic Polypyrrole-Coated Cigarette Filters for Effective Oil/Water Separation. Appl. Sci. 2020, 10, 1985. https://doi.org/10.3390/app10061985
Zhang J, Xu H, Guo J, Chen T, Liu H. Superhydrophobic Polypyrrole-Coated Cigarette Filters for Effective Oil/Water Separation. Applied Sciences. 2020; 10(6):1985. https://doi.org/10.3390/app10061985
Chicago/Turabian StyleZhang, Jialu, Hao Xu, Jie Guo, Tianchi Chen, and Hongtao Liu. 2020. "Superhydrophobic Polypyrrole-Coated Cigarette Filters for Effective Oil/Water Separation" Applied Sciences 10, no. 6: 1985. https://doi.org/10.3390/app10061985
APA StyleZhang, J., Xu, H., Guo, J., Chen, T., & Liu, H. (2020). Superhydrophobic Polypyrrole-Coated Cigarette Filters for Effective Oil/Water Separation. Applied Sciences, 10(6), 1985. https://doi.org/10.3390/app10061985