A Comparative Assessment of the Baking Quality of Hybrid and Population Wheat Cultivars
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Material
2.2. Methods
2.2.1. Grain Quality Assessment
2.2.2. Grain Milling
2.2.3. Grain and Flour Quality Assessment
2.2.4. Farinograph Parameters Testing
2.2.5. Bread Baking
2.2.6. Bread Quality Assessment
2.3. Statistical Analysis of Results
3. Results and Discussion
3.1. Grain Quality and Flour Yield
3.2. Flour Quality Parameters
3.3. Flour Water Absorption and Rheological Properties of Dough
3.4. The Flour Baking Quality Assessment
3.5. Principal Component Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Liu, G.; Zhao, Y.; Mirdita, V.; Reif, J.C. Efficient strategies to assess yield stability in winter wheat. Theor. Appl. Genet. 2017, 130, 1587–1599. [Google Scholar] [CrossRef] [PubMed]
- Gupta, P.K.; Balyan, H.S.; Gahlaut, V.; Saripalli, G.; Pal, B.; Basnet, B.R.; Josh, A.K. Hybrid wheat: Past, present and future. Theor. Appl. Genet. 2019, 132, 2463–2483. [Google Scholar] [CrossRef] [PubMed]
- Skudra, I.; Ruza, A. Winter wheat grain baking quality depending on environmental conditions and fertilizer. Agron. Res. 2016, 14 (Suppl. S2), 1460–1466. [Google Scholar]
- Rossmann, A.; Scherf, K.A.; Rühl, G.; Greef, J.M.; Mühling, K.H. Effects of a late N fertiliser dose on storage protein composition and bread volume of two wheat varieties differing in quality. J. Cereal Sci. 2020, 102944. [Google Scholar] [CrossRef]
- Ćurić, D.; Karlović, D.; Tušak, D.; Petrović, B.; Đugum, J. Gluten as a standard of wheat flour quality. Food Technol. Biotechnol. 2001, 4, 353–361. [Google Scholar]
- Grahmann, K.; Govaerts, B.; Fonteyne, S.; Guzmán, C.; Galaviz Soto, A.P.; Buerkert, A.; Verhulst, N. Nitrogen fertilizer placement and timing affects bread wheat (Triticum aestivum) quality and yield in an irrigated bed planting system. Nutr. Cycl. Agroecosyst. 2016, 106, 185–199. [Google Scholar] [CrossRef]
- Park, H.; Clay, D.E.; Hall, R.G.; Rohila, J.S.; Kharel, T.P.; Clay, S.A.; Lee, S. Winter wheat quality responses to water, environment, and nitrogen fertilization. Commun. Soil Sci. Plant 2014, 45, 1894–1905. [Google Scholar] [CrossRef] [Green Version]
- Jaskulska, I.; Jaskulski, D.; Gałęzewski, L.; Knapowski, T.; Kozera, W.; Wacławowicz, R. Mineral composition and baking value of the winter wheat grain under varied environmental and agronomic conditions. J. Chem. 2018, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Johansson, E.; Prieto-Linde, M.L.; Svensson, G. Influence of nitrogen application rate and timing on grain protein composition and gluten strength in Swedish wheat cultivars. J. Plant Nutr. Soil Sci. 2004, 167, 345–350. [Google Scholar] [CrossRef]
- Ma, D.; Guo, T.; Wang, Z.; Wang, C.; Zhu, Y.; Wang, Y. Influence of nitrogen fertilizer application rate on winter wheat (Triticum aestivum L.) flour quality and Chinese noodle quality. J. Sci. Food Agric. 2009, 89, 1213–1220. [Google Scholar] [CrossRef]
- Whitford, R.; Fleury, D.; Reif, J.C.; Garcia, M.; Okada, T.; Korzun, V.; Langridge, P. Hybrid breeding in wheat: Technologies to improve hybrid wheat seed production. J. Exp. Bot. 2013, 64, 5411–5428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, S.P.; Srivastava, R.; Kumar, J. Male sterility systems in wheat and opportunities for hybrid wheat development. Acta Physiol. Plant 2015, 37, 1713. [Google Scholar] [CrossRef]
- COBORU. Cereals. Methodology Study of Varieties; Polish Research Centre for Cultivar Testing: Słupia Wielka, Poland, 2002. [Google Scholar]
- ISO 7971-3:2019. Cereals: Determination of Bulk Density, Called Mass Per Hectoliter—Part 3: Routine Method; ISO: Geneva, Switzerland, 2019. [Google Scholar]
- ICC. International Association for Cereal Science and Technology (ICC) Standard Method No. 129. Method for the Determination of the Vitreousness of Durum Wheat; ICC: Vienna, Austria, 1980. [Google Scholar]
- AACC. American Association of Cereal Chemists (AACC) International Approved Methods of Analysis, 11th ed.; AACC: St. Paul, MN, USA, 2009. [Google Scholar]
- ICC. International Association for Cereal Science and Technology (ICC) Standard Methods; ICC: Vienna, Austria, 2005. [Google Scholar]
- Alvarez-Jubete, L.; Auty, M.; Arendt, E.K.; Gallagher, E. Baking properties and microstructure of pseudocereal flours in gluten-free bread formulations. Eur. Food Res. Technol. 2010, 230, 437–445. [Google Scholar] [CrossRef]
- Dallmann, H. Porentabelle. Detmold; Verlag Moriz Schafer: Moriz Schafer, Germany, 1981. [Google Scholar]
- Morgan, B.C.; Dexter, J.E.; Preston, K.R. Relationship of kernel size to flour water absorption for Canada western red spring wheat. Cereal Chem. 2000, 77, 286–292. [Google Scholar] [CrossRef]
- Klikocka, H.; Cybulska, M.; Barczak, B.; Narolski, B.; Szostak, B.; Kobiałka, A.; Nowak, A.; Wójcik, E. The effect of sulphur and nitrogen fertilization on grain yield and technological quality of spring wheat. Plant Soil Environ. 2016, 62, 230–236. [Google Scholar] [CrossRef] [Green Version]
- Abedi, T.; Alemzadeh, A.; Kazemeini, S.A. Wheat yield and grain protein response to nitrogen amount and timing. Aust. J. Crop Sci. 2011, 5, 330–336. [Google Scholar]
- Gaines, C.S.; Finney, P.L.; Andrews, L.C. Influence of kernel size and shriveling on soft wheat milling and baking quality. Cereal Chem. 1997, 74, 700–704. [Google Scholar] [CrossRef]
- Harasim, E.; Wesołowski, M. The effect of retardant moddus 250 EC and nitrogen fertilization on yielding and grain quality of winter wheat. Fragm. Agron. 2013, 30, 70–77. [Google Scholar]
- Dziki, D.; Cacak-Pietrzak, G.; Miś, A.; Jończyk, K.; Gawlik-Dziki, U. Influence of wheat kernel physical properties on the pulverizing process. J. Food Sci. Technol. 2014, 54, 2648–2655. [Google Scholar] [CrossRef] [Green Version]
- Šekularac, A.; Torbica, A.; Živančev, D.; Tomić, J.; Knežević, D. The influence of wheat genotype and environmental factors on gluten index and the possibility of its use as bread quality predictor. Genetika 2018, 50, 85–93. [Google Scholar] [CrossRef]
- García-Molina, D.M.; Barro, F. Characterization of changes in gluten proteins in low-gliadin transgenic wheat lines in response to application of different nitrogen regimes. Front. Plant Sci. 2017, 8, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haque, A.; Hossain, M.; Haque, M.; Hasan, M.; Malek, M.; Rafii, M.; Shamsuzzaman, S. Response of yield, nitrogen use efficiency and grain protein content of wheat (Triticum aestivum L.) varieties to different nitrogen levels. Bangladesh J. Bot. 2017, 46, 389–396. [Google Scholar]
- Warechowska, M.; Stępień, A.; Wojtkowiak, K.; Nawrocka, A. The impact of nitrogen fertilization strategies on selected qualitative parameters of spring wheat grain and flour. Pol. J. Nat. Sci. 2019, 34, 199–212. [Google Scholar]
- Metho, L.A.; Taylor, J.R.N.; Hammes, P.S.; Randall, P.G. Effects of cultivar and soil fertility on grain protein yield, grain protein content, flour yield and breadmaking quality of wheat. J. Sci. Food Agric. 1999, 79, 1823–1831. [Google Scholar] [CrossRef]
- Piironen, V.; Salmenkallio-Marttila, M. Micronutrients and Phytochemicals in Wheat Grain. In Wheat: Chemistry and Technology; American Association of Cereal Chemists: St. Paul, MN, USA, 2009; pp. 179–222. [Google Scholar] [CrossRef]
- Cardoso, R.V.C.; Fernandes, A.; Heleno, S.A.; Rodrigues, P.; Gonzalez-Paramas, A.M.; Barros, L.; Ferreira, I. Physicochemical characterization and microbiology of wheat and rye flours. Food Chem. 2019, 280, 123–129. [Google Scholar] [CrossRef] [Green Version]
- Bucsella, B.; Molnár, D.; Harasztos, A.H.; Tömösközi, S. Comparison of the rheological and end-product properties of an industrial aleurone-rich wheat flour, whole grain wheat and rye flour. J. Cereal Sci. 2016, 69, 40–48. [Google Scholar] [CrossRef]
- Hemery, Y.; Holopainen, U.; Lampi, A.-M.; Lehtinen, P.; Nurmi, T.; Piironen, V.; Edelmann, M.; Rouau, X. Potential of dry fractionation of wheat bran for the development of food ingredients, part II: Electrostatic separation of particles. J. Cereal Sci. 2011, 53, 9–18. [Google Scholar] [CrossRef]
- Bayoumi, T.Y.; El-Demardash, I.S. Influence of nitrogen application on grain yield and end use quality in segregating generations of bread wheat (Triticum aestivum L). Afr. J. Biochem. Res. 2008, 2, 132–140. [Google Scholar]
- Kindred, D.R.; Gooding, M.J.; Ellis, R.H. Nitrogen fertilizer and seed rate effects on Hagberg falling number of hybrid wheats and their parents are associated with α-amylase activity, grain cavity size and dormancy. J. Sci. Food Agric. 2005, 85, 727–742. [Google Scholar] [CrossRef]
- Liniņa, A.; Ruza, A. Impact of agroecological conditions on the Hagberg falling number of winter wheat grain. Res. Rural. Dev. 2015, 1, 19–26. [Google Scholar]
- Bueno, M.M.; Thys, R.C.S.; Rodrigues, R.C. Microbial enzymes as substitutes of chemical additives in baking wheat flour-part I: Individual effects of nine enzymes on flour dough rheology. Food Bioprocess. Technol. 2016, 9, 2012–2023. [Google Scholar] [CrossRef]
- Wojtkowiak, K.; Stępień, A.; Orzech, K. Effect of nitrogen fertilisation on the yield components, macronutrient content and technological quality parameters of four winter wheat (Triticum aestivum ssp. vulgare) varieties. Fragm. Agron. 2018, 35, 146–155. [Google Scholar] [CrossRef]
- Baljeet, S.Y.; Yogesh, S.; Ritika, B.Y. Physicochemical and rheological properties of Indian wheat varieties of Triticum aestivum. Qual. Assur. Saf. Crop 2017, 9, 369–381. [Google Scholar] [CrossRef]
- Taner, A.; Arısoy, R.Z.; Kaya, Y.; Gültekin, I.; Partigöç, F. The effects of various tillage systems on grain yield, quality parameters and energy indices in winter wheat production under the rainfed conditions. Fresenius Environ. Bull. 2015, 24, 1463–1473. [Google Scholar] [CrossRef]
- Šip, V.; Vavera, R.; Chrpova, J.; Kusa, P. Winter wheat yield and quality related to tillage practice, input level and environmental condition. Soil Tillage Res. 2013, 132, 77–85. [Google Scholar] [CrossRef]
- Vazquez, D.; Berger, A.; Prieto-Linde, M.L.; Johansson, E. Can nitrogen fertilization be used to modulate yield, protein content and bread-making quality in Uruguayan wheat? J. Cereal Sci. 2019, 85, 153–161. [Google Scholar] [CrossRef]
- Silva, R.R.; Zucareli, C.; de Batista Fonseca, I.C.; Gazola, D.; Riede, C.R. Influence of nitrogen, environment, and cultivars on the industrial quality of wheat. Semin. Ciênc. Agrár. 2019, 40, 2571–2580. [Google Scholar] [CrossRef]
- Voicu, G.; Constantin, G.; Stefan, E.M.; Ipate, G. Variation of farinographic parameters of doughs obtained from wheat and rye flour mixtures during kneading. Sci. Bull.–Univ. Politeh. Buchar. D 2012, 74, 307–320. [Google Scholar]
- Kaiser, H.F. The application of electronic computers to factor analysis. Educ. Psychol. Meas. 1960, 20, 141–151. [Google Scholar] [CrossRef]
Cultivar | Nitrogen | TGW [g] | Bulk Density [kg/hl] | Vitreousness [%] | Crude Protein Content [%] | Flour Yield [%] |
---|---|---|---|---|---|---|
Hybery | N1 | 43.6 b,c ± 2.5 | 74.5 b–d ± 0.7 | 44 a,b ± 9 | 11.8 a ± 0.4 | 75.3 b ± 0.8 |
N2 | 46.5 c–e ± 2.1 | 76.0 d–f ± 1.6 | 48 a,b ± 0 | 12.7 b,c ± 0.4 | 75.7 b,c ± 0.3 | |
Hyena | N1 | 44.6 b,c ± 1.3 | 72.2 a,b ± 0.4 | 54 a–c ± 6 | 11.6 a ± 0.1 | 77.9 e–g ± 0.9 |
N2 | 45.1 c,d ± 0.3 | 75.3 c–f ± 0.9 | 77 d ± 6 | 13.0 c,d ± 0.1 | 78.7 g,h ± 0.6 | |
Hyfi | N1 | 44.1 b,c ± 3.1 | 74.3 b–d ± 1.6 | 40 a ± 1 | 12.7 b,c ± 0.4 | 78.2 f–h ± 0.6 |
N2 | 46.9 c–e ± 0.4 | 73.1 a–c ± 0.4 | 53 a,b ± 2 | 14.1 f ± 0.1 | 78.5 g,h ± 0.4 | |
Hyking | N1 | 38.6 a ± 2.3 | 71.1 a ± 1.6 | 50 a,b ± 7 | 12.6 b,c ± 0.1 | 75.6 b,c ± 0.4 |
N2 | 41.6 a,b ± 1.9 | 74.6 b–d ± 0.4 | 75 d ± 8 | 13.7 e,f ± 0.3 | 77.5 e–g ± 0.1 | |
Hymalaya | N1 | 45.6 c,d ± 1.2 | 74.8 b–e ± 0.1 | 71 d ± 5 | 12.3 b ± 0.2 | 80.1 I ± 0.6 |
N2 | 46.1 c,d ± 1.5 | 77.1 e,f ± 0.7 | 75 d ± 7 | 13.5 d,e ± 0.1 | 79.5 h,i ± 0.0 | |
Hypocamp | N1 | 47.2 c–e ± 0.6 | 77.6 f ± 0.4 | 45 a,b ± 1 | 11.7 a ± 0.2 | 76.8 c–e ± 0.1 |
N2 | 48.6 d–f ± 0.6 | 77.6 f ± 1.5 | 51 a,b ± 10 | 12.8 b,c ± 0.1 | 81.9 j ± 0.5 | |
Hyvento | N1 | 46.0 c,d ± 2.0 | 75.4 c–f ± 2.3 | 67 c,d ± 4 | 12.4 b ± 0.3 | 77.7 e–g ± 0.8 |
N2 | 47.1 c–e ± 1.3 | 73.8 b–d ± 1.6 | 74 d ± 1 | 14.2 f ± 0.3 | 78.8 g,h ± 0.4 | |
Belissa 1 | N1 | 43.9 b,c ± 0.0 | 73.6 a–d ± 0.2 | 45 a,b ± 5 | 11.4 a ± 0.3 | 70.8 a ± 0.7 |
N2 | 46.9 c–e ± 0.3 | 74.3 b–d ± 0.4 | 56 b,c ± 10 | 12.7 b,c ± 0.2 | 75.1 d–f ± 0.9 | |
Hondia 1 | N1 | 49.9 e,f ± 0.1 | 73.3 a–c ± 0.3 | 50 a,b ± 7 | 12.5 b ± 0.2 | 74.7 c–e ± 0.3 |
N2 | 50.6 f ± 0.0 | 74.0 b–d ± 1.2 | 57 b,c ± 4 | 13.3 d,e ± 0.1 | 75.2 b–d ± 0.5 | |
CV (%) ** | N1 | 7.23 | 2.68 | 21.56 | 4.20 | 3.45 |
N2 | 5.45 | 2.26 | 20.00 | 4.39 | 3.76 |
Cultivar | Nitrogen | Content in Flour [%] | Gluten Index [%] | Falling Number [s] | ||
---|---|---|---|---|---|---|
Total Ash | Wet Gluten | Dry Gluten | ||||
Hybery | N1 | 0.45 a–d ± 0.00 | 24.1 a,b ± 1.4 | 8.4 a,b ± 0.4 | 99 e ± 0 | 314 d ± 4 |
N2 | 0.40 a ± 0.07 | 27.4 d–g ± 0.1 | 9.3 d–g ± 0.4 | 98 c–e ± 1 | 296 c ± 6 | |
Hyena | N1 | 0.52 c–e ± 0.04 | 25.7 b–e ± 2.5 | 8.7 b–d ± 0.6 | 96 c–e ± 2 | 389 h ± 5 |
N2 | 0.44 a–c ± 0.02 | 28.6 f–h ± 0.6 | 9.7 f–h ± 0.1 | 96 b–e ± 0 | 387 g,h ± 3 | |
Hyfi | N1 | 0.59 e ± 0.02 | 27.1 d–g ± 0.1 | 9.2 c–g ± 0.2 | 96 c–e ± 2 | 210 b ± 0 |
N2 | 0.73 f ± 0.03 | 30.3 h,i ± 0.5 | 10.2 h,i ± 0.2 | 94 b,c ± 1 | 190 a ± 1 | |
Hyking | N1 | 0.69 f ±0.02 | 22.2 a ± 0.1 | 7.9 a ± 0.1 | 99 e± 0 | 309 d ± 2 |
N2 | 0.58 e ± 0.04 | 25.2 b–d ± 0.4 | 9.0 b–f ± 0.3 | 99 e ± 0 | 310 d ± 1 | |
Hymalaya | N1 | 0.46 a–d ± 0.02 | 24.6 b,c ± 1.2 | 8.5 a–c ± 0.3 | 98 d,e± 1 | 346 f ± 3 |
N2 | 0.54 d,e ± 0.09 | 28.2 f–h ± 0.8 | 9.7 f–h ± 0.2 | 96 c–e ± 1 | 324 e ± 2 | |
Hypocamp | N1 | 0.43 a,b ± 0.04 | 24.4 a–c ± 0.4 | 8.3 a,b ± 0.0 | 97 c–e ± 2 | 291 c± 3 |
N2 | 0.41 a,b ± 0.02 | 28.2 f–h ± 0.5 | 9.6 f–h ± 0.0 | 96 c–e ± 0 | 292 c ± 1 | |
Hyvento | N1 | 0.46 a–d ± 0.05 | 29.4 g,h ± 1.2 | 9.8 g,h ± 0.2 | 83 a ± 3 | 378 g ± 2 |
N2 | 0.46 a–d ± 0.05 | 32.4 i ± 0.4 | 11.0 j ± 0.4 | 92 b ± 3 | 384 g,h ± 4 | |
Belissa 1 | N1 | 0.53 c–e ± 0.04 | 25.7 c–f ± 1.6 | 8.9 b–e ± 0.4 | 95 b–d ± 2 | 385 g,h ± 1 |
N2 | 0.50 b–e ± 0.00 | 29.0 I ± 1.2 | 9.5 i,j ± 0.5 | 97 c–e ± 1 | 399 i ± 3 | |
Hondia 1 | N1 | 0.46 a–d ± 0.02 | 26.8 e–g ± 0.8 | 9.4 e–g ± 0.0 | 96 c–e ± 1 | 403 i ± 3 |
N2 | 0.58 e ± 0.03 | 29.1 h,i ± 0.8 | 9.2 h,i ± 0.1 | 93 b ± 1 | 384 g,h ± 4 | |
CV (%) ** | N1 | 16.41 | 8.89 | 7.33 | 5.17 | 17.92 |
N2 | 20.53 | 8.48 | 6.31 | 2.39 | 19.98 |
Cultivar | Nitrogen | Water Absorption of Flour [%] | Properties of Dough | |||
---|---|---|---|---|---|---|
Development Time [min] | Stability [min] | Degree of Softening [FU] | Quality Number | |||
Hybery | N1 | 54.0 a ± 0.3 | 2.1 a–c ± 0.1 | 4.5 e,f ± 1.3 | 74 a,b ± 4 | 70 e–g ± 4 |
N2 | 56.0 c ± 0.1 | 2.7 a–c ± 0.5 | 5.6 f,g ± 0.1 | 78 a ± 1 | 73 i–j ± 4 | |
Hyena | N1 | 57.5 d,e ± 0.1 | 2.5 a–c ± 0.3 | 4.1 b–f ± 0.1 | 97 a,b ± 4 | 56 e–g ± 1 |
N2 | 59.0 g ± 0.0 | 2.6 a–c ± 0.6 | 3.9 a–e ± 0.8 | 102 b,c ± 0 | 52 c–e ± 4 | |
Hyfi | N1 | 57.9 e ± 0.1 | 3.0 a–c ± 0.4 | 2.9 a–d ± 0.3 | 125 e ± 2 | 47 a–d ± 2 |
N2 | 58.5 f ± 0.2 | 3.3 a–c ± 0.6 | 2.7 a,b ± 0.2 | 129 d,e ± 11 | 46 a–d ± 4 | |
Hyking | N1 | 57.5 d,e ± 0.1 | 2.4 a–c ± 0.5 | 5.3 e–g ± 0.4 | 78 a ± 7 | 72 i–j ± 2 |
N2 | 58.5 f ± 0.0 | 2.9 a–c ± 0.5 | 6.6 g ± 0.7 | 75 a ± 4 | 76 j ± 1 | |
Hymalaya | N1 | 56.0 c ± 0.1 | 2.5 a–c ± 0.4 | 5.1 e,f ± 0.8 | 86 a,b ± 6 | 62 b–f ± 3 |
N2 | 57.8 e ± 0.1 | 3.9 c ± 0.7 | 5.2 e–g ± 0.1 | 93 a,b ± 2 | 68 h–I ± 3 | |
Hypocamp | N1 | 55.1 b ± 0.1 | 2.1 a–c ± 0.1 | 2.9 a–d ± 0.0 | 120 c–e ± 1 | 44 a–c ± 1 |
N2 | 57.2 d ± 0.4 | 1.9 a ± 0.3 | 2.5 a ± 0.2 | 128 e ± 3 | 43 a,b ± 1 | |
Hyvento | N1 | 54.8 b ± 0.2 | 2.9 a–c ± 0.3 | 5.1 e,f ± 0.4 | 87 a,b ± 1 | 63 g,h ± 3 |
N2 | 56.4 c ± 0.1 | 3.6 b,c ± 0.1 | 4.3 d–f ± 0.1 | 89 a,b ± 1 | 61 f–h ± 0 | |
Belissa 1 | N1 | 59.0 g ± 0.1 | 2.1 a,b ± 0.5 | 2.8 a–c ± 1.1 | 135 e ± 3 | 39 a ± 7 |
N2 | 61.0 h ± 0.4 | 2.9 a–c ± 0.5 | 2.8 a–d ± 0.4 | 134 e ± 2 | 45 a–c ± 8 | |
Hondia 1 | N1 | 56.2 c ± 0.1 | 1.8 a ± 0.4 | 4.3 d–f ± 0.1 | 95 a,b ± 4 | 54 d–f ± 1 |
N2 | 57.1 d ± 0.1 | 2.1 a,b ± 0.4 | 4.1 b–f ± 0.4 | 105 b–d ± 4 | 50 b–e ± 6 | |
CV (%) ** | N1 | 2.82 | 23.76 | 27.98 | 22.80 | 20.12 |
N2 | 2.55 | 32.47 | 34.09 | 21.75 | 22.34 |
Cultivar | Nitrogen | Dough Yield [%] | Baking Loss [%] | Bread Yield [%] | Bread Volume [cm3/g] | Dallmann Porosity Index of Crumb [Scores] | Crumb Moisture Content [%] |
---|---|---|---|---|---|---|---|
Hybery | N1 | 143.8 a ± 0.3 | 15.1 a,b ± 0.9 | 148.1 c,d ± 1.6 | 3.2 c–e ± 0.2 | 100 c ± 0 | 43.9 b–d ± 0.4 |
N2 | 145.5 b ± 0.1 | 15.1 a,b ± 0.1 | 148.1 c,d ± 0.1 | 3.3 e ± 0.1 | 100 c ± 0 | 45.0 e–g ± 0.4 | |
Hyena | N1 | 148.6 e,f ± 0.0 | 15.9 a–c ± 0.5 | 146.5 b–d ± 0.8 | 2.9 a,b ± 0.0 | 95 b,c ± 7 | 43.1 a,b ± 0.6 |
N2 | 149.3 f,g ±0.5 | 16.2 a–d ± 0.9 | 146.2 a–d ± 1.6 | 2.9 a,b ± 0.0 | 90 a–c ± 0 | 44.3 c–f ± 0.3 | |
Hyfi | N1 | 146.2 f,g ±0.4 | 17.1 a–d ± 0.5 | 144.5 a–d ± 0.9 | 2.9 a,b ± 0.0 | 90 a–c ± 0 | 43.6 a–c ± 0.3 |
N2 | 149.6 b–d ± 1.2 | 14.8 a ± 0.5 | 148.5 d ± 1.2 | 3.0 a–d ± 0.1 | 90 a–c ± 0 | 44.2 c–e ± 0.6 | |
Hyking | N1 | 148.9 f,g ± 0.4 | 16.0 a–d ± 0.4 | 146.4 a–d ± 0.6 | 3.0 a–d ± 0.0 | 85 a,b ± 7 | 43.9 b–d ± 0.7 |
N2 | 150.0 g ± 0.4 | 16.4 a–d ± 0.7 | 145.8 a–d ± 1.3 | 3.0 a–c ± 0.2 | 90 a–c ± 0 | 44.5 d–g ± 0.2 | |
Hymalaya | N1 | 146.0 b,c ± 0.4 | 17.0 a–d ± 0.9 | 144.6 a–d ± 1.5 | 3.2 d,e ± 0.0 | 85 a,b ± 7 | 43.2 a,b ± 0.2 |
N2 | 147.0 c,d ± 0.2 | 15.3 a,b ± 0.2 | 147.7 c,d ± 0.4 | 2.8 a ± 0.0 | 90 a–c ± 0 | 44.1 c,d ± 0.5 | |
Hypocamp | N1 | 147.7 d,e ± 0.2 | 17.2 b–d ± 0.6 | 144.3 a–c ± 1.1 | 3.1 b–d ± 0.1 | 95 b,c ± 7 | 43.2 a,b ± 0.1 |
N2 | 154.3 h ± 0.5 | 17.8 c,d ± 0.1 | 143.5 a,b ± 0.1 | 3.1 b–d ± 0.1 | 95 b,c ± 7 | 44.7 d–g ± 0.2 | |
Hyvento | N1 | 145.6 b ± 0.1 | 18.4 d ± 0.2 | 142.3 a ± 0.4 | 3.7 f ± 0.1 | 96 a ± 0 | 43.1 a,b ± 0.3 |
N2 | 146.2 b,c ± 0.1 | 16.8 a–d ± 0.2 | 142.9 a–d ± 0.6 | 3.2 c–e ± 0.1 | 98 a,b ± 7 | 43.0 a ± 0.1 | |
Belissa 1 | N1 | 156.7 i ± 0.9 | 16.8 a–d ± 0.2 | 145.1 a–d ± 0.3 | 2.9 a,b ± 0.1 | 95 b,c ± 7 | 45.2 g ± 0.2 |
N2 | 158.3 j ± 0.7 | 16.7 a–d ± 0.1 | 145.3 a–d ± 0.2 | 3.0 a–d ± 0.0 | 93 b,c ± 4 | 45.1 f,g ± 0.1 | |
Hondia 1 | N1 | 154.5 h ± 0.6 | 16.7 a–d ± 0.2 | 145.4 a–d ± 0.4 | 3.0 a–d ± 0.0 | 95 b,c ± 7 | 44.3 c–f ±0.1 |
N2 | 155.8 i ± 0.5 | 16.6 a–d ± 0.1 | 145.5 a–d ± 0.1 | 3.1 b–d ± 0.1 | 95 b,c ± 7 | 44.9 e–g ± 0.1 | |
CV (%) ** | N1 | 2.78 | 5.95 | 1.19 | 8.29 | 7.01 | 1.65 |
N2 | 3.05 | 7.98 | 1.69 | 5.12 | 4.85 | 1.47 |
Value Number | Eigenvalues (Correlations), Related Statistics | |||
---|---|---|---|---|
Eigenvalue | % of Total Variance | Cumulative Eigenvalue | Cumulative% | |
1 | 3.725399 | 46.56749 | 3.725399 | 46.5675 |
2 | 2.089800 | 26.12250 | 5.815199 | 72.6900 |
3 | 0.792959 | 9.91199 | 6.608158 | 82.6020 |
4 | 0.618540 | 7.73174 | 7.226698 | 90.3337 |
5 | 0.439531 | 5.49414 | 7.666229 | 95.8279 |
6 | 0.250196 | 3.12745 | 7.916425 | 98.9553 |
7 | 0.062311 | 0.77889 | 7.978736 | 99.7342 |
8 | 0.021264 | 0.26580 | 8.000000 | 100.0000 |
Variable | Factor Coordinates of Variables, Based on Correlation | |
---|---|---|
Factor 1 | Factor 2 | |
dough degree of softening | 0.935932 | −0.147075 |
dough stability | 0.651097 | −0.107195 |
Dallmann porosity index of crumb | 0.433313 | 0.771696 |
gluten index | 0.024504 | 0.797857 |
bread yield | −0.222052 | 0.788339 |
dough stability | −0.940939 | 0.117195 |
quality number | −0.951258 | 0.129446 |
vitreousness | −0.630539 | −0.415473 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jańczak-Pieniążek, M.; Buczek, J.; Kaszuba, J.; Szpunar-Krok, E.; Bobrecka-Jamro, D.; Jaworska, G. A Comparative Assessment of the Baking Quality of Hybrid and Population Wheat Cultivars. Appl. Sci. 2020, 10, 7104. https://doi.org/10.3390/app10207104
Jańczak-Pieniążek M, Buczek J, Kaszuba J, Szpunar-Krok E, Bobrecka-Jamro D, Jaworska G. A Comparative Assessment of the Baking Quality of Hybrid and Population Wheat Cultivars. Applied Sciences. 2020; 10(20):7104. https://doi.org/10.3390/app10207104
Chicago/Turabian StyleJańczak-Pieniążek, Marta, Jan Buczek, Joanna Kaszuba, Ewa Szpunar-Krok, Dorota Bobrecka-Jamro, and Grażyna Jaworska. 2020. "A Comparative Assessment of the Baking Quality of Hybrid and Population Wheat Cultivars" Applied Sciences 10, no. 20: 7104. https://doi.org/10.3390/app10207104
APA StyleJańczak-Pieniążek, M., Buczek, J., Kaszuba, J., Szpunar-Krok, E., Bobrecka-Jamro, D., & Jaworska, G. (2020). A Comparative Assessment of the Baking Quality of Hybrid and Population Wheat Cultivars. Applied Sciences, 10(20), 7104. https://doi.org/10.3390/app10207104