Contributions of Anthropometric and Strength Determinants to Estimate 2000 m Ergometer Performance in Traditional Rowing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedures
2.2.1. Vertical Jump Test
2.2.2. Bench Pull Test
2.2.3. 2000 m Rowing Ergometer Test
2.3. Statistical Analysis
3. Results
4. Discussion
4.1. Limitations
4.2. Practical Applications
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Akça, F. Prediction of rowing ergometer performance from functional anaerobic power, strength and anthropometric components. J. Hum. Kinet. 2014, 41, 133–142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gee, T.; Olsen, P.; Fritzdorf, S.; White, D.; Golby, J.; Thompson, K. Recovery of rowing sprint performance after high intensity strength training. Int. J. Sport. Sci. Coach. 2012, 7, 109–120. [Google Scholar] [CrossRef]
- Maestu, J.; Jiirimae, J.; Jiirimae, T. Monitoring of performance and training in rowing. Sport. Med. 2005, 35, 597–618. [Google Scholar] [CrossRef] [PubMed]
- Izquierdo-Gabarren, M.; González, R.; Sáez, E.; Izquierdo, M. Physiological factors to predict on traditional rowing performance. Eur. J. Appl. Physiol. 2010, 108, 83–92. [Google Scholar] [CrossRef]
- Pollock, C.L.; Jones, I.C.; Jenkyn, T.R.; Ivanova, T.D.; Garland, S.J. Changes in kinematics and trunk electromyography during a 2000m race simulation in elite female rowers. Scand. J. Med. Sci. Sport. 2012, 22, 478–487. [Google Scholar] [CrossRef]
- Lawton, T.W.; Cronin, J.B.; McGuigan, M.R. Strength testing and training of elite rowers. Sport. Med. 2011, 41, 413–432. [Google Scholar] [CrossRef]
- Chimera, N.; Kremer, K. SportsmetricsTM Training Improves Power and Landing in High School Rowers. Int. J. Sports Phys. Ther. 2016, 11, 44–53. [Google Scholar]
- Battista, R.A.; Pivarnik, J.M.; Dummer, G.M.; Sauer, N.; Malina, R.M. Comparisons of physical characteristics and performances among female collegiate rowers. J. Sports Sci. 2007, 25, 651–657. [Google Scholar] [CrossRef]
- Shephard, R.J. Science and medicine of rowing: A review. J. Sports Sci. 1998, 16, 603–620. [Google Scholar] [CrossRef]
- Kleshnev, V. The Biomechanics of Rowing; Crowood Press: Malborough, UK, 2016. [Google Scholar]
- González, J.M. Olympic rowing and traditional rowing: biomechanical, physiological and nutritional aspects. Arch. Med. Deport. 2014, 31, 51–59. [Google Scholar]
- Mujika, I.; de Txabarri, R.G.; Maldonado-Martín, S.; Pyne, D.B. Warm-up intensity and duration’s effect on traditional rowing time-trial performance. Int. J. Sports Physiol. Perform. 2012, 7, 186–188. [Google Scholar] [CrossRef] [PubMed]
- Penichet-Tomás, A.; Pueo, B.; Jiménez-Olmedo, J. Physical performance indicators in traditional rowing championships. J. Sports Med. Phys. Fit. 2019, 59, 767–773. [Google Scholar] [CrossRef]
- León-Guereño, P.; Urdampilleta, A.; Zourdos, M.C.; Mielgo-Ayuso, J. Anthropometric profile, body composition and somatotype in elite traditional rowers: A cross-sectional study. Rev. Española Nutr. Diet. 2018, 2, 279–286. [Google Scholar] [CrossRef] [Green Version]
- Mielgo-Ayuso, J.; Calleja-González, J.; Urdampilleta, A.; León-Guereño, P.; Córdova, A.; Caballero-García, A.; Fernandez-Lázaro, D. Effects of vitamin D supplementation on haematological values and muscle recovery in elite male traditional rowers. Nutrients 2018, 10, 1968. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Penichet-Tomas, A.; Pueo, B.; Jimenez-Olmedo, J.M. Relationship between experience and training characteristics with performance in non-Olympic rowing modalities. J. Phys. Educ. Sport 2016, 16, 1273–1277. [Google Scholar]
- Izquierdo-Gabarren, M.; González, R.; García-Pallarés, J.; Sánchez-Medina, L.; Sáez, E.; Izquierdo, M. Concurrent endurance and strength training not to failure optimizes performance gains. Med. Sci. Sports Exerc. 2010, 42, 1191–1199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van der Zwaard, S.; Weide, G.; Levels, K.; Eikelboom, M.R.I.; Noordhof, D.A.; Hofmijster, M.J.; van der Laarse, W.J.; de Koning, J.J.; de Ruiter, C.J.; Jaspers, R.T. Muscle morphology of the vastus lateralis is strongly related to ergometer performance, sprint capacity and endurance capacity in Olympic rowers. J. Sports Sci. 2018, 36, 2111–2120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riechman, S.E.; Zoeller, R.F.; Balasekaran, G.; Goss, F.L.; Robertson, R.J. Prediction of 2000 m indoor rowing performance using a 30 s sprint and maximal oxygen uptake. J. Sports Sci. 2002, 20, 681–687. [Google Scholar] [CrossRef]
- Ingham, S.; Whyte, G.; Jones, K.; Nevill, A. Determinants of 2000 m rowing ergometer performance in elite rowers. Eur. J. Appl. Physiol. 2002, 88, 243–246. [Google Scholar] [CrossRef]
- Nevill, A.M.; Allen, S.V.; Ingham, S.A. Modelling the determinants of 2000 m rowing ergometer performance: A proportional, curvilinear allometric approach. Scand. J. Med. Sci. Sport. 2011, 21, 73–78. [Google Scholar] [CrossRef]
- Chun-Jung, C.; Nesser, T.; Edwards, J. Strength and power determinants of rowing performance. J. Exerc. Physiol. Online 2010, 13, 52–57. [Google Scholar]
- Perera, A.; Ariyasinghe, A.; Makuloluwa, P. Relationship of competitive success to the physique of Sri Lankan rowers. Am. J. Sport. Sci. Med. 2015, 3, 61–65. [Google Scholar] [CrossRef]
- Lawton, T.W.; Cronin, J.B.; McGuigan, M.R. Does extensive on-water rowing increase muscular strength and endurance? J. Sports Sci. 2012, 30, 533–540. [Google Scholar] [CrossRef] [PubMed]
- Giroux, C.; MacIejewski, H.; Ben-Abdessamie, A.; Chorin, F.; Lardy, J.; Ratel, S.; Rahmani, A. Relationship between force-velocity profiles and 1,500-m ergometer performance in young rowers. Int. J. Sports Med. 2017, 38, 992–1000. [Google Scholar] [CrossRef]
- Bourdin, M.; Messonnier, L.; Hager, J.P.; Lacour, J.R. Peak power output predicts rowing ergometer performance in elite male rowers. Int. J. Sports Med. 2004, 25, 368–373. [Google Scholar] [CrossRef]
- Baudouin, A.; Hawkins, D. A biomechanical review of factors affecting rowing performance. Br. J. Sports Med. 2002, 36, 396–402. [Google Scholar] [CrossRef] [Green Version]
- Secher, N.H. Isometric rowing strength of experienced and inexperienced oarsmen. Med. Sci. Sports Exerc. 1975, 7, 280–283. [Google Scholar] [CrossRef]
- Murphy, A.J. Poor correlations between isometric tests and dynamic performance: Relationship to muscle activation. Eur. J. Appl. Physiol. Occup. Physiol. 1996, 73, 353–357. [Google Scholar] [CrossRef]
- Bera, T.K. Bioelectrical impedance methods for noninvasive health monitoring: A review. J. Med. Eng. 2014, 2014. [Google Scholar] [CrossRef] [Green Version]
- Beaudart, C.; Bruyère, O.; Geerinck, A.; Hajaoui, M.; Scafoglieri, A.; Perkisas, S.; Bautmans, I.; Gielen, E.; Reginster, J.Y.; Buckinx, F. Equation models developed with bioelectric impedance analysis tools to assess muscle mass: A systematic review. Clin. Nutr. ESPEN 2020, 35, 47–62. [Google Scholar] [CrossRef] [Green Version]
- Sayers, S.P.; Harackiewicz, D.V.; Harman, E.A.; Frykman, P.; Rosenstein, M.T. Cross-validation of three jump power equations. Med. Sci. Sport. Exerc. 1999, 31, 572–577. [Google Scholar] [CrossRef]
- Sánchez-Medina, L.; González-Badillo, J.J.; Pérez, C.E.; Pallarés, J.G. Velocity- and power-load relationships of the bench pull vs Bench press exercises. Int. J. Sports Med. 2014, 35, 209–216. [Google Scholar] [CrossRef]
- Majumdar, P.; Das, A.; Mandal, M. Physical and strength variables as a predictor of 2000m rowing ergometer performance in elite rowers. J. Phys. Educ. Sport 2017, 17, 2502–2507. [Google Scholar]
- Mikulić, P.; Smoljanović, T.; Bojanić, I.; Hannafin, J.; Pedišić, Ž. Does 2000-m rowing ergometer performance time correlate with final rankings at the World Junior Rowing Championship? A case study of 398 elite junior rowers. J. Sports Sci. 2009, 27, 361–366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, T.B.; Hopkins, W.G. Measures of rowing performance. Sport. Med. 2012, 42, 343–358. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, W.G. A Scale of Magnitudes for Effect Statistics—A new view of statistics. Available online: www.sportsci.org/resource/stats/effectmag.html (accessed on 1 March 2020).
- Nevill, A.M.; Jobson, S.A.; Davison, R.C.R.; Jeukendrup, A.E. Optimal power-to-mass ratios when predicting flat and hill-climbing time-trial cycling. Eur. J. Appl. Physiol. 2006, 97, 424–431. [Google Scholar] [CrossRef] [PubMed]
- Ingham, S.A.; Whyte, G.P.; Pedlar, C.; Bailey, D.M.; Dunman, N.; Nevill, A.M. Determinants of 800-m and 1500-m running performance using allometric models. Med. Sci. Sports Exerc. 2008, 40, 345–350. [Google Scholar] [CrossRef] [PubMed]
- Malina, R.M. Physical activity and training: Effects on stature and the adolescent growth spurt. Med. Sci. Sports Exerc. 1994, 26, 759–766. [Google Scholar] [CrossRef]
- Mikulić, P. Anthropometric and physiological profiles. Hum. Perform. 2008, 40, 80–88. [Google Scholar] [CrossRef] [Green Version]
- Mikulic, P. Anthropometric and metabolic determinants of 6,000-m rowing ergometer performance in internationally competitive rowers. J. Strength Cond. Res. 2009, 23, 1851–1857. [Google Scholar] [CrossRef]
- Kerr, D.A.; Ross, W.D.; Norton, K.; Hume, P.; Kagawa, M.; Ackland, T.R. Olympic lightweight and open-class rowers possess distinctive physical and proportionality characteristics. J. Sports Sci. 2007, 25, 43–53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoshiga, C.C.; Higuchi, M. Rowing performance of female and male rowers. Scand. J. Med. Sci. Sports 2003, 13, 317–321. [Google Scholar] [CrossRef]
- Tachibana, K.; Yashiro, K.; Miyazaki, J.; Ikegami, Y.; Higuchi, M. Muscle cross-sectional areas and performance power of limbs and trunk in the rowing motion. Sport. Biomech. 2007, 6, 44–58. [Google Scholar] [CrossRef] [PubMed]
- Olds, T. Body composition and sports performance. In The Olympic Textbook of Science in Sports; Maughan, R., Ed.; Blackwell Science: London, UK, 2009; pp. 131–145. ISBN 9781405156387. [Google Scholar]
- Yoshiga, C.C.; Higuchi, M. Oxygen uptake and ventilation during rowing and running in females and males. Scand. J. Med. Sci. Sport. 2003, 13, 359–363. [Google Scholar] [CrossRef]
- Drarnitsyn, O.; Ivanova, A.; Sazonov, V. The relationship between the dynamics of cardiorespiratory variables and rowing ergometer performance. Hum. Physiol. 2009, 35, 325–331. [Google Scholar] [CrossRef]
- Bredella, M.A. Sex differences in body composition. In Sex and Gender Factors Affecting Metabolic Homeostasis, Diabetes and Obesity. Advances in Experimental Medicine and Biology; Springer: Cham, Switzerland, 2017; Volume 1043, pp. 9–29. ISBN 978-3-319-70177-6. [Google Scholar]
- Maciejewski, H.; Rahmani, A.; Chorin, F.; Lardy, J.; Samozino, P.; Ratel, S. Methodological considerations on the relationship between the 1500-m rowing ergometer performance and vertical jump in national-level adolescent rowers. J. Strength Cond. Res. 2018. [Google Scholar] [CrossRef]
- Samozino, P.; Morin, J.B.; Hintzy, F.; Belli, A. A simple method for measuring force, velocity and power output during squat jump. J. Biomech. 2008, 41, 2940–2945. [Google Scholar] [CrossRef]
- Attenborough, A.S.; Smith, R.M.; Sinclair, P.J. Effect of gender and stroke rate on joint power characteristics of the upper extremity during simulated rowing. J. Sports Sci. 2012, 30, 449–458. [Google Scholar] [CrossRef]
Conditional Factors | Male | Female | ||||
---|---|---|---|---|---|---|
Mean ± SD | 95% CI | 2-km (r) | Mean ± SD | 95% CI | 2-km (r) | |
Anthropometry | ||||||
Height (cm) | 178.4 ± 8.9 | 173.3–183.3 | 0.68 * | 166.3 ± 7.5 | 161.3–171.9 | 0.67 |
Body mass (kg) | 77.3 ± 7.9 | 72.8–82.0 | 0.83 † | 59.9 ± 8.3 | 54.8–65.5 | 0.66 |
Body fat (%) | 11.9 ± 3.8 | 9.9–13.9 | −0.18 | 20.5 ± 4.1 | 17.8–23.4 | 0.24 |
BMI (kg/m2) | 24.3 ± 1.7 | 23.3–25.2 | 0.25 | 21.7 ± 2.6 | 20.0–23.6 | 0.28 |
Body muscle (kg) | 64.5 ± 7.1 | 60.1–68.4 | 0.81 † | 45.9 ± 4.8 | 42.9–49.0 | 0.94 † |
Jump tests | ||||||
HSJ (cm) | 35.6 ± 6.1 | 32.8–39.3 | −0.17 | 25.2 ± 1.5 | 24.2–26.2 | −0.72 |
WSJ (W) | 3608.0 ± 404.8 | 3382.9–3834.0 | 0.58 * | 2184.2 ± 314.9 | 1981.0–2399.8 | 0.57 |
HCMJ (cm) | 38.0 ± 5.1 | 35.7–41.2 | −0.23 | 26.4 ± 1.5 | 25.6–27.6 | −0.60 |
WCMJ (W) | 3744.1 ± 377.3 | 3519.7–3948.8 | 0.70 * | 2303.8 ± 368.1 | 2087.6–2568.4 | 0.59 |
HRJ (cm) | 29.4 ± 4.4 | 27.3–32.1 | −0.14 | 18.5 ± 3.4 | 16.3–21.0 | −0.58 |
RI | 0.8 ± 0.1 | 0.7–0.8 | 0.13 | 0.7 ± 0.1 | 0.6–0.8 | −0.50 |
EI | 2.4 ± 2.8 | 0.8–3.6 | −0.03 | 1.5 ± 1.2 | 0.7–2.4 | 0.14 |
MchP (W/kg) | 19.5 ± 3.5 | 17.7–21.7 | −0.06 | 13.4 ± 1.3 | 12.6–14.3 | 0.01 |
Bench Pull test | ||||||
MV (m·s−1) | 1.8 ± 0.1 | 1.7–1.8 | 0.84 † | 1.5 ± 0.1 | 1.4–1.5 | 0.63 |
MPV (m·s−1) | 1.8 ± 0.1 | 1.8–1.9 | 0.87 † | 1.5 ± 0.1 | 1.4–1.6 | 0.67 |
Vmax (m·s−1) | 2.5 ± 0.2 | 2.4–2.6 | 0.79 † | 2.0 ± 0.2 | 1.9–2.1 | 0.65 |
MF (N) | 141.3 ± 1.8 | 140.4–124.3 | 0.34 | 91.6 ± 0.4 | 91.4–91.9 | −0.39 |
MPF (N) | 296.0 ± 32.6 | 278.3–313.8 | 0.58 * | 158.1 ± 11.6 | 150.4–165.1 | 0.20 |
Fmax (N) | 630.3 ± 85.6 | 583.4–677.8 | 0.60 * | 350.7 ± 35.6 | 325.3–373.8 | 0.07 |
MP (W) | 238.5 ± 16.2 | 230.1–248.0 | 0.85 † | 126.8 ± 10.5 | 119.7–133.8 | 0.64 |
MPP (W) | 445.8 ± 72.6 | 407.8–487.8 | 0.71 † | 200.6 ± 24.5 | 185.4–218.6 | 0.55 |
Pmax (W) | 626.7 ± 93.7 | 573.7–676.7 | 0.73 † | 271.9 ± 33.9 | 250.2–295.2 | 0.79 * |
Model | Sex | Equation | R2 | Adj. R2 | SEE | p |
---|---|---|---|---|---|---|
Linear | M | W2000m (W) = 5.54 · Body mass (kg) − 154.97 | 0.69 | 0.66 | 30.96 | p < 0.001 |
M | W2000m (W) = 384.10 · MPV (m·s−1) − 431.99 | 0.76 | 0.73 | 27.30 | p < 0.001 | |
F | W2000m (W) = 4.28 · Body muscle (kg) − 30.02 | 0.89 | 0.86 | 8.00 | p = 0.002 | |
F | W2000m (W) = 0.50 · Pmax (W) + 30.10 | 0.62 | 0.54 | 14.71 | p = 0.036 | |
Allometric | M | W2000m (W) = 0.34 · [Body mass (kg)]1.537 | 0.70 | 0.67 | 0.11 | p < 0.001 |
M | W2000m (W) = 57.89 · [MPV (m·s−1)]2.535 | 0.76 | 0.73 | 0.10 | p < 0.001 | |
F | W2000m (W) = 1.84 · [Body muscle (kg)]1.177 | 0.88 | 0.85 | 0.00 | p = 0.002 | |
F | W2000m (W) = 1.72 · [Pmax (W)]0.815 | 0.60 | 0.52 | 0.10 | p = 0.040 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sebastia-Amat, S.; Penichet-Tomas, A.; Jimenez-Olmedo, J.M.; Pueo, B. Contributions of Anthropometric and Strength Determinants to Estimate 2000 m Ergometer Performance in Traditional Rowing. Appl. Sci. 2020, 10, 6562. https://doi.org/10.3390/app10186562
Sebastia-Amat S, Penichet-Tomas A, Jimenez-Olmedo JM, Pueo B. Contributions of Anthropometric and Strength Determinants to Estimate 2000 m Ergometer Performance in Traditional Rowing. Applied Sciences. 2020; 10(18):6562. https://doi.org/10.3390/app10186562
Chicago/Turabian StyleSebastia-Amat, Sergio, Alfonso Penichet-Tomas, Jose M. Jimenez-Olmedo, and Basilio Pueo. 2020. "Contributions of Anthropometric and Strength Determinants to Estimate 2000 m Ergometer Performance in Traditional Rowing" Applied Sciences 10, no. 18: 6562. https://doi.org/10.3390/app10186562
APA StyleSebastia-Amat, S., Penichet-Tomas, A., Jimenez-Olmedo, J. M., & Pueo, B. (2020). Contributions of Anthropometric and Strength Determinants to Estimate 2000 m Ergometer Performance in Traditional Rowing. Applied Sciences, 10(18), 6562. https://doi.org/10.3390/app10186562