Explosive Strength Modeling in Children: Trends According to Growth and Prediction Equation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Approach to the Problem
2.2. Subjects
2.3. Procedures
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rønnestad, B.R.; Kojedal, O.; Losnegard, T.; Kvamme, B.; Raastad, T. EVect of heavy strength training on muscle thickness, strength, jump performance, and endurance performance in well-trained Nordic Combined athletes. Eur. J. Appl. Physiol. 2012, 112, 2341–2352. [Google Scholar] [CrossRef] [PubMed]
- Taipale, R.S.; Mikkola, J.; Vesterinen, V.; Nummela, A.; Häkkinen, K. Neuromuscular adaptations during combined strength and endurance training in endurance runners: Maximal versus explosive strength training or a mix of both. Eur. J. Appl. Physiol. 2013, 113, 325–335. [Google Scholar] [CrossRef] [PubMed]
- Vicente-Rodriguez, G.; Jimenez-Ramirez, J.; Ara, I.; Serrano-Sanchez, J.A.; Dorado, C.; Calbet, J.A.L. Enhanced bone mass and physical fitness in prepubescent footballers. Bone 2003, 33, 853–859. [Google Scholar] [CrossRef] [PubMed]
- Buehring, B.; Krueger, D.; Binkley, N. Jumping mechanography: A potential tool for sarcopenia evaluation in older individuals. J. Clin. Densitom. 2013, 13, 283–291. [Google Scholar] [CrossRef] [PubMed]
- Ortega, F.B.; Ruiz, J.R.; Castillo, M.J.; Sjöström, M. Physical fitness in childhood and adolescence: A powerful marker of health. Int. J. Obes. 2008, 32, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilson, G.J.; Murphy, A.J. The use of isometric tests of muscular function in athletic assessment. Sports Med. 1996, 22, 19–37. [Google Scholar] [CrossRef]
- Ruiz, J.R.; Castro-Piñero, J.; España-Romero, V.; Artero, E.G.; Ortega, F.B.; Cuenca, M.A.M.; Castillo, M.J. Field-based fitness assessment in young people: The ALPHA health-related fitness test battery for children and adolescents. Br. J. Sports Med. 2011, 45, 518–524. [Google Scholar] [CrossRef]
- Castro-Piñero, J.; Artero, E.G.; Espana-Romero, V.; Ortega, F.B.; Sjöström, M.; Suni, J.; Ruiz, J.R. Criterion-related validity of field-based muscular fitness tests in youth. Br. J. Sports Med. 2010, 44, 934–943. [Google Scholar] [CrossRef]
- Plowman, S.A.; Sterling, C.L.; Corbin, C.B.; Meredith, M.D.; Welk, G.J.; Morrow, J.R. The History of FITNESSGRAM®. J. Phys. Act. Health 2016, 3, S5–S20. [Google Scholar] [CrossRef]
- Tomkinson, G.R.; Carver, K.D.; Atkinson, F.; Daniell, N.D.; Lewis, L.K.; Fitzgerald, J.S.; Ortega, F.B. European normative values for physical fitness in children and adolescents aged 9–17 years: Results from 2 779 165 Eurofit performances representing 30 countries. Br. J. Sports Med. 2018, 52, 1445–1456. [Google Scholar] [CrossRef] [Green Version]
- Lovecchio, N.; Novak, D.; Sedlacek, J.; Hamar, P.; Milanovic, I.; Radisavljevic-Janic, S.; Zago, M. Physical fitness for sedentary students: A common trend from six European countries. J. Sports Med. Phys. Fit. 2019, 59, 1389–1396. [Google Scholar] [CrossRef] [PubMed]
- Catley, M.J.; Tomkinson, G.R. Normative health-related fitness values for children: Analysis of 85347 test results on 9-17-year-old Australians since 1985. Br. J. Sports Med. 2013, 47, 98–108. [Google Scholar] [CrossRef] [PubMed]
- Sauka, M.; Priedite, I.S.; Artjuhova, L.; Larins, V.; Selga, G.; Dahlström, Ö.; Timpka, T. Physical fitness in northern European youth: Reference values from the Latvian Physical Health in Youth Study. Scand. J. Public Health 2011, 39, 35–43. [Google Scholar] [CrossRef]
- Halme, T.; Parkkisenniemi, S.; Kujala, U.M.; Nupponen, H. Relationships between standing broad jump, shuttle run and Body Mass Index in children aged three to ei. J. Sports Med. Phys. Fit. 2009, 49, 395–400. Available online: http://www.ncbi.nlm.nih.gov/pubmed/20087299 (accessed on 15 September 2020).
- Giuriato, M.; Nevill, A.; Kawczynski, A.; Lovecchio, N. Body size and shape characteristics for Cooper’s 12 minutes run test in 11–13 years old Caucasian children: An allometric approach. J. Sports Med. Phys. Fit. 2020, 60, 417–421. [Google Scholar] [CrossRef] [PubMed]
- Lovecchio, N.; Zago, M. Fitness differences according to BMI categories: A new point of view. J. Sports Med. Phys. Fit. 2019, 59, 298–303. [Google Scholar] [CrossRef]
- Cole, T.J.; Lobstein, T. Extended international (IOTF) body mass index cut-offs for thinness, overweight and obesity. Pediatric Obes. 2012, 7, 284–294. [Google Scholar] [CrossRef]
- Armstrong, N.; Welsman, J. Sex-Specific Longitudinal Modeling of Short-Term Power in 11- to 18-Year-Olds. Med. Sci. Sports Exerc. 2019, 51, 1055–1063. [Google Scholar] [CrossRef]
- Lovecchio, N.; Novak, D.; Eid, L.; Casolo, F.; Podnar, H. Urban and Rural Fitness Level: Comparison between Italian and Croatian Students. Percept. Motor Skills 2015, 120, 367–380. [Google Scholar] [CrossRef]
- Van Praagh, E.; Doré, E. Short-term muscle power during growth and maturation. Sports Med. 2002, 32, 701–728. [Google Scholar] [CrossRef]
- Meylan, C.M.P.; Cronin, J.B.; Oliver, J.L.; Rumpf, M.C. Sex-related differences in explosive actions during late childhood. J. Strength Cond. Res. 2014, 28, 2097–2104. [Google Scholar] [CrossRef] [PubMed]
- Nevill, A.M.; Holder, R.L. Scaling, normalizing, and per ratio standards: An allometric modeling approach. J. Appl. Physiol. 1995, 79, 1027–1031. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nevill, A.; Tsiotra, G.; Tsimeas, P.; Koutedakis, Y. Allometric associations between body size, shape, and physical performance of Greek children. Pediatric Exerc. Sci. 2009, 21, 220–232. [Google Scholar] [CrossRef]
- Murtagh, C.F.; Brownlee, T.E.; O’Boyle, A.; Morgans, R.; Drust, B.; Erskine, R.M. Importance of Speed and Power in Elite Youth Soccer Depends on Maturation Status. J. Strength Cond. Res. 2018, 32, 297–303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beunen, G.; Malina, R.M. Growth and physical performance relative to the timing of the adolescent spurt. Exerc. Sport Sci. Rev. 1988, 16, 503–540. [Google Scholar] [CrossRef] [PubMed]
- Mirwald, R.L.; Baxter-Jones, A.D.G.; Bailey, D.A.; Beunen, G.P. An assessment of maturity from anthropometric measurements. Med. Sci. Sports Exerc. 2002, 34, 689–694. [Google Scholar] [CrossRef]
- Werneck, A.O.; Silva, D.R.; Oyeyemi, A.L.; Fernandes, R.A.; Romanzini, M.; Cyrino, E.S.; Ronque, E.R.V. Tracking of physical fitness in elementary school children: The role of changes in body fat. Am. J. Hum. Biol. 2019, 31, e23221. [Google Scholar] [CrossRef]
- Artero, E.G.; España-Romero, V.; Castro-Piñero, J.; Ortega, F.B.; Suni, J.; Castillo-Garzon, M.J.; Ruiz, J.R. Reliability of Field-Based Fitness Tests in Youth. Int. J. Sports Med. 2011, 32, 159–169. [Google Scholar] [CrossRef]
- Ortega, F.B.; Cadenas-Sánchez, C.; Sánchez-Delgado, G.; Mora-González, J.; Martínez-Téllez, B.; Artero, E.G.; Ruiz, J.R. Systematic Review and Proposal of a Field-Based Physical Fitness-Test Battery in Preschool Children: PREFIT Battery. Sports Med. 2015, 45, 533–555. [Google Scholar] [CrossRef]
- Ceccarelli, G.; Bellato, M.; Zago, M.; Cusella, G.; Sforza, C.; Lovecchio, N. BMI and inverted BMI as predictors of fat mass in young people: A comparison across the ages. Ann. Hum. Biol. 2020, 47, 237–243. [Google Scholar] [CrossRef]
- D’Hondt, E.; Deforche, B.; De Bourdeaudhuij, I.; Lenoir, M. Relationship between motor skill and body mass index in 5- to 10-year-old children. Adapt. Phys. Act. Q. 2009, 26, 21–37. [Google Scholar] [CrossRef]
- Bustamante Valdivia, A.; Maia, J.; Nevill, A. Identifying the ideal body size and shape characteristics associated with children’s physical performance tests in Peru. Scand. J. Med. Sci. Sports 2015, 25, e155–e165. [Google Scholar] [CrossRef] [PubMed]
- Martin, R.J.F.; Dore, E.; Twisk, J.; van Praagh, E.; Hautier, C.A.; Bedu, M. Longitudinal changes of maximal short-term peak power in girls and boys during growth. Med. Sci. Sports Exerc. 2004, 36, 498–503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- dos Santos, M.A.M.; Nevill, A.M.; Buranarugsa, R.; Pereira, S.; Gomes, T.N.Q.F.; Reyes, A.; Maia, J.A.R. Modeling children’s development in gross motor coordination reveals key modifiable determinants. An allometric approach. Scand. J. Med. Sci. Sports 2018, 28, 1594–1603. [Google Scholar] [CrossRef]
- Stodden, D.F.; Langendorfer, S.J.; Goodway, J.D.; Roberton, M.A.; Rudisill, M.E.; Garcia, C.; Garcia, L.E. A developmental perspective on the role of motor skill competence in physical activity: An emergent relationship. Quest 2008, 60, 290–306. [Google Scholar] [CrossRef]
- Doré, E.; Bedu, M.; Van Praagh, E. Squat jump performance during growth in both sexes: Comparison with cycling power. Res. Q. Exerc. Sport 2008, 79, 517–524. [Google Scholar] [CrossRef] [PubMed]
- Almuzaini, K.S. Muscle function in Saudi children and adolescents: Relationship to anthropometric characteristics during growth. Pediatric Exerc. Sci. 2007, 19, 319–333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bradley, B.; Johnson, D.; Hill, M.; McGee, D.; Kana-ah, A.; Sharpin, C.; Malina, R.M. Bio-banding in academy football: Player’s perceptions of a maturity matched tournament. Ann. Hum. Biol. 2019, 46, 400–408. [Google Scholar] [CrossRef]
- Malina, R.M.; Cumming, S.P.; Rogol, A.D.; Coelho-e-Silva, M.J.; Figueiredo, A.J.; Konarski, J.M.; Kozieł, S.M. Bio-Banding in Youth Sports: Background, Concept, and Application. Sports Med. 2019, 49, 1671–1685. [Google Scholar] [CrossRef]
Subjects | Numerosity | Age (y) | Height (cm) | Mass (kg) |
---|---|---|---|---|
Total | 7317 | 9.4 ± 1 | 136.5 ± 8.5 | 33.8 ± 8.4 |
Males | 3690 | 9.4 ± 1 | 136.4 ± 8.1 | 34.0 ± 8.2 |
Females | 3627 | 9.4 ± 1 | 136.6 ± 8.9 | 33.7 ± 8.5 |
Parameter | B | Std. Error | t | Sig. | 95% Confidence Interval | |
---|---|---|---|---|---|---|
Lower Bound | Upper Bound | |||||
Intercept Log(a) | 0.995 | 0.327 | 3.043 | 0.002 | 0.354 | 1636 |
Log(M) (k1) | 1.152 | 0.064 | 18.092 | 0.000 | 1027 | 1276 |
Log(H) (k2) | −0.435 | 0.015 | −28.935 | 0.000 | −0.465 | −0.406 |
MO (c) | 0.084 | 0.012 | 7.155 | 0.000 | 0.061 | 0.107 |
Sex (Female) | 0.226 | 0.043 | 5.311 | 0.000 | 0.143 | 0.310 |
Age (8.00 y) | −0.022 | 0.019 | −1.205 | 0.228 | −0.059 | 0.014 |
Age (9.00 y) | −0.010 | 0.014 | −0.704 | 0.482 | −0.037 | 0.017 |
Age (10.00 y) | −0.013 | 0.009 | −1.376 | 0.169 | −0.032 | 0.006 |
Age (8.00) *Sex (Female) | −0.083 | 0.017 | −4746 | 0.000 | −0.117 | −0.049 |
Age (9.00) *Sex (Female) | −0.065 | 0.014 | −4631 | 0.000 | −0.092 | −0.037 |
Age (10.00) *Sex (Female) | −0.009 | 0.012 | −0.785 | 0.432 | −0.032 | 0.014 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carnevale Pellino, V.; Giuriato, M.; Ceccarelli, G.; Codella, R.; Vandoni, M.; Lovecchio, N.; Nevill, A.M. Explosive Strength Modeling in Children: Trends According to Growth and Prediction Equation. Appl. Sci. 2020, 10, 6430. https://doi.org/10.3390/app10186430
Carnevale Pellino V, Giuriato M, Ceccarelli G, Codella R, Vandoni M, Lovecchio N, Nevill AM. Explosive Strength Modeling in Children: Trends According to Growth and Prediction Equation. Applied Sciences. 2020; 10(18):6430. https://doi.org/10.3390/app10186430
Chicago/Turabian StyleCarnevale Pellino, Vittoria, Matteo Giuriato, Gabriele Ceccarelli, Roberto Codella, Matteo Vandoni, Nicola Lovecchio, and Alan M. Nevill. 2020. "Explosive Strength Modeling in Children: Trends According to Growth and Prediction Equation" Applied Sciences 10, no. 18: 6430. https://doi.org/10.3390/app10186430
APA StyleCarnevale Pellino, V., Giuriato, M., Ceccarelli, G., Codella, R., Vandoni, M., Lovecchio, N., & Nevill, A. M. (2020). Explosive Strength Modeling in Children: Trends According to Growth and Prediction Equation. Applied Sciences, 10(18), 6430. https://doi.org/10.3390/app10186430