Experimental Characterization of a High-Damping Viscoelastic Material Enclosed in Carbon Fiber Reinforced Polymer Components
Abstract
:1. Introduction
2. Materials and Methods
2.1. Specimens
2.2. Experimental Setup and Test Procedures
- Sampling frequency: FSh = 512 Hz (impact hammer tests), FSs = 2048 Hz (shaker tests);
- Bandwidth: BWh = 0.5–256 Hz (impact hammer tests), BWs = 5–1024 Hz (shaker tests);
- Acquisition duration: T = 8 s (spectral frequency resolution: Δf = 0.125 Hz);
- Number of averages: Nav = 10;
- Shaker excitation levels: LR = 0.2 V, 1 V (Random tests), LC = 0.1 V, 0.5 V (Chirp tests).
2.3. Signal Processing and Analysis
2.4. FE Model
3. Results and Discussion
3.1. Impact Hammer Tests
3.2. Shaker Excitation Tests
3.3. Damping Model of the Specimens
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Townsend, P.; Suárez, J.C.; Sanz-Horcajo, E.; Pinilla-Cea, P. Reduction of slamming damage in the hull of high-speed crafts manufactured from composite materials using viscoelastic layers. Ocean Eng. 2018, 159, 253–267. [Google Scholar] [CrossRef]
- Neumann, K.-E. True Mobile/Portable Drilling and Machining, a Paradigm Shift in Manufacturing; SAE Technical Paper; SAE International: Warrendale, PA, USA, 2017. [Google Scholar] [CrossRef]
- Pappas, G.A.; Botsis, J. Design optimization of a CFRP–aluminum joint for a bioengineering application. Des. Sci. 2019, 5, 14. [Google Scholar] [CrossRef] [Green Version]
- Fuchs, E.R.; Field, F.R.; Roth, R.; Kirchain, R. Strategic materials selection in the automobile body: Economic opportunities for polymer composite design. Compos. Sci. Technol. 2008, 68, 1989–2002. [Google Scholar] [CrossRef]
- Lutsey, N. Review of Technical Literature and Trends Related to Automobile Mass-Reduction Technology; Research Report—UCD-ITS-RR-10-10; Institute of Transportation Studies, University of California: Davis, CA, USA, 2010. [Google Scholar]
- Anwar, M.; Sukmaji, I.C.; Wijang, W.R.; Diharjo, K. Application of carbon fiber-based composite for electric vehicle. Adv. Mater. Res. 2014, 896, 574–577. [Google Scholar] [CrossRef]
- Arifurrahman, F.; Budiman, B.A.; Aziz, M. On the lightweight structural design for electric road and railway vehicles using fiber reinforced polymer composites—A Review. Int. J. Sustain. Transp. Technol. 2018, 1, 21–29. [Google Scholar] [CrossRef] [Green Version]
- Tsirogiannis, C.E. Design and modelling methodologies of an efficient and lightweight carbon-fiber reinforced epoxy monocoque chassis, suitable for an electric car. Mater. Sci. Eng. Adv. Res. 2017, 2, 5–12. [Google Scholar] [CrossRef]
- Odabaşı, V.; Maglio, S.; Martini, A.; Sorrentino, S. Static stress analysis of suspension systems for a solar-powered car. FME Trans. 2019, 47, 70–75. [Google Scholar] [CrossRef] [Green Version]
- Sukmaji, I.C.; Anwar, M.; Wijang, W.R.; Danardono, D.P.D. Hybrid carbon-glass fiber composite for the door electric car application. In Proceedings of the 2013 Joint International Conference on Rural Information & Communication Technology and Electric-Vehicle Technology (rICT & ICeV-T), Bandung, Indonesia, 26–28 November 2013; Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2013; pp. 1–3. [Google Scholar]
- Sudirja Hapid, A.; Kaleg, S.; Budiman, A.C.; Amin. The crumple zone quality enhancement of electric cars bumper fascia using a carbon fiber reinforced vinyl ester—Microsphere composites. In Proceedings of the 2019 International Conference on Sustainable Energy Engineering and Application (ICSEEA), Tangerang, Indonesia, 23–24 October 2019. [Google Scholar]
- Ahmed, A.; Wei, L. Introducing CFRP as an alternative material for engine hood to achieve better pedestrian safety using finite element modeling. Thin Walled Struct. 2016, 99, 97–108. [Google Scholar] [CrossRef]
- Bang, S.; Park, Y.; Kim, Y.; Shin, T.; Back, J.; Lee, S.K. Effect of the fiber lamination angle of a carbon-fiber, laminated composite plate roof on the car interior noise. Int. J. Automot. Technol. 2019, 20, 73–85. [Google Scholar] [CrossRef]
- Raghuvanshi, J.; Palsule, A.; Bodhale, N.; Kharade, A.; Pol, A. Sensitivity Study of Different Damping Treatments Using Simulation and Physical Testing Methodologies on Structure Borne Driver’s Ear Noise Performance in a Premium Hatchback Car; SAE Technical Paper; SAE International: Warrendale, PA, USA, 2019. [Google Scholar] [CrossRef]
- Gur, Y.; Wagner, D. Damping properties and NVH modal analysis results of carbon fiber composite vehicle components. SAE Int. J. Mater. Manuf. 2017, 10, 198–205. [Google Scholar] [CrossRef]
- Yu, Z.; Cheng, D.; Huang, X. Low-frequency road noise of electric vehicles based on measured road surface morphology. World Electr. Veh. J. 2019, 10, 33. [Google Scholar] [CrossRef] [Green Version]
- Martini, A.; Bellani, G.; Fragassa, C. Numerical assessment of a new hydro-pneumatic suspension system for motorcycles. Int. J. Automot. Mech. Eng. 2018, 15, 5308–5325. [Google Scholar] [CrossRef]
- House, J.R.; Hilliar, A.E. Vibration Damping Materials. Patent WO-90/01645, 22 February 1990. [Google Scholar]
- Fujimoto, J.; Tamura, T.; Furihata, T.; Suzuki, Y.; Kauchi, K. Laminated Vibration-Damping Material. U.S. Patent US-005368916, 29 November 1994. [Google Scholar]
- Sutton, S.P.; Principe, F.; Gentile, M.M. Vibration Damping Composite Material. U.S. Patent US-5965249, 12 October 1999. [Google Scholar]
- Ellis, J.; Hadley, P. Composite Material. Patent WO-2014/147243, 25 September 2014. [Google Scholar]
- Sumita, M.; Kaneko, H.; Murase, K. Composite Damping Material. U.S. Patent US-20160040744A1, 11 February 2016. [Google Scholar]
- Stopin, G.; Tesse, C. Constrained-Layer Damping Material. U.S. Patent US-9243402B2, 26 January 2016. [Google Scholar]
- Alexander, J.H.; Eichhorn, G.; Gerdes, R.W.; Hanschen, T.P.; Herdtle, T.; Yoo, T. Multilayer Damping Material. U.S. Patent US-20180156296A1, 7 June 2018. [Google Scholar]
- Araújo, A.; Martins, P.; Soares, C.M.; Herskovits, J. Damping optimization of viscoelastic laminated sandwich composite structures. Struct. Multidiscip. Optim. 2009, 39, 569–579. [Google Scholar] [CrossRef]
- Liao, F.-S.; Su, A.-C.; Hsu, T.-C.J. Vibration damping of interleaved carbon fiber-epoxy composite beams. J. Compos. Mater. 1994, 28, 1840–1854. [Google Scholar] [CrossRef]
- Berthelot, J.-M.; Sefrani, Y. Damping analysis of unidirectional glass fiber composites with interleaved viscoelastic layers: Experimental investigation and discussion. J. Compos. Mater. 2006, 40, 1911–1932. [Google Scholar] [CrossRef]
- Fotsing, E.; Sola, M.; Ross, A.; Ruiz, E. Lightweight damping of composite sandwich beams: Experimental analysis. J. Compos. Mater. 2012, 47, 1501–1511. [Google Scholar] [CrossRef]
- Piollet, E.; Fotsing, E.R.; Ross, A.; Michon, G. High damping and nonlinear vibration of sandwich beams with entangled cross-linked fibres as core material. Compos. Part B Eng. 2019, 168, 353–366. [Google Scholar] [CrossRef]
- Gade, S.; Herlufsen, H. Digital filter vs fft techniques for damping measurements. J. Sound Vib. 1990, 24, 24–32. [Google Scholar]
- Barbero, E.J. Finite Element Analysis of Composite Materials Using Ansys®; Informa UK Limited: London, UK, 2013. [Google Scholar]
- Heylen, W.; Lammens, S.; Sas, P. Modal Analysis Theory and Testing, 2nd ed.; Katholieke Universiteit Leuven: Leuven, Belgium, 1998. [Google Scholar]
- Juang, J.-N.; Pappa, R.S. An eigensystem realization algorithm for modal parameter identification and model reduction. J. Guid. Control. Dyn. 1985, 8, 620–627. [Google Scholar] [CrossRef]
- Leissa, A.W. Vibrations of Plates; National Aeronautics and Space Administration (NASA): Washington, DC, USA, 1969. [Google Scholar]
- Ewins, D.J. Modal Testing: Theory, Practice and Application, 2nd ed.; Research Studies Press Ltd.: Baldock, UK, 2000. [Google Scholar]
- Rao, S.S. Mechanical Vibrations, 5th ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2004. [Google Scholar]
- Charney, F.A. Unintended consequences of modeling damping in structures. J. Struct. Eng. 2008, 134, 581–592. [Google Scholar] [CrossRef]
Specimen | Description | Long Side (pl) [mm] | Short Side (ps) [mm] | Thickness [mm] | Mass [kg] |
---|---|---|---|---|---|
PN | 4 twill plies | 800 | 580 | 1.49 | 1.008 |
PY | 4 twill plies 3 SMACWRAP strips | 800 | 580 | 1.62 | 1.055 |
Parameter | Value |
---|---|
Density [kg/m3] | 1190 |
Thickness (single strip, uncured) [mm] | 0.20 |
Strip length (sl) [mm] | 800 |
Strip width (sw) [mm] | 150 |
Side spacing (ss) [mm] | 15 |
Central spacing (cs) [mm] | 50 |
Parameter | Value |
---|---|
Total mass (2 frames + bolts) [kg] | 11.54 |
Outer long side (ol) [mm] | 800 |
Outer short side (os) [mm] | 580 |
Inner long side (il) [mm] | 720 |
Inner short side (is) [mm] | 500 |
Mode Ranking | Mode Shape | Natural Frequency | Damping Ratio | Comparison | |||||
---|---|---|---|---|---|---|---|---|---|
#PN,i | #PY,i | (Xi) | fPN,i [Hz] | fPY,i [Hz] | ζPN,i [%] | ζPY,i [%] | Δfi [Hz] | Δζi [%] | ρYN,i [−] |
1 | 1 | m = 1, n = 1 | 35.2 | 34.3 | 0.36 | 1.45 | −2.7 | 302.8 | 4.0 |
2 | 2 | m = 2, n = 1 | 53.0 | 48.3 | 0.50 | 1.46 | −8.9 | 192.0 | 2.9 |
3 | 4 | m = 1, n = 2 | 83.3 | 85.4 | 0.49 | 1.66 | 2.5 | 238.8 | 3.4 |
4 | 3 | m = 3, n = 1 | 90.1 | 83.1 | 0.65 | 1.67 | −7.8 | 156.9 | 2.6 |
5 | 5 | m = 2, n = 2 | 95.1 | 104.2 | 0.52 | 1.16 | 9.7 | 123.1 | 2.2 |
6 | 6 | m = 3, n = 2 | 121.1 | 118.3 | 0.66 | 1.69 | −2.3 | 156.1 | 2.6 |
7 | 7 | m = 4, n = 1 | 136.9 | 127.9 | 0.52 | 1.81 | −6.6 | 248.1 | 3.5 |
8 | 8 | m = 4, n = 2 | 163.3 | 160.8 | 0.74 | 1.67 | −1.5 | 125.7 | 2.3 |
9 | 9 | m = 1, n = 3 | 164.3 | 175.1 | 0.46 | 1.67 | 6.5 | 263.0 | 3.6 |
10 | 10 | m = 2, n = 3 | 174.9 | 189.6 | 0.57 | 1.88 | 8.4 | 229.8 | 3.3 |
Parameter | ζPN | ζPY | ρYN |
---|---|---|---|
Mean value, μ | 0.55 | 1.61 | 3.04 |
Standard deviation, σ | 0.11 | 0.20 | 0.59 |
Relative standard deviation, σ* | 19.2% | 12.1% | 19.3% |
Specimen | Coefficient | Estimate | Coefficient p-Value | R2 | Model p-Value |
---|---|---|---|---|---|
PN | λ0 | 0.613 | 1.82 × 10−10 | 0.144 | 1.73 × 10−2 |
λ1 | 3.49 × 10−4 | 1.73 × 10−2 | |||
PY | λ0 | 1.54 | 4.48 × 10−9 | 0.444 | 9.81 × 10−4 |
λ1 | 1.99 × 10−3 | 9.81 × 10−4 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Troncossi, M.; Taddia, S.; Rivola, A.; Martini, A. Experimental Characterization of a High-Damping Viscoelastic Material Enclosed in Carbon Fiber Reinforced Polymer Components. Appl. Sci. 2020, 10, 6193. https://doi.org/10.3390/app10186193
Troncossi M, Taddia S, Rivola A, Martini A. Experimental Characterization of a High-Damping Viscoelastic Material Enclosed in Carbon Fiber Reinforced Polymer Components. Applied Sciences. 2020; 10(18):6193. https://doi.org/10.3390/app10186193
Chicago/Turabian StyleTroncossi, Marco, Sara Taddia, Alessandro Rivola, and Alberto Martini. 2020. "Experimental Characterization of a High-Damping Viscoelastic Material Enclosed in Carbon Fiber Reinforced Polymer Components" Applied Sciences 10, no. 18: 6193. https://doi.org/10.3390/app10186193
APA StyleTroncossi, M., Taddia, S., Rivola, A., & Martini, A. (2020). Experimental Characterization of a High-Damping Viscoelastic Material Enclosed in Carbon Fiber Reinforced Polymer Components. Applied Sciences, 10(18), 6193. https://doi.org/10.3390/app10186193