Intraoperative Imaging of Cortical Blood Flow by Camera-Based Photoplethysmography at Green Light
Abstract
:1. Introduction
2. Methods and Clinical Cases
2.1. Remote PPG System
2.2. Data Processing
2.3. Mapping of Microcirculation Parameters
2.4. Patients
2.5. Clinical Cases
3. Results
3.1. Patient with Pathological Formation of the Lateral Right Brain Ventricle
3.2. Revascularization of Internal Carotid Artery in Patient with Arterial Atherosclerotic Occlusion
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Fredrickson, V.L.; Russin, J.J.; Strickland, B.A.; Bakhsheshian, J.; Amar, A.P. Intraoperative imaging for vascular lesions. Neurosurg. Clin. N. Am. 2017, 28, 603–613. [Google Scholar] [CrossRef]
- Sutherland, B.A.; Rabie, T.; Buchan, A.M. Cerebral Angiogenesis, Laser Doppler Flowmetry to Measure Changes in Cerebral Blood Flow; Milner, R., Ed.; Methods in Molecular Biology; Humana Press: New York, NY, USA, 2014; Volume 1135, pp. 237–248. ISBN 978-1-4939-0319-1. [Google Scholar]
- Raabe, A.; Beck, J.; Gerlach, R.; Zimmermann, M.; Seifert, V. Near-infrared indocyanine green video angiography: A new method for intraoperative assessment of vascular flow. Neurosurgery 2003, 52, 132–139. [Google Scholar]
- Dunn, A.K. Laser speckle contrast imaging of cerebral blood flow. Ann. Biomed. Eng. 2012, 40, 367–377. [Google Scholar] [CrossRef] [Green Version]
- Parthasarathy, A.B.; Fox, D.J.; Dunn, A.K.; Weber, E.L.; Richards, L.M. Laser speckle contrast imaging of cerebral blood flow in humans during neurosurgery: A pilot clinical study. J. Biomed. Opt. 2010, 15, 66030. [Google Scholar] [CrossRef]
- Hecht, N.; Woitzik, J.; Dreier, J.P.; Vajkoczy, P. Intraoperative monitoring of cerebral blood flow by laser speckle contrast analysis. Neurosurg. Focus 2009, 27, E11. [Google Scholar] [CrossRef] [PubMed]
- Zakharov, P.; Völker, A.C.; Wyss, M.T.; Haiss, F.; Calcinaghi, N.; Zunzunegui, C.; Buck, A.; Scheffold, F.; Weber, B. Dynamic laser speckle imaging of cerebral blood flow. Opt. Express 2009, 17, 13904–13917. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kazmi, S.M.S.; Richards, L.M.; Schrandt, C.J.; Davis, M.A.; Dunn, A.K. Expanding applications, accuracy, and interpretation of laser speckle contrast imaging of cerebral blood flow. J. Cereb. Blood Flow Metab. 2015, 35, 1076–1084. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kazmi, S.M.S.; Faraji, E.; Davis, M.A.; Huang, Y.-Y.; Zhang, X.; Dunn, A.K. Flux or speed? Examining speckle contrast imaging of vascular flows. Biomed. Opt. Express 2018, 6, 2588–2608. [Google Scholar] [CrossRef] [Green Version]
- Lapi, D.; Colantuoni, A. Remodeling of cerebral microcirculation after ischemia-reperfusion. J. Vasc. Res. 2015, 52, 22–31. [Google Scholar] [CrossRef]
- Allen, J.; Howell, K. Microvascular imaging: Techniques and opportunities for clinical physiological measurements. Physiol. Meas. 2014, 35, R91–R141. [Google Scholar] [CrossRef]
- Hertzman, A.B. The blood supply of various skin areas as estimated by the photoelectric plethysmograph. Am. J. Physiol. 1938, 124, 328–340. [Google Scholar] [CrossRef]
- Mannheimer, P.D. The light-tissue interaction of pulse oximetry. Anesth. Analg. 2007, 105, S10–S17. [Google Scholar] [CrossRef] [PubMed]
- Kamshilin, A.A.; Nippolainen, E.; Sidorov, I.S.; Vasilev, P.V.; Erofeev, N.P.; Podolian, N.P.; Romashko, R.V. A new look at the essence of the imaging photoplethysmography. Sci. Rep. 2015, 5, 10494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moço, A.V.; Stuijk, S.; de Haan, G. New insights into the origin of remote PPG signals in visible light and infrared. Sci. Rep. 2018, 8, 8501. [Google Scholar] [CrossRef] [Green Version]
- Wukitsch, M.W.; Petterson, M.T.; Tobler, D.R.; Pologe, J.A. Pulse oximetry: Analysis of theory, technology, and practice. J. Clin. Monit. Comput. 1988, 4, 290–301. [Google Scholar] [CrossRef]
- Verkruysse, W.; Svaasand, L.O.; Nelson, J.S. Remote plethysmographic imaging using ambient light. Opt. Express 2008, 16, 21434–21445. [Google Scholar] [CrossRef] [Green Version]
- Volkov, M.V.; Margaryants, N.B.; Potemkin, A.V.; Volynsky, M.A.; Gurov, I.P.; Mamontov, O.V.; Kamshilin, A.A. Video capillaroscopy clarifies mechanism of the photoplethysmographic waveform appearance. Sci. Rep. 2017, 7, 13298. [Google Scholar] [CrossRef]
- Nonaka, H.; Akima, M.; Nagayama, T.; Hatori, T.; Zhang, Z.; Ihara, F. Microvasculature of the human cerebral meninges. Neuropathology 2003, 23, 129–135. [Google Scholar] [CrossRef]
- Lyubashina, O.A.; Mamontov, O.V.; Volynsky, M.A.; Zaytsev, V.V.; Kamshilin, A.A. Contactless assessment of cerebral autoregulation by photoplethysmographic imaging at green illumination. Front. Neurosci. 2019, 13, 1235. [Google Scholar] [CrossRef]
- Kamshilin, A.A.; Sidorov, I.S.; Babayan, L.; Volynsky, M.A.; Giniatullin, R.; Mamontov, O.V. Accurate measurement of the pulse wave delay with imaging photoplethysmography. Biomed. Opt. Express 2016, 7, 5138–5147. [Google Scholar] [CrossRef] [Green Version]
- Fleischhauer, V.; Ruprecht, N.; Zaunseder, S. Camera-based spatial assessment of perfusion upon stimuli. Curr. Dir. Biomed. Eng. 2019, 5, 105–108. [Google Scholar] [CrossRef]
- Kamshilin, A.A.; Miridonov, S.V.; Teplov, V.; Saarenheimo, R.; Nippolainen, E. Photoplethysmographic imaging of high spatial resolution. Biomed. Opt. Express 2011, 2, 996–1006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamshilin, A.A.; Krasnikova, T.V.; Volynsky, M.A.; Miridonov, S.V.; Mamontov, O.V. Alterations of blood pulsations parameters in carotid basin due to body position change. Sci. Rep. 2018, 8, 13663. [Google Scholar] [CrossRef] [PubMed]
- Kearney, J.K.; Thompson, W.B.; Boley, D.L. Optical flow estimation: An error analysis of gradient-based methods with local optimization. IEEE Trans. Pattern Anal. Mach. Intell. 1987, PAMI-9, 229–244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allen, J. Photoplethysmography and its application in clinical physiological measurement. Physiol. Meas. 2007, 28, R1–R39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reisner, A.; Shaltis, P.A.; McCombie, D.; Asada, H.H. Utility of the photoplethysmogram in circulatory monitoring. Anesthesiology 2008, 108, 950–958. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hemon, M.C.; Phillips, J.P. Comparison of foot finding methods for deriving instantaneous pulse rates from photoplethysmographic signals. J. Clin. Monit. Comput. 2016, 30, 157–168. [Google Scholar] [CrossRef] [Green Version]
- Bashkatov, A.N.; Genina, E.A.; Kochubey, V.I.; Tuchin, V.V. Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm. J. Phys. D. Appl. Phys. 2005, 38, 2543–2555. [Google Scholar] [CrossRef]
- Margaryants, N.B.; Sidorov, I.S.; Volkov, M.V.; Gurov, I.P.; Mamontov, O.V.; Kamshilin, A.A. Visualization of skin capillaries with moving red blood cells in arbitrary area of the body. Biomed. Opt. Express 2019, 10, 4896–4906. [Google Scholar] [CrossRef]
- Wagshul, M.E.; Eide, P.K.; Madsen, J.R. The pulsating brain: A review of experimental and clinical studies of intracranial pulsatility. Fluids Barriers CNS 2011, 8, 5. [Google Scholar] [CrossRef] [Green Version]
- Postnov, D.D.; Erdener, E.; Kilic, K.; Boas, D.A. Cardiac pulsatility mapping and vessel type identification using laser speckle contrast imaging. Biomed. Opt. Express 2018, 9, 6388–6397. [Google Scholar] [CrossRef] [PubMed]
- Postnov, D.D.; Cheng, X.; Erdener, S.E.; Boas, D.A. Choosing a laser for laser speckle contrast imaging. Sci. Rep. 2019, 9, 2542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mamontov, O.V.; Krasnikova, T.V.; Volynsky, M.A.; Anokhina, N.A.; Shlyakhto, E.V.; Kamshilin, A.A. Novel instrumental markers of proximal scleroderma provided by imaging photoplethysmography. Physiol. Meas. 2020, 41, 44004. [Google Scholar] [CrossRef] [PubMed]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mamontov, O.V.; Shcherbinin, A.V.; Romashko, R.V.; Kamshilin, A.A. Intraoperative Imaging of Cortical Blood Flow by Camera-Based Photoplethysmography at Green Light. Appl. Sci. 2020, 10, 6192. https://doi.org/10.3390/app10186192
Mamontov OV, Shcherbinin AV, Romashko RV, Kamshilin AA. Intraoperative Imaging of Cortical Blood Flow by Camera-Based Photoplethysmography at Green Light. Applied Sciences. 2020; 10(18):6192. https://doi.org/10.3390/app10186192
Chicago/Turabian StyleMamontov, Oleg V., Anton V. Shcherbinin, Roman V. Romashko, and Alexei A. Kamshilin. 2020. "Intraoperative Imaging of Cortical Blood Flow by Camera-Based Photoplethysmography at Green Light" Applied Sciences 10, no. 18: 6192. https://doi.org/10.3390/app10186192
APA StyleMamontov, O. V., Shcherbinin, A. V., Romashko, R. V., & Kamshilin, A. A. (2020). Intraoperative Imaging of Cortical Blood Flow by Camera-Based Photoplethysmography at Green Light. Applied Sciences, 10(18), 6192. https://doi.org/10.3390/app10186192