Electronic and Transport Properties of Epitaxial Graphene on SiC and 3C-SiC/Si: A Review
Abstract
:1. Introduction
2. Electronic Band Structure
2.1. Monolayer Graphene
2.2. Bilayer Graphene
2.3. Turbostratic Multilayer Graphene
3. Transport Measurement Methods
3.1. Hall Bar Devices
3.2. Van der Pauw and Hall Bar Structures
3.3. Field-Effect Measurements
3.4. Raman Spectroscopy
4. Electronic and Transport Properties: Effect of Interactions with the Surroundings
4.1. Epitaxial Graphene-Substrate Interaction
4.1.1. Induced Pseudo-Charge Due to Substrate Polarization Effect
4.1.2. Impact of Growth on SiC (0001)
4.1.3. Impact of Growth on SiC (000)
4.1.4. Impact of Growth on (100) and (111) 3C-SiC/Si
4.2. Effect of Epitaxial Graphene-Ambient Interaction
4.3. Effect of Epitaxial Graphene-Contact Metal Interaction
4.4. Mobility and Sheet Carrier Concentration: Power-Law Relationship
4.5. Temperature-Dependent Transport: Scattering Mechanisms
5. Fine-Tuning of Transport Properties
5.1. Intercalation
5.2. Functionalization of EG
5.3. Top-Gate Graphene Field-Effect Transistors
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Motta, N.; Iacopi, F.; Coletti, C. Growing Graphene on Semiconductors; Pan Stanford: Singapore, 2017. [Google Scholar]
- Knight, S.; Hofmann, T.; Bouhafs, C.; Armakavicius, N.; Kühne, P.; Stanishev, V.; Ivanov, I.G.; Yakimova, R.; Wimer, S.; Schubert, M.; et al. In-situ terahertz optical Hall effect measurements of ambient effects on free charge carrier properties of epitaxial graphene. Sci. Rep. 2017, 7, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Giovannetti, G.; Khomyakov, P.; Brocks, G.; Karpan, V.M.; Van den Brink, J.; Kelly, P.J. Doping graphene with metal contacts. Phys. Rev. Lett. 2008, 101, 026803. [Google Scholar] [CrossRef]
- Berger, C.; Song, Z.; Li, T.; Li, X.; Ogbazghi, A.Y.; Feng, R.; Dai, Z.; Marchenkov, A.N.; Conrad, E.H.; First, P.N.; et al. Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J. Phys. Chem. B 2004, 108, 19912–19916. [Google Scholar] [CrossRef] [Green Version]
- Sidorov, A.N.; Gaskill, K.; Buongiorno Nardelli, M.; Tedesco, J.L.; Myers-Ward, R.L.; Eddy, C.R., Jr.; Jayasekera, T.; Kim, K.W.; Jayasingha, R.; Sherehiy, A.; et al. Charge transfer equilibria in ambient-exposed epitaxial graphene on (0001¯) 6H-SiC. J. Appl. Phys. 2012, 111, 113706. [Google Scholar] [CrossRef] [Green Version]
- Nishi, Y. Semiconductor Interfaces and Their Implications to VLSI Device Reliability. In Control of Semiconductor Interfaces; Elsevier: Amsterdam, The Netherlands, 1994; pp. 9–12. [Google Scholar]
- Rhoderick, E. Surfaces and Interfaces in Semiconductor Technology. In Physics and Contemporary Needs; Springer: Berlin/Heidelberg, Germany, 1978; pp. 3–28. [Google Scholar]
- Berger, C.; Song, Z.; Li, X.; Wu, X.; Brown, N.; Naud, C.; Mayou, D.; Li, T.; Hass, J.; Marchenkov, A.N.; et al. Electronic confinement and coherence in patterned epitaxial graphene. Science 2006, 312, 1191–1196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hannon, J.; Copel, M.; Tromp, R. Direct Measurement of the Growth Mode of Graphene on SiC (0001) and SiC (000 1). Phys. Rev. Lett. 2011, 107, 166101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seyller, T.; Bostwick, A.; Emtsev, K.; Horn, K.; Ley, L.; McChesney, J.; Ohta, T.; Riley, J.D.; Rotenberg, E.; Speck, F. Epitaxial graphene: A new material. Phys. Status Solidi B 2008, 245, 1436–1446. [Google Scholar] [CrossRef] [Green Version]
- Norimatsu, W.; Kusunoki, M. Structural features of epitaxial graphene on SiC {0 0 0 1} surfaces. J. Phys. D Appl. Phys. 2014, 47, 094017. [Google Scholar] [CrossRef]
- Hass, J.; Varchon, F.; Millán-Otoya, J.; Sprinkle, M.; de Heer, W.; Berger, C.; First, P.; Magaud, L.; Conrad, E. Rotational stacking and its electronic effects on graphene films grown on 4H-SiC (0001). arXiv Preprint, 2007; arXiv:0706.2134. [Google Scholar]
- Hite, J.K.; Twigg, M.E.; Tedesco, J.L.; Friedman, A.L.; Myers-Ward, R.L.; Eddy, C.R., Jr.; Gaskill, D.K. Epitaxial graphene nucleation on C-face silicon carbide. Nano Lett. 2011, 11, 1190–1194. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.-M.; Dimitrakopoulos, C.; Farmer, D.B.; Han, S.-J.; Wu, Y.; Zhu, W.; Gaskill, D.K.; Tedesco, J.L.; Myers-Ward, R.L.; Eddy, C.R., Jr.; et al. Multicarrier transport in epitaxial multilayer graphene. Appl. Phys. Lett. 2010, 97, 112107. [Google Scholar] [CrossRef]
- Wu, X.; Hu, Y.; Ruan, M.; Madiomanana, N.K.; Hankinson, J.; Sprinkle, M.; Berger, C.; de Heer, W.A. Half integer quantum Hall effect in high mobility single layer epitaxial graphene. Appl. Phys. Lett. 2009, 95, 223108. [Google Scholar] [CrossRef] [Green Version]
- Aristov, V.Y.; Urbanik, G.; Kummer, K.; Vyalikh, D.V.; Molodtsova, O.V.; Preobrajenski, A.B.; Zakharov, A.A.; Hess, C.; Hänke, T.; Buchner, B.; et al. Graphene synthesis on cubic SiC/Si wafers. Perspectives for mass production of graphene-based electronic devices. Nano Lett. 2010, 10, 992–995. [Google Scholar] [CrossRef] [PubMed]
- Suemitsu, M.; Fukidome, H. Epitaxial graphene on silicon substrates. J. Phys. D Appl. Phys. 2010, 43, 374012. [Google Scholar] [CrossRef]
- Gupta, B.; Notarianni, M.; Mishra, N.; Shafiei, M.; Iacopi, F.; Motta, N. Evolution of epitaxial graphene layers on 3C SiC/Si (1 1 1) as a function of annealing temperature in UHV. Carbon 2014, 68, 563–572. [Google Scholar] [CrossRef] [Green Version]
- Ouerghi, A.; Marangolo, M.; Belkhou, R.; El Moussaoui, S.; Silly, M.; Eddrief, M.; Largeau, L.; Portail, M.; Fain, B.; Sirotti, F. Epitaxial graphene on 3C-SiC (111) pseudosubstrate: Structural and electronic properties. Phys. Rev. B 2010, 82, 125445. [Google Scholar] [CrossRef]
- Kang, H.-C.; Karasawa, H.; Miyamoto, Y.; Handa, H.; Fukidome, H.; Suemitsu, T.; Suemitsu, M.; Otsuji, T. Epitaxial graphene top-gate FETs on silicon substrates. Solid State Electron. 2010, 54, 1071–1075. [Google Scholar] [CrossRef]
- Pradeepkumar, A.; Amjadipour, M.; Mishra, N.; Liu, C.; Fuhrer, M.S.; Bendavid, A.; Isa, F.; Zielinski, M.; Sirikumara, H.I.; Jayasekera, T.; et al. p-type Epitaxial Graphene on Cubic Silicon Carbide on Silicon for Integrated Silicon Technologies. ACS Appl. Nano Mater. 2019. [Google Scholar] [CrossRef] [Green Version]
- Wallace, P.R. The band theory of graphite. Phys. Rev. 1947, 71, 622. [Google Scholar] [CrossRef]
- Hass, J.; Varchon, F.; Millan-Otoya, J.-E.; Sprinkle, M.; Sharma, N.; de Heer, W.A.; Berger, C.; First, P.N.; Magaud, L.; Conrad, E.H. Why multilayer graphene on 4 H− SiC (000 1) behaves like a single sheet of graphene. Phys. Rev. Lett. 2008, 100, 125504. [Google Scholar] [CrossRef] [PubMed]
- Neto, A.H.C.; Guinea, F.; Peres, N.M.R.; Novoselov, K.S.; Geim, A.K. The electronic properties of graphene. Rev. Mod. Phys. 2009, 81, 109. [Google Scholar] [CrossRef] [Green Version]
- Zhu, W.; Perebeinos, V.; Freitag, M.; Avouris, P. Carrier scattering, mobilities, and electrostatic potential in monolayer, bilayer, and trilayer graphene. Phys. Rev. B 2009, 80, 235402. [Google Scholar] [CrossRef] [Green Version]
- Emtsev, K.V.; Bostwick, A.; Horn, K.; Jobst, J.; Kellogg, G.L.; Ley, L.; McChesney, J.L.; Ohta, T.; Reshanov, S.A.; Röhrl, J.; et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mater. 2009, 8, 203–207. [Google Scholar] [CrossRef] [PubMed]
- Nakada, K.; Fujita, M.; Dresselhaus, G.; Dresselhaus, M.S. Edge state in graphene ribbons: Nanometer size effect and edge shape dependence. Phys. Rev. B 1996, 54, 17954. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Tan, Y.-W.; Stormer, H.L.; Kim, P. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 2005, 438, 201–204. [Google Scholar] [CrossRef] [Green Version]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mattausch, A.; Pankratov, O. Ab initio study of graphene on SiC. Phys. Rev. Lett. 2007, 99, 076802. [Google Scholar] [CrossRef] [Green Version]
- Varchon, F.; Feng, R.; Hass, J.; Li, X.; Nguyen, B.N.; Naud, C.; Mallet, P.; Veuillen, J.-Y.; Berger, C.; Conrad, E.H.; et al. Electronic structure of epitaxial graphene layers on SiC: Effect of the substrate. Phys. Rev. Lett. 2007, 99, 126805. [Google Scholar] [CrossRef] [Green Version]
- Bostwick, A.; Ohta, T.; Seyller, T.; Horn, K.; Rotenberg, E. Quasiparticle dynamics in graphene. Nat. Phys. 2007, 3, 36–40. [Google Scholar] [CrossRef]
- Ohta, T.; Bostwick, A.; McChesney, J.L.; Seyller, T.; Horn, K.; Rotenberg, E. Interlayer interaction and electronic screening in multilayer graphene investigated with angle-resolved photoemission spectroscopy. Phys. Rev. Lett. 2007, 98, 206802. [Google Scholar] [CrossRef]
- Ohta, T.; Bostwick, A.; Seyller, T.; Horn, K.; Rotenberg, E. Controlling the electronic structure of bilayer graphene. Science 2006, 313, 951–954. [Google Scholar] [CrossRef] [Green Version]
- Sprinkle, S.M.; Siegel, D.; Hu, Y.; Hicks, J.; Tejeda, A.; Taleb-Ibrahimi, A.; le Fèvre, P.; Bertran, F.; Vizzini, S.; Enriquez, H.; et al. First direct observation of a nearly ideal graphene band structure. Phys. Rev. Lett. 2009, 103, 226803. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Starke, U.; Riedl, C. Epitaxial graphene on SiC (0001) and: From surface reconstructions to carbon electronics. J. Phys. Condens. Matter. 2009, 21, 134016. [Google Scholar] [CrossRef]
- Zhou, S.Y.; Gweon, G.-H.; Fedorov, A.; de First, P.; de Heer, W.; Lee, D.-H.; Guinea, F.; Neto, A.C.; Lanzara, A. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mater. 2007, 6, 770–775. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bychkov, Y.A.; Martinez, G. Magnetoplasmon excitations in graphene for filling factors ν ≤ 6. Phys. Rev. B 2008, 77, 125417. [Google Scholar] [CrossRef] [Green Version]
- Davydov, S.Y. Estimations of the Fermi Velocity and Effective Mass in Epitaxial Graphene and Carbyne. Tech. Phys. Lett. 2019, 45, 650–652. [Google Scholar] [CrossRef]
- McCann, E.; Fal’ko, V.I. Landau-level degeneracy and quantum Hall effect in a graphite bilayer. Phys. Rev. Lett. 2006, 96, 086805. [Google Scholar] [CrossRef] [Green Version]
- Sarma, S.D.; Hwang, E.; Rossi, E. Theory of carrier transport in bilayer graphene. Phys. Rev. B 2010, 81, 161407. [Google Scholar] [CrossRef] [Green Version]
- McCann, E.; Koshino, M. The electronic properties of bilayer graphene. Rep. Prog. Phys. 2013, 76, 056503. [Google Scholar] [CrossRef]
- Grubišić-Čabo, A.; Kotsakidis, J.C.; Yin, Y.; Tadich, A.; Haldon, M.; Solari, S.; di Bernardo, I.; Daniels, K.M.; Riley, J.; Huwald, E.; et al. Magnesium-intercalated graphene on SiC: Highly n-doped air-stable bilayer graphene at extreme displacement fields. Mesoscale Nanoscale Phys. 2020, arXiv:2005.02670. [Google Scholar]
- Novoselov, K.S.; McCann, E.; Morozov, S.; Fal’ko, V.I.; Katsnelson, M.; Zeitler, U.; Jiang, D.; Schedin, F.; Geim, A. Unconventional quantum Hall effect and Berry’s phase of 2π in bilayer graphene. Nature Phys. 2006, 2, 177–180. [Google Scholar] [CrossRef]
- Zhang, Y.; Tang, T.-T.; Girit, C.; Hao, Z.; Martin, M.C.; Zettl, A.; Crommie, M.F.; Shen, Y.R.; Wang, F. Direct observation of a widely tunable bandgap in bilayer graphene. Nature 2009, 459, 820–823. [Google Scholar] [CrossRef]
- Escobedo-Cousin, E.; Vassilevski, K.; Hopf, T.; Wright, N.; O’Neill, A.; Horsfall, A.; Goss, J.; Cumpson, P. Local solid phase growth of few-layer graphene on silicon carbide from nickel silicide supersaturated with carbon. J. Appl. Phys. 2013, 113, 114309. [Google Scholar] [CrossRef] [Green Version]
- Jayasekera, T.; Kim, K.; Nardelli, M.B. Electronic and Structural Properties of Turbostratic Epitaxial Graphene on the 6H-SiC (000-1) Surface. Mater. Sci. Forum 2012, 717–720, 595–600. [Google Scholar] [CrossRef]
- Siegel, D.A.; Hwang, C.; Fedorov, A.V.; Lanzara, A. Quasifreestanding multilayer graphene films on the carbon face of SiC. Phys. Rev. B 2010, 81, 241417. [Google Scholar] [CrossRef] [Green Version]
- Orlita, M.; Faugeras, C.; Plochocka, P.; Neugebauer, P.; Martinez, G.; Maude, D.K.; Barra, A.-L.; Sprinkle, M.; Berger, C.; de Heer, W.A.; et al. Approaching the Dirac point in high-mobility multilayer epitaxial graphene. Phys. Rev. Lett. 2008, 101, 267601. [Google Scholar] [CrossRef] [Green Version]
- Miller, D.L.; Kubista, K.D.; Rutter, G.M.; Ruan, M.; de Heer, W.A.; First, P.N.; Stroscio, J.A. Observing the quantization of zero mass carriers in graphene. Science 2009, 324, 924–927. [Google Scholar] [CrossRef]
- Ji, S.-H.; Hannon, J.; Tromp, R.; Perebeinos, V.; Tersoff, J.; Ross, F. Atomic-scale transport in epitaxial graphene. Nat. Mater. 2012, 11, 114–119. [Google Scholar] [CrossRef]
- Yakes, M.K.; Gunlycke, D.; Tedesco, J.L.; Campbell, P.M.; Myers-Ward, R.L.; Eddy, C.R., Jr.; Gaskill, D.K.; Sheehan, P.E.; Laracuente, A.R. Conductance anisotropy in epitaxial graphene sheets generated by substrate interactions. Nano Lett. 2010, 10, 1559–1562. [Google Scholar] [CrossRef] [Green Version]
- Janssen, T.J.B.M.; Tzalenchuk, A.; Lara-Avila, S.; Kubatkin, S.; Fal’ko, V.I. Quantum resistance metrology using graphene. Rep. Prog. Phys. 2013, 76, 104501. [Google Scholar] [CrossRef]
- Kruskopf, M.; Pakdehi, D.M.; Pierz, K.; Wundrack, S.; Stosch, R.; Dziomba, T.; Götz, M.; Baringhaus, J.; Aprojanz, J.; Tegenkamp, C.; et al. Comeback of epitaxial graphene for electronics: Large-area growth of bilayer-free graphene on SiC. 2D Mater. 2016, 3, 041002. [Google Scholar] [CrossRef]
- Jobst, J.; Waldmann, D.; Speck, F.; Hirner, R.; Maude, D.K.; Seyller, T.; Weber, H.B. Transport properties of high-quality epitaxial graphene on 6H-SiC (0001). Solid State Commun. 2011, 151, 1061–1064. [Google Scholar] [CrossRef]
- Tedesco, J.L.; VanMil, B.L.; Myers-Ward, R.L.; McCrate, J.M.; Kitt, S.A.; Campbell, P.M.; Jernigan, G.G.; Culbertson, J.C.; Eddy, C.R., Jr.; Gaskill, D.K. Hall effect mobility of epitaxial graphene grown on silicon carbide. Appl. Phys. Lett. 2009, 95, 122102. [Google Scholar] [CrossRef]
- van der Pauw, L.J. A method of measuring specific resistivity and Hall effect of discs of arbitrary shape. Philips Res. Rep. 1958, 13, 1–9. [Google Scholar]
- Geim, A.K.; Novoselov, K.S. The Rise of Graphene. In Nanoscience and Technology: A Collection of Reviews from Nature Journals; World Scientific: Singapore, 2010; pp. 11–19. [Google Scholar]
- Lin, Y.-M.; Farmer, D.B.; Jenkins, K.A.; Wu, Y.; Tedesco, J.L.; Myers-Ward, R.L.; Myers-Ward, C.R.; Gaskill, D.K.; Dimitrakopoulos, C.; Avouris, P. Enhanced performance in epitaxial graphene FETs with optimized channel morphology. IEEE Electron. Device Lett. 2011, 32, 1343–1345. [Google Scholar] [CrossRef] [Green Version]
- Kedzierski, J.; Hsu, P.-L.; Healey, P.; Wyatt, P.W.; Keast, C.L.; Sprinkle, M.; Berger, C.; de Heer, W.A. Epitaxial graphene transistors on SiC substrates. IEEE T Electron. Dev. 2008, 55, 2078–2085. [Google Scholar] [CrossRef] [Green Version]
- Ytterdal, T.; Cheng, Y.; Fjeld, T.O. Device Modeling for Analog 801 and RF CMOS Circuit Design; John Wiley & Sons: Hoboken, NJ, USA, 2003. [Google Scholar]
- Röhrl, J.; Hundhausen, M.; Speck, F.; Seyller, T. Strain and charge in epitaxial graphene on silicon carbide studied by raman spectroscopy. Mater. Sci. Forum 2010, 645–648, 603–606. [Google Scholar] [CrossRef]
- Thomsen, C.; Reich, S. Double resonant Raman scattering in graphite. Phys. Rev. Lett. 2000, 85, 5214–5217. [Google Scholar] [CrossRef]
- Ferrari, A.C.; Meyer, J.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K.; Roth, S.; et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 2006, 97, 187401. [Google Scholar] [CrossRef] [Green Version]
- Das, A.; Pisana, S.; Chakraborty, B.; Piscanec, S.; Saha, S.K.; Waghmare, U.V.; Novoselov, K.S.; Krishnamurthy, H.R.; Geim, A.K.; Ferrari, A.C.; et al. Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nat. Nanotechnol. 2008, 3, 210–215. [Google Scholar] [CrossRef] [Green Version]
- Ouerghi, A.; Kahouli, A.; Lucot, D.; Portail, M.; Travers, L.; Gierak, J.; Penuelas, J.; Jegou, P.; Shukla, A.; Chassagne, T.; et al. Epitaxial graphene on cubic SiC (111)/Si (111) substrate. Appl. Phys. Lett. 2010, 96, 191910. [Google Scholar] [CrossRef] [Green Version]
- Mueller, N.S.; Heeg, S.; Alvarez, M.P.; Kusch, P.; Wasserroth, S.; Clark, N.; Schedin, F.; Parthenios, J.; Papagelis, K.; Galiotis, C.; et al. Evaluating arbitrary strain configurations and doping in graphene with Raman spectroscopy. 2D Mater. 2017, 5, 015016. [Google Scholar] [CrossRef]
- Verhagen, T.; Drogowska, K.; Kalbac, M.; Vejpravova, J. Temperature-induced strain and doping in monolayer and bilayer isotopically labeled graphene. Phys. Rev. B 2015, 92, 125437. [Google Scholar] [CrossRef]
- Shtepliuk, I.; Ivanov, I.G.; Pliatsikas, N.; Iakimov, T.; Jamnig, A.; Sarakinos, K.; Yakimova, R. Probing the uniformity of silver-doped epitaxial graphene by micro-Raman mapping. Phys. B Condens. Matter 2020, 580, 411751. [Google Scholar] [CrossRef]
- Shtepliuk, I.; Ivanov, I.G.; Iakimov, T.; Yakimova, R.; Kakanakova-Georgieva, A.; Fiorenza, P.; Giannazzo, F. Raman probing of hydrogen-intercalated graphene on Si-face 4H-SiC. Mater. Sci. Semicond. Process. 2019, 96, 145–152. [Google Scholar] [CrossRef]
- Pisana, S.; Lazzeri, M.; Casiraghi, C.; Novoselov, K.S.; Geim, A.K.; Ferrari, A.C.; Mauri, F. Breakdown of the adiabatic Born–Oppenheimer approximation in graphene. Nat. Mater. 2007, 6, 198–201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, D.; Wu, Z.-K.; Divin, C.; Li, X.; Berger, C.; de Heer, W.A.; First, P.N.; Norris, T.B. Ultrafast relaxation of excited Dirac fermions in epitaxial graphene using optical differential transmission spectroscopy. Phys. Rev. Lett. 2008, 101, 157402. [Google Scholar] [CrossRef] [PubMed]
- Hofmann, T.; Boosalis, A.; Kühne, P.; Herzinger, C.; Woollam, J.A.; Gaskill, D.; Tedesco, J.; Schubert, M. Hole-channel conductivity in epitaxial graphene determined by terahertz optical-Hall effect and midinfrared ellipsometry. Appl. Phys. Lett. 2011, 98, 041906. [Google Scholar] [CrossRef]
- Armakavicius, N.; Bouhafs, C.; Stanishev, V.; Kühne, P.; Yakimova, R.; Knight, S.; Hofmann, T.; Schubert, M.; Darakchieva, V. Cavity-enhanced optical Hall effect in epitaxial graphene detected at terahertz frequencies. Appl. Surf. Sci. 2017, 421, 357–360. [Google Scholar] [CrossRef]
- Mammadov, S.; Ristein, J.; Koch, R.J.; Ostler, M.; Raidel, C.; Wanke, M.; Vasiliauskas, R.; Yakimova, R.; Seyller, T. Polarization doping of graphene on silicon carbide. 2D Mater. 2014, 1, 035003. [Google Scholar] [CrossRef]
- Coletti, C.; Emtsev, K.V.; Zakharov, A.A.; Ouisse, T.; Chaussende, D.; Starke, U. Large area quasi-free standing monolayer graphene on 3C-SiC (111). Appl. Phys. Lett. 2011, 99, 081904. [Google Scholar] [CrossRef]
- Grubišić-Čabo, A.; Monash University, Melbourne, Victoria, Australia. Personal communication, 2020.
- Mathieu, C.; Lalmi, B.; Menteş, T.; Pallecchi, E.; Locatelli, A.; Latil, S.; Belkhou, R.; Ouerghi, A. Effect of oxygen adsorption on the local properties of epitaxial graphene on SiC (0001). Phys. Rev. B 2012, 86, 035435. [Google Scholar] [CrossRef] [Green Version]
- Coletti, C.; Riedl, C.; Lee, D.S.; Krauss, B.; Patthey, L.; von Klitzing, K.; Smet, J.H.; Starke, U. Charge neutrality and band-gap tuning of epitaxial graphene on SiC by molecular doping. Phys. Rev. B 2010, 81, 235401. [Google Scholar] [CrossRef] [Green Version]
- Moon, J.; Curtis, D.; Bui, S.; Marshall, T.; Wheeler, D.; Valles, I.; Kim, S.; Wang, E.; Weng, X.; Fanton, M. Top-gated graphene field-effect transistors using graphene on Si (111) wafers. IEEE Electron. Device Lett. 2010, 31, 1193–1195. [Google Scholar] [CrossRef]
- Ristein, J.; Mammadov, S.; Seyller, T. Origin of doping in quasi-free-standing graphene on silicon carbide. Phys. Rev. Lett. 2012, 108, 246104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kopylov, S.; Tzalenchuk, A.; Kubatkin, S.; Fal’ko, V.I. Charge transfer between epitaxial graphene and silicon carbide. Appl. Phys. Lett. 2010, 97, 112109. [Google Scholar] [CrossRef] [Green Version]
- Speck, F.; Ostler, M.; Röhrl, J.; Jobst, J.; Waldmann, D.; Hundhausen, M.; Ley, L.; Weber, H.B.; Seyller, T. Quasi-freestanding graphene on SiC (0001). Mater. Sci. Forum 2010, 645–648, 629–632. [Google Scholar] [CrossRef]
- De Heer, W.A.; Berger, C.; Wu, X.; Sprinkle, M.; Hu, Y.; Ruan, M.; Stroscio, J.A.; First, P.N.; Haddon, R.; Piot, B.; et al. Epitaxial graphene electronic structure and transport. J. Phys. D Appl. Phys. 2010, 43, 374007. [Google Scholar] [CrossRef] [Green Version]
- Van Bommel, A.; Crombeen, J.; Van Tooren, A. LEED and Auger electron observations of the SiC (0001) surface. Surf. Sci. 1975, 48, 463–472. [Google Scholar] [CrossRef]
- Emtsev, K.; Speck, F.; Seyller, T.; Ley, L.; Riley, J.D. Interaction, growth, and ordering of epitaxial graphene on SiC {0001} surfaces: A comparative photoelectron spectroscopy study. Phys. Rev. B 2008, 77, 155303. [Google Scholar] [CrossRef] [Green Version]
- Seubert, A.; Bernhardt, J.; Nerding, M.; Starke, U.; Heinz, K. In situ surface phases and silicon-adatom geometry of the (2 × 2) C structure on 6H-SiC (0001¯). Surf. Sci. 2000, 454, 45–48. [Google Scholar] [CrossRef]
- Malard, L.; Pimenta, M.; Dresselhaus, G.; Dresselhaus, M. Raman spectroscopy in graphene. Phys. Rep. 2009, 473, 51–87. [Google Scholar] [CrossRef]
- De Heer, W.A.; Berger, C.; Wu, X.; First, P.N.; Conrad, E.H.; Li, X.; Li, T.; Sprinkle, M.; Hass, J.; Sadowski, M.L.; et al. Epitaxial graphene. Solid State Commun. 2007, 143, 92–100. [Google Scholar] [CrossRef] [Green Version]
- First, P.N.; de Heer, W.A.; Seyller, T.; Berger, C.; Stroscio, J.A.; Moon, J.-S. Epitaxial graphenes on silicon carbide. MRS Bull. 2010, 35, 296–305. [Google Scholar] [CrossRef] [Green Version]
- Orlita, M.; Faugeras, C.; Grill, R.; Wysmolek, A.; Strupinski, W.; Berger, C.; de Heer, W.A.; Martinez, G.; Potemski, M. Carrier scattering from dynamical magnetoconductivity in quasineutral epitaxial graphene. Phys. Rev. Lett. 2011, 107, 216603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lebedev, A.A.; Agrinskaya, N.V.; Beresovets, V.A.; Kozub, V.I.; Lebedev, S.P.; Sitnikova, A.A. Low temperature transport properties of multigraphene structures on 6H-SiC obtained by thermal graphitization: Evidences of a presence of nearly perfect graphene layer. arXiv Preprint, 2012; arXiv:1212.4272. [Google Scholar]
- Hwang, E.; Adam, S.; Sarma, S.D. Carrier transport in two-dimensional graphene layers. Phys. Rev. Lett. 2007, 98, 186806. [Google Scholar] [CrossRef] [Green Version]
- Jernigan, G.G.; VanMil, B.L.; Tedesco, J.L.; Tischler, J.G.; Glaser, E.R.; Davidson, A., III; Campbell, P.M.; Gaskill, D.K. Comparison of epitaxial graphene on Si-face and C-face 4H SiC formed by ultrahigh vacuum and RF furnace production. Nano Lett. 2009, 9, 2605–2609. [Google Scholar] [CrossRef]
- Hu, Y.; Ruan, M.; Guo, Z.; Dong, R.; Palmer, J.; Hankinson, J.; Berger, C.; de Heer, W.A. Structured epitaxial graphene: Growth and properties. J. Phys. D Appl. Phys. 2012, 45, 154010. [Google Scholar] [CrossRef] [Green Version]
- Dimitrakopoulos, C.; Grill, A.; McArdle, T.J.; Liu, Z.; Wisnieff, R.; Antoniadis, D.A. Effect of SiC wafer miscut angle on the morphology and Hall mobility of epitaxially grown graphene. Appl. Phys. Lett. 2011, 98, 222105. [Google Scholar] [CrossRef]
- Gaskill, D.K. Epitaxial Graphene. In Handbook of Crystal Growth; Elsevier: Amsterdam, The Netherlands, 2015; pp. 755–783. [Google Scholar]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.; Jiang, D.; Katsnelson, M.I.; Grigorieva, I.; Dubonos, S.; Firsov, A.A. Two-dimensional gas of massless Dirac fermions in graphene. Nature 2005, 438, 197–200. [Google Scholar] [CrossRef] [PubMed]
- Elias, D.; Gorbachev, R.; Mayorov, A.; Morozov, S.; Zhukov, A.; Blake, P.; Ponomarenko, L.; Grigorieva, I.; Novoselov, K.; Guinea, F.; et al. Dirac cones reshaped by interaction effects in suspended graphene. Nat. Phys. 2011, 7, 701–704. [Google Scholar] [CrossRef]
- Mayorov, A.S.; Elias, D.C.; Mukhin, I.S.; Morozov, S.V.; Ponomarenko, L.A.; Novoselov, K.S.; Geim, A.; Gorbachev, R.V. How close can one approach the Dirac point in graphene experimentally? Nano Lett. 2012, 12, 4629–4634. [Google Scholar] [CrossRef] [Green Version]
- Bolotin, K.I.; Sikes, K.J.; Jiang, Z.; Klima, M.; Fudenberg, G.; Hone, J.; Kim, P.; Stormer, H. Ultrahigh electron mobility in suspended graphene. Solid State Commun. 2008, 146, 351–355. [Google Scholar] [CrossRef] [Green Version]
- Aristov, V.Y.; Molodtsova, O.V.; Chaika, A.N. Graphene synthesized on Cubic-SiC(001) in Ultrahigh Vacuum: Atomic and Electronic Structure and Transport Properties. In Growing Graphene on Semiconductors; Motta, N., Iacopi, F., Coletti, C., Eds.; Pan Stanford: Singapore, 2017; pp. 27–75. [Google Scholar]
- Ago, H.; Ito, Y.; Mizuta, N.; Yoshida, K.; Hu, B.; Orofeo, C.M.; Tsuji, M.; Ikeda, K.-i.; Mizuno, S. Epitaxial chemical vapor deposition growth of single-layer graphene over cobalt film crystallized on sapphire. ACS Nano 2010, 4, 7407–7414. [Google Scholar] [CrossRef]
- Fukidome, H.; Miyamoto, Y.; Handa, H.; Saito, E.; Suemitsu, M. Epitaxial growth processes of graphene on silicon substrates. Jpn. J. Appl. Phys. 2010, 49, 01AH03. [Google Scholar] [CrossRef]
- Ouerghi, A.; Ridene, M.; Balan, A.; Belkhou, R.; Barbier, A.; Gogneau, N.; Portail, M.; Michon, A.; Latil, S.; Jegou, P.; et al. Sharp interface in epitaxial graphene layers on 3 C-SiC (100)/Si (100) wafers. Phys. Rev. B 2011, 83, 205429. [Google Scholar] [CrossRef]
- Pradeepkumar, A.; Zielinski, M.; Bosi, M.; Verzellesi, G.; Gaskill, D.K.; Iacopi, F. Electrical leakage phenomenon in heteroepitaxial cubic silicon carbide on silicon. J. Appl. Phys. 2018, 123, 215103. [Google Scholar] [CrossRef]
- Pradeepkumar, A.; Mishra, N.; Kermany, A.R.; Boeckl, J.J.; Hellerstedt, J.; Fuhrer, M.S.; Iacopi, F. Catastrophic degradation of the interface of epitaxial silicon carbide on silicon at high temperatures. Appl. Phys. Lett. 2016, 109, 011604. [Google Scholar] [CrossRef] [Green Version]
- Schedin, F.; Geim, A.K.; Morozov, S.V.; Hill, E.; Blake, P.; Katsnelson, M.; Novoselov, K.S. Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 2007, 6, 652–655. [Google Scholar] [CrossRef]
- Kotsakidis, J.C.; Grubišić-Čabo, A.; Yin, Y.; Tadich, A.; Myers-Ward, R.L.; Dejarld, M.; Pavunny, S.P.; Currie, M.; Daniels, K.M.; Liu, C.; et al. Freestanding n-Doped Graphene via Intercalation of Calcium and Magnesium Into the Buffer Layer-SiC (0001) Interface. arXiv Preprint, 2020; arXiv:2004.01383. [Google Scholar]
- Leenaerts, O.; Partoens, B.; Peeters, F. Adsorption of H2O, NH3, CO, NO2, and NO on graphene: A first-principles study. Phys. Rev. B 2008, 77, 125416. [Google Scholar] [CrossRef] [Green Version]
- Kazakova, O.; Panchal, V.; Burnett, T.L. Epitaxial graphene and graphene–based devices studied by electrical scanning probe microscopy. Crystals 2013, 3, 191–233. [Google Scholar] [CrossRef]
- Giusca, C.E.; Panchal, V.; Munz, M.; Wheeler, V.D.; Nyakiti, L.O.; Myers-Ward, R.L.; Gaskill, D.K.; Kazakova, O. Water affinity to epitaxial graphene: The impact of layer thickness. Adv. Mater. Interfaces 2015, 2, 1500252. [Google Scholar] [CrossRef]
- Munz, M.; Giusca, C.E.; Myers-Ward, R.L.; Gaskill, D.K.; Kazakova, O. Thickness-dependent hydrophobicity of epitaxial graphene. Acs Nano 2015, 9, 8401–8411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panchal, V.; Giusca, C.E.; Lartsev, A.; Martin, N.A.; Cassidy, N.; Myers-Ward, R.L.; Gaskill, D.K.; Kazakova, O. Atmospheric doping effects in epitaxial graphene: Correlation of local and global electrical studies. 2D Mater. 2016, 3, 015006. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Brenner, K.; Murali, R. The influence of atmosphere on electrical transport in graphene. Carbon 2012, 50, 1727–1733. [Google Scholar] [CrossRef]
- Pearce, R.; Iakimov, T.; Andersson, M.; Hultman, L.; Spetz, A.L.; Yakimova, R. Epitaxially grown graphene based gas sensors for ultra sensitive NO2 detection. Sens. Actuators B Chem. 2011, 155, 451–455. [Google Scholar] [CrossRef] [Green Version]
- Kong, L.; Enders, A.; Rahman, T.S.; Dowben, P.A. Molecular adsorption on graphene. J. Phys. Condens. Matter. 2014, 26, 443001. [Google Scholar] [CrossRef]
- Nomani, M.W.; Shishir, R.; Qazi, M.; Diwan, D.; Shields, V.; Spencer, M.; Tompa, G.S.; Sbrockey, N.M.; Koley, G. Highly sensitive and selective detection of NO2 using epitaxial graphene on 6H-SiC. Sens. Actuators B Chem. 2010, 150, 301–307. [Google Scholar] [CrossRef]
- Khomyakov, P.; Giovannetti, G.; Rusu, P.; Brocks, G.; van den Brink, J.; Kelly, P.J. First-principles study of the interaction and charge transfer between graphene and metals. Phys. Rev. B 2009, 79, 195425. [Google Scholar] [CrossRef] [Green Version]
- Nath, A.; Currie, M.; Boyd, A.K.; Wheeler, V.D.; Koehler, A.D.; Tadjer, M.J.; Robinson, Z.R.; Sridhara, K.; Hernandez, S.C.; Wollmershauser, J.A.; et al. In search of quantum-limited contact resistance: Understanding the intrinsic and extrinsic effects on the graphene—Metal interface. 2D Mater. 2016, 3, 025013. [Google Scholar] [CrossRef]
- DeJarld, M.; Campbell, P.M.; Friedman, A.L.; Currie, M.; Myers-Ward, R.L.; Boyd, A.K.; Rosenberg, S.G.; Pavunny, S.P.; Daniels, K.M.; Gaskill, D. Surface potential and thin film quality of low work function metals on epitaxial graphene. Sci. Rep. 2018, 8, 1–11. [Google Scholar] [CrossRef]
- Yang, S.; Zhou, P.; Chen, L.; Sun, Q.; Wang, P.; Ding, S.; Jiang, A.; Zhang, D.W. Direct observation of the work function evolution of graphene-two-dimensional metal contacts. J. Mater. Chem. 2014, 2, 8042–8046. [Google Scholar] [CrossRef]
- Tanabe, S.; Sekine, Y.; Kageshima, H.; Nagase, M.; Hibino, H. Carrier transport mechanism in graphene on SiC (0001). Phys. Rev. B 2011, 84, 115458. [Google Scholar] [CrossRef]
- Daniels, K.M.; Jadidi, M.M.; Sushkov, A.B.; Nath, A.; Boyd, A.K.; Sridhara, K.; Drew, H.D.; Murphy, T.E.; Myers-Ward, R.L.; Gaskill, D.K. Narrow plasmon resonances enabled by quasi-freestanding bilayer epitaxial graphene. 2D Mater. 2017, 4, 025034. [Google Scholar] [CrossRef]
- Ohta, T.; El Gabaly, F.; Bostwick, A.; McChesney, J.L.; Emtsev, K.V.; Schmid, A.K.; Seyller, T.; Horn, K.; Rotenberg, E. Morphology of graphene thin film growth on SiC (0001). New J. Phys. 2008, 10, 023034. [Google Scholar] [CrossRef] [Green Version]
- Hass, J.; Feng, R.; Li, T.; Li, X.; Zong, Z.; de Heer, W.; First, P.; Conrad, E.; Jeffrey, C.; Berger, C. Highly ordered graphene for two dimensional electronics. Appl. Phys. Lett. 2006, 89, 143106. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.-H.; Jang, C.; Adam, S.; Fuhrer, M.; Williams, E.D.; Ishigami, M. Charged-impurity scattering in graphene. Nat. Phys. 2008, 4, 377–381. [Google Scholar] [CrossRef]
- Sarma, S.D.; Adam, S.; Hwang, E.; Rossi, E. Electronic transport in two-dimensional graphene. Rev. Mod. Phys. 2011, 83, 407. [Google Scholar] [CrossRef] [Green Version]
- Speck, F.; Jobst, J.; Fromm, F.; Ostler, M.; Waldmann, D.; Hundhausen, M.; Weber, H.B.; Seyller, T. The quasi-free-standing nature of graphene on H-saturated SiC (0001). Appl. Phys. Lett. 2011, 99, 122106. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.-H.; Jang, C.; Xiao, S.; Ishigami, M.; Fuhrer, M.S. Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nat. Nanotechnol. 2008, 3, 206. [Google Scholar] [CrossRef] [PubMed]
- Morozov, S.; Novoselov, K.; Katsnelson, M.; Schedin, F.; Elias, D.; Jaszczak, J.A.; Geim, A. Giant intrinsic carrier mobilities in graphene and its bilayer. Phys. Rev. Lett. 2008, 100, 016602. [Google Scholar] [CrossRef] [Green Version]
- Bekyarova, E.; Itkis, M.E.; Ramesh, P.; Berger, C.; Sprinkle, M.; de Heer, W.A.; Haddon, R.C. Chemical modification of epitaxial graphene: Spontaneous grafting of aryl groups. J. Am. Chem. Soc. 2009, 131, 1336–1337. [Google Scholar] [CrossRef]
- Giesbers, A.; Procházka, P.; Flipse, C. Surface phonon scattering in epitaxial graphene on 6 H-SiC. Phys. Rev. B 2013, 87, 195405. [Google Scholar] [CrossRef] [Green Version]
- Riedl, C.; Coletti, C.; Iwasaki, T.; Zakharov, A.; Starke, U. Quasi-free-standing epitaxial graphene on SiC obtained by hydrogen intercalation. Phys. Rev. Lett. 2009, 103, 246804. [Google Scholar] [CrossRef] [Green Version]
- Wong, S.L.; Huang, H.; Wang, Y.; Cao, L.; Qi, D.; Santoso, I.; Chen, W.; Wee, A.T.S. Quasi-free-standing epitaxial graphene on SiC (0001) by fluorine intercalation from a molecular source. ACS Nano 2011, 5, 7662–7668. [Google Scholar] [CrossRef]
- Gierz, I.; Suzuki, T.; Weitz, R.T.; Lee, D.S.; Krauss, B.; Riedl, C.; Starke, U.; Höchst, H.; Smet, J.H.; Ast, C.R. Electronic decoupling of an epitaxial graphene monolayer by gold intercalation. Phys. Rev. B 2010, 81, 235408. [Google Scholar] [CrossRef] [Green Version]
- Virojanadara, C.; Zakharov, A.; Yakimova, R.; Johansson, L.I. Buffer layer free large area bi-layer graphene on SiC (0 0 0 1). Surf. Sci. 2010, 604, L4–L7. [Google Scholar] [CrossRef]
- Oliveira, M.H., Jr.; Schumann, T.; Fromm, F.; Koch, R.; Ostler, M.; Ramsteiner, M.; Seyller, T.; Lopes, J.M.J.; Riechert, H. Formation of high-quality quasi-free-standing bilayer graphene on SiC (0 0 0 1) by oxygen intercalation upon annealing in air. Carbon 2013, 52, 83–89. [Google Scholar] [CrossRef]
- Joucken, F.; Henrard, L.; Lagoute, J. Electronic properties of chemically doped graphene. Phys. Rev. Mater. 2019, 3, 110301. [Google Scholar] [CrossRef]
- Lartsev, A.; Yager, T.; Bergsten, T.; Tzalenchuk, A.; Janssen, T.M.; Yakimova, R.; Lara-Avila, S.; Kubatkin, S. Tuning carrier density across Dirac point in epitaxial graphene on SiC by corona discharge. Appl. Phys. Lett. 2014, 105, 063106. [Google Scholar] [CrossRef] [Green Version]
- Peles-Lemli, B.; Kánnár, D.; Nie, J.C.; Li, H.; Kunsági-Máté, S. Some unexpected behavior of the adsorption of alkali metal ions onto the graphene surface under the effect of external electric field. J. Phys. Chem. C 2013, 117, 21509–21515. [Google Scholar] [CrossRef]
- Ludbrook, B.; Levy, G.; Nigge, P.; Zonno, M.; Schneider, M.; Dvorak, D.; Veenstra, C.; Zhdanovich, S.; Wong, D.; Dosanjh, P.; et al. Evidence for superconductivity in Li-decorated monolayer graphene. Proc. Natl. Acad. Sci. USA 2015, 112, 11795–11799. [Google Scholar] [CrossRef] [Green Version]
- Feng, T.; Xie, D.; Lin, Y.; Tian, H.; Zhao, H.; Ren, T.; Zhu, H. Unipolar to ambipolar conversion in graphene field-effect transistors. Appl. Phys. Lett. 2012, 101, 253505. [Google Scholar] [CrossRef]
- Moon, J.; Curtis, D.; Hu, M.; Wong, D.; McGuire, C.; Campbell, P.; Jernigan, G.; Tedesco, J.; VanMil, B.; Myers-Ward, R.; et al. Epitaxial-graphene RF field-effect transistors on Si-face 6H-SiC substrates. IEEE Electron. Device Lett. 2009, 30, 650–652. [Google Scholar] [CrossRef]
- Lin, Y.-M.; Dimitrakopoulos, C.; Jenkins, K.A.; Farmer, D.B.; Chiu, H.-Y.; Grill, A.; Avouris, P. 100-GHz transistors from wafer-scale epitaxial graphene. Science 2010, 327, 662. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, Z.; Yu, C.; Liu, Q.; Song, X.; Gao, X.; Guo, J.; Zhou, C.; Cai, S.; Feng, Z. High temperature RF performances of epitaxial bilayer graphene field-effect transistors on SiC substrate. Carbon 2020, 164, 435–441. [Google Scholar] [CrossRef]
- Yu, C.; He, Z.; Li, J.; Song, X.; Liu, Q.; Cai, S.; Feng, Z. Quasi-free-standing bilayer epitaxial graphene field-effect transistors on 4H-SiC (0001) substrates. Appl. Phys. Lett. 2016, 108, 013102. [Google Scholar] [CrossRef]
- Hwang, W.S.; Zhao, P.; Tahy, K.; Nyakiti, L.O.; Wheeler, V.D.; Myers-Ward, R.L.; Eddy, C.R., Jr.; Gaskill, D.K.; Robinson, J.A.; Haensch, W.; et al. Graphene nanoribbon field-effect transistors on wafer-scale epitaxial graphene on SiC substrates. APL Mater. 2015, 3, 011101. [Google Scholar] [CrossRef] [Green Version]
- Bianco, F.; Perenzoni, D.; Convertino, D.; De Bonis, S.; Spirito, D.; Perenzoni, M.; Coletti, C.; Vitiello, M.; Tredicucci, A. Terahertz detection by epitaxial-graphene field-effect-transistors on silicon carbide. Appl. Phys. Lett. 2015, 107, 131104. [Google Scholar] [CrossRef] [Green Version]
- Illarionov, Y.Y.; Banshchikov, A.G.; Polyushkin, D.K.; Wachter, S.; Knobloch, T.; Thesberg, M.; Mennel, L.; Paur, M.; Stöger-Pollach, M.; Steiger-Thirsfeld, A.; et al. Ultrathin calcium fluoride insulators for two-dimensional field-effect transistors. Nat. Electron. 2019, 2, 230–235. [Google Scholar] [CrossRef]
- Giannazzo, F.; Schilirò, E.; Lo Nigro, R.; Roccaforte, F.; Yakimova, R. Atomic Layer Deposition of High-k Insulators on Epitaxial Graphene: A Review. Appl. Sci. 2020, 10, 2440. [Google Scholar] [CrossRef] [Green Version]
- Sangwan, V.K.; Hersam, M.C. Electronic transport in two-dimensional materials. Annu. Rev. Phys. Chem. 2018, 69, 299–325. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Ma, L.; Shi, G.; Zhou, W.; Gong, Y.; Lei, S.; Yang, X.; Zhang, J.; Yu, J.; Hackenberg, K.P.; et al. In-plane heterostructures of graphene and hexagonal boron nitride with controlled domain sizes. Nat. Nanotechnol. 2013, 8, 119. [Google Scholar] [CrossRef]
- Takahashi, N.; Watanabe, K.; Taniguchi, T.; Nagashio, K. Atomic layer deposition of Y2O3 on h-BN for a gate stack in graphene FETs. Nanotechnology 2015, 26, 175708. [Google Scholar] [CrossRef] [Green Version]
- Geng, D.; Dong, J.; Ang, L.K.; Ding, F.; Yang, H.Y. In situ epitaxial engineering of graphene and h-BN lateral heterostructure with a tunable morphology comprising h-BN domains. NPG Asia Mater. 2019, 11, 1–8. [Google Scholar] [CrossRef]
Transport Properties at 300 K | Reference | ||||||||
---|---|---|---|---|---|---|---|---|---|
Substrate | Growth Process | No. of EG Layers | Fermi Level, EF (meV) | n/p | n (cm−2) | µ (cm2·V−1·s−1) | Rsh (Ω/□) | Measurement Technique | |
EG-Substrate Interaction | |||||||||
6H-SiC(0001) | Thermal decomposition | 1 | 350–500 | n | 1013 | 1000 | - | Hall bar | [26,43] |
6H-SiC(0001) | Thermal decomposition | 2 | 300–400 | n | 5 × 1012 | 1000 | - | Hall bar | [31,34] |
6H-/4H-SiC(0001) | Thermal decomposition | Multi | - | n/p | 1013 –1014 | 1000–3000 | Hall bar | [56] | |
6H-/4H-SiC(000) | Thermal decomposition | Multi (top) (mid) (first) | - | p p n | 2 × 1013 5 × 1011 2 × 1013 | 1500 19,300 12,400 | - | Hall bar | [14] |
4H-SiC(000) | Thermal decomposition | First layer | 350 | n | 9 × 1012 | ~1500 | - | Optical Hall effect | [72,73] |
4H-SiC(000) | Thermal decomposition | Multi | - | p | 1012 | 15,000 | - | Hall bar | [15] |
3C-SiC(100) 3C-SiC(111) | Alloy mediated | 3–7 | 450 | p | 3 × 1013 1012 | <80 330 | ~10k | vdP | [21] |
EG-Ambient Interaction | |||||||||
4H-SiC(0001) | Thermal decomposition | 1 | p | 1012 | ~1550 | - | Optical Hall effect | [74] | |
Fine-Tuning of Transport Properties | |||||||||
H-Intercalation | |||||||||
4H-SiC(0001) 6H-SiC(0001) | Thermal decomposition | Quasi-free-standing monolayer | 340 300 | p | 9 × 1012 6 × 1012 | - | - | ARPES | [75] |
3C-SiC(111) | Thermal decomposition | Quasi-free-standing monolayer | - | n | 1012 | - | - | APRES | [76] |
6H-SiC(0001) | Thermal decomposition | Quasi-free-standing bilayer | 230 | p | 1012 | - | - | APRES | [77] |
3C-SiC(111) | Alloy mediated | 3–7 | 320 | p | 3 × 1012 | 350 | 6k | vdP, density functional theory | [21] |
Oxygen Intercalation | |||||||||
6H-SiC(0001) | Thermal decomposition | 1 | 300 200 | n | 5 × 1012 2 × 1012 | - | - | ARPES (partial intercalation) | [78] |
Magnesium Intercalation | |||||||||
6H-SiC(0001) | Thermal decomposition | Quasi-free-standing bilayer | 720 | n | 2 × 1014 | - | - | APRES, density functional theory | [43] |
Functionalization | |||||||||
F4-TCNQ/Si-face SiC | Thermal decomposition | 1 | 10 | n | 5 × 1010 | 29000 | - | Hall bar (25 K) | [55,79] |
Top-gate Graphene Field-Effect Transistor | |||||||||
SiC(0001) SiC(000) | Thermal decomposition | Multilayer | - | n/p | 600–1200 (0001) 500–3000 (0001) | - | Field-effect transistor | [60] | |
3C-SiC(111)/Si(111) | Thermal decomposition | - | - | n/p | - | 175 (n) 285 (p) | - | Field-effect transistor | [80] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pradeepkumar, A.; Gaskill, D.K.; Iacopi, F. Electronic and Transport Properties of Epitaxial Graphene on SiC and 3C-SiC/Si: A Review. Appl. Sci. 2020, 10, 4350. https://doi.org/10.3390/app10124350
Pradeepkumar A, Gaskill DK, Iacopi F. Electronic and Transport Properties of Epitaxial Graphene on SiC and 3C-SiC/Si: A Review. Applied Sciences. 2020; 10(12):4350. https://doi.org/10.3390/app10124350
Chicago/Turabian StylePradeepkumar, Aiswarya, D. Kurt Gaskill, and Francesca Iacopi. 2020. "Electronic and Transport Properties of Epitaxial Graphene on SiC and 3C-SiC/Si: A Review" Applied Sciences 10, no. 12: 4350. https://doi.org/10.3390/app10124350
APA StylePradeepkumar, A., Gaskill, D. K., & Iacopi, F. (2020). Electronic and Transport Properties of Epitaxial Graphene on SiC and 3C-SiC/Si: A Review. Applied Sciences, 10(12), 4350. https://doi.org/10.3390/app10124350