Microplastics in River Water: Features of Analytical Methods for Quantitative Determination
Abstract
1. Introduction
2. Materials and Methods
2.1. Sampling
2.2. Chemicals and Materials
2.3. Sample Treatment: Density Separation and Oxidizing Digestion
2.4. Analytical Methods
2.4.1. SEM-EDS Analysis
2.4.2. μ-FTIR Spectroscopy
2.4.3. Thermogravimetric Analysis
2.4.4. Pyro-GC-MS Measurements
2.5. Quality Assurance and Quality Control
3. Results
3.1. Non-Destructive Analysis Methods
3.1.1. Optical Microscopy
3.1.2. Scanning Electron Microscopy (SEM)
3.1.3. μ-FTIR Spectroscopy
3.2. Thermal Analysis Methods
3.2.1. Thermogravimetric Analysis
3.2.2. Pyrolysis-Gas Chromatography-Mass Spectrometry
3.3. MPs Abundances: Total Particle Number and Mass Concentration
4. Discussion: Comparative Analysis and Methodological Considerations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| MP | Microplastic |
| μ-FTIR | Micro-Fourier transform infrared microscopy |
| TGA | Thermogravimetric analysis |
| pyro-GC-MS | Pyrolysis–Gas Chromatography–Mass Spectrometry |
| SEM | Scanning Electron Microscopy |
| EDS | Energy-Dispersive X-ray Spectroscopy |
| NOM | Natural Organic Matter |
| ATR | Attenuated Total Reflection |
| LOQ | Limit of Quantification |
| PE | Polyethylene |
| PP | Polypropylene |
| PS | Polystyrene |
| PU | Polyurethane |
| PET | Polyethylene terephthalate |
| PAN | Polyacrylonitrile |
| PVC | Polyvinyl chloride |
| EVA | Ethylene-vinyl acetate copolymer |
| ABS | Acrylonitrile-butadiene-styrene |
| PMMA | Polymethyl methacrylate |
| PA | Polyamide |
References
- State Water Resources Control Board. Adoption of Definition of ‘Microplastics in Drinking Water’: Resolution No. 2020-0021. Available online: https://www.waterboards.ca.gov/board_decisions/adopted_orders/resolutions/2020/rs2020_0021.pdf (accessed on 16 April 2025).
- Zobkov, M.B.; Esiukova, E.E.; Zyubin, A.Y.; Samusev, I.G. Microplastic content variation in water column: The observations employing a novel sampling tool in stratified Baltic Sea. Mar. Pollut. Bull. 2019, 138, 193–205. [Google Scholar] [CrossRef]
- Beer, S.; Garm, A.; Huwer, B.; Dierking, J.; Nielsen, T.G. No increase in marine microplastic concentration over the last three decades—A case study from the Baltic Sea. Sci. Total Environ. 2018, 621, 1272–1279. [Google Scholar] [CrossRef]
- Abayomi, O.A.; Range, P.; Al-Ghouti, M.A.; Obbard, J.P.; Almeer, S.H.; Ben-Hamadou, R. Microplastics in coastal environments of the Arabian Gulf. Mar. Pollut. Bull. 2017, 124, 181–188. [Google Scholar] [CrossRef]
- Tunçer, S.; Artüz, O.B.; Demirkol, M.; Artüz, M.L. First report of occurrence, distribution, and composition of microplastics in surface waters of the Sea of Marmara, Turkey. Mar. Pollut. Bull. 2018, 135, 283–289. [Google Scholar] [CrossRef] [PubMed]
- Baini, M.; Fossi, M.C.; Galli, M.; Caliani, I.; Campani, T.; Finoia, G.; Panti, C. Abundance and characterization of microplastics in the coastal waters of Tuscany (Italy): The application of the MSFD monitoring protocol in the Mediterraneand Sea. Mar. Pollut. Bull. 2018, 133, 543–552. [Google Scholar] [CrossRef]
- Gajšt, T.; Bizjak, T.; Palatinus, A.; Liubartseva, S.; Kržan, A. Sea surface microplastics in Slovenian part of the northern Adriatic. Mar. Pollut. Bull. 2016, 113, 392–399. [Google Scholar] [CrossRef]
- Bimali Koongolla, J.; Andrady, A.L.; Terney Pradeep Kumara, P.B.; Gangabadage, C.S. Evidence of microplastics pollution in coastal beaches and waters in southern Sri Lanka. Mar. Pollut. Bull. 2018, 137, 277–284. [Google Scholar] [CrossRef]
- Cai, M.; He, H.; Liu, M.; Li, S.; Tang, G.; Wang, W.; Huang, P.; Wei, G.; Lin, Y.; Chen, B.; et al. Lost but can’t be neglected: Huge quantities of small microplastics hide in the South China Sea. Sci. Total Environ. 2018, 633, 1206–1216. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Zhang, Q.; Li, Y.; Tan, S.; Kang, Z.; Yu, X.; Lan, W.; Cai, L.; Wang, J.; Shi, H. Microplastic pollution in the Maowei Sea, a typical mariculture bay of China. Sci. Total Environ. 2019, 658, 62–68. [Google Scholar] [CrossRef]
- Cincinelli, A.; Scopetani, C.; Chelazzi, D.; Lombardini, E.; Martellini, T.; Katsoyiannis, A.; Fossi, M.C.; Corsolini, S. Microplastic in the surface waters of Ross Sea (Antarctica): Occurrence, distribution and characterization by FTIR. Chemosphere 2017, 175, 391–400. [Google Scholar] [CrossRef] [PubMed]
- Collignon, A.; Hecq, J.H.; Galgani, F.; Voisin, P.; Collard, F.; Goffart, A. Neustonic microplastic and zooplankton in the North Western Mediterranean Sea. Mar. Pollut. Bull. 2012, 64, 861–864. [Google Scholar] [CrossRef] [PubMed]
- Collignon, A.; Hecq, J.; Galgani, F.; Collard, F.; Goffart, A. Annual variation in neustonic micro- and meso-plastic particles and zooplankton in the Bay of Calvi (Mediterranean-Corsica). Mar. Pollut. Bull. 2014, 79, 293–298. [Google Scholar] [CrossRef]
- de Lucia, G.A.; Caliani, I.; Marra, S.; Camedda, A.; Coppa, S.; Alcaro, L.; Campani, T.; Giannetti, M.; Coppola, D.; Cicero, A.M.; et al. Amount and distribution of neustonic micro-plastic off the western Sardinian coast (Central-Western Mediterranean Sea). Mar. Environ. Res. 2014, 100, 10–16. [Google Scholar] [CrossRef]
- Cutroneo, L.; Reboa, A.; Besio, G.; Borgogno, F.; Canesi, L.; Canuto, S.; Dara, M.; Enrile, F.; Forioso, I.; Greco, G.; et al. Microplastics in seawater: Sampling strategies, laboratory methodologies, and identification techniques applied to port environment. Environ. Sci. Pollut. Res. 2020, 27, 8938–8952. [Google Scholar] [CrossRef]
- Enders, K.; Lenz, R.; Stedmon, C.A.; Nielsen, T.G. Abundance, size and polymer composition of marine microplastics ≥ 10 μm in the Atlantic Ocean and their modelled vertical distribution. Mar. Pollut. Bull. 2015, 100, 70–81. [Google Scholar] [CrossRef] [PubMed]
- Desforges, J.P.W.; Galbraith, M.; Dangerfield, N.; Ross, P.S. Widespread distribution of microplastics in subsurface seawater in the NE Pacific Ocean. Mar. Pollut. Bull. 2014, 79, 94–99. [Google Scholar] [CrossRef] [PubMed]
- Green, D.S.; Kregting, L.; Boots, B.; Blockley, D.J.; Brickle, P.; da Costa, M.; Crowley, Q. A comparison of sampling methods for seawater microplastics and a first report of the microplastic litter in coastal waters of Ascension and Falkland Islands. Mar. Pollut. Bull. 2018, 137, 695–701. [Google Scholar] [CrossRef]
- Maes, T.; Van der Meulen, M.D.; Devriese, L.I.; Leslie, H.A.; Huvet, A.; Frère, L.; Robbens, J.; Vethaak, A.D. Microplastic baseline surveys at the water surface and sediments of the North-East Atlantic. Front. Mar. Sci. 2017, 4, 135. [Google Scholar] [CrossRef]
- Pellegrino, D.; La Russa, D.; Barberio, L. Pollution Has No Borders: Microplastics in Antarctica. Environments 2025, 12, 77. [Google Scholar] [CrossRef]
- Haque, F.; Fan, C. Fate and Impacts of Microplastics in the Environment: Hydrosphere, Pedosphere, and Atmosphere. Environments 2023, 10, 70. [Google Scholar] [CrossRef]
- Dris, R.; Gasperi, J.; Rocher, V.; Saad, M.; Renault, N.; Tassin, B. Microplastic contamination in an urban area: A case study in Greater Paris. Environ. Chem. 2015, 12, 592–599. [Google Scholar] [CrossRef]
- Campanale, C.; Stock, F.; Massarelli, C.; Kochleus, C.; Bagnuolo, G.; Reifferscheid, G.; Uricchio, V.F. Microplastics and their possible sources: The example of Ofanto river in southeast Italy. Environ. Pollut. 2020, 258, 113284. [Google Scholar] [CrossRef]
- Mani, T.; Hauk, A.; Walter, U.; Burkhardt-Holm, P. Microplastics profile along the Rhine River. Sci. Rep. 2016, 5, 17988. [Google Scholar] [CrossRef]
- Hildebrandt, L.; Zimmermann, T.; Primpke, S.; Fischer, D.; Gerdts, G.; Pröfrock, D. Comparison and uncertainty evaluation of two centrifugal separators for microplastic sampling. J. Hazard. Mater. 2021, 414, 125482. [Google Scholar] [CrossRef]
- Fisher, E.K.; Paglialonga, L.; Czech, E.; Tamminga, M. Microplastic pollution in lakes and lake shoreline sediments e a case study on Lake Bolsena and Lake Chiusi (central Italy). Environ. Pollut. 2016, 213, 648–657. [Google Scholar] [CrossRef] [PubMed]
- Lisina, A.A.; Platonov, M.M.; Lomakov, O.I.; Sazonov, A.A.; Shishova, T.V.; Berkovich, A.K.; Frolova, N.L. Microplastic Abundance in Volga River: Results of A Pilot Study in Summer 2020. Geogr. Environ. Sustain. 2021, 14, 82–93. [Google Scholar] [CrossRef]
- Zhdanov, I.; Lokhov, A.; Belesov, A.; Kozhevnikov, A.; Pakhomova, S.; Berezina, A.; Frolova, N.; Kotova, E.; Leshchev, A.; Wang, X.; et al. Assessment of Seasonal Variability of Input of Microplastics from the Northern Dvina River to the Arctic Ocean. Mar. Pollut. Bull. 2022, 175, 113370. [Google Scholar] [CrossRef]
- Leslie, H.A.; Brandsma, S.H.; van Velzen, M.J.M.; Vethaak, A.D. Microplastics, En Route: Field Measurements in the Dutch River Delta and Amsterdam Canals, Wastewater Treatment Plants, North Sea Sediments and Biota. Environ. Int. 2017, 101, 133–142. [Google Scholar] [CrossRef]
- Sefiloglu, F.Ö.; Stratmann, C.N.; Brits, M.; van Velzen, M.J.M.; Groenewoud, Q.; Vethaak, A.D.; Dris, R.; Gasperi, J.; Lamoree, M.H. Comparative microplastic analysis in urban waters using μ-FTIR and Py-GC-MS: A case study in Amsterdam. Environ. Pollut. 2024, 351, 124088. [Google Scholar] [CrossRef]
- Rodrigues, M.O.; Abrantes, N.; Gonçalves, F.J.M.; Nogueira, H.; Marques, J.C.; Gonçalves, A.M.M. Spatial and temporal distribution of microplastics in water and sediments of a freshwater system (Antuã River, Portugal). Sci. Total Environ. 2018, 633, 1549–1559. [Google Scholar] [CrossRef]
- Su, L.; Xue, Y.; Li, L.; Yang, D.; Kolandhasamy, P.; Li, D.; Shi, H. Microplastics in taihu lake, China. Environ. Pollut. 2016, 216, 711–719. [Google Scholar] [CrossRef]
- Jiang, C.; Yin, L.; Li, Z.; Wen, X.; Luo, X.; Hu, S.; Yang, H.; Long, Y.; Deng, B.; Huang, L.; et al. Microplastic pollution in the rivers of the tibet plateau. Environ. Pollut. 2019, 249, 91–98. [Google Scholar] [CrossRef]
- Lenaker, P.L.; Baldwin, A.K.; Corsi, S.R.; Mason, S.A.; Reneau, P.C.; Scott, J.W. Vertical distribution of microplastics in the water column and surficial sediment from the Milwaukee river basin to lake Michigan. Environ. Sci. Technol. 2019, 53, 12227–12237. [Google Scholar] [CrossRef] [PubMed]
- Rojas-Luna, R.A.; Oquendo-Ruiz, L.; García-Alzate, C.A.; Arana, V.A.; García-Alzate, R.; Trilleras, J. Identification, abundance, and distribution of microplastics in surface water collected from Luruaco lake, low basin Magdalena river, Colombia. Water 2023, 15, 344. [Google Scholar] [CrossRef]
- Baldwin, A.K.; Corsi, S.R.; Mason, S.A. Plastic Debris in 29 Great Lakes Tributaries: Relations to Watershed Attributes and Hydrology. Environ. Sci. Technol. 2016, 50, 10377–10385. [Google Scholar] [CrossRef] [PubMed]
- Wontor, K.; Olubusoye, B.S.; Cizdziel, J.V. Microplastics in the Mississippi River System during Flash Drought Conditions. Environments 2024, 11, 141. [Google Scholar] [CrossRef]
- Barrett, N.; Miller, J.; Orbock-Miller, S. Quantification and Categorization of Macroplastics (Plastic Debris) within a Headwaters Basin in Western North Carolina, USA: Implications to the Potential Impacts of Plastic Pollution on Biota. Environments 2024, 11, 195. [Google Scholar] [CrossRef]
- Eriksen, M.; Mason, S.; Wilson, S.; Box, C.; Zellers, A.; Edwards, W.; Farley, H.; Amato, S. Microplastic pollution in the surface waters of the laurentian great lakes. Mar. Pollut. Bull. 2013, 77, 177–182. [Google Scholar] [CrossRef]
- Hendrickson, E.; Minor, E.C.; Schreiner, K. Microplastic abundance and composition in Western lake superior as determined via microscopy, Pyr-GC/MS, and FTIR. Environ. Sci. Technol. 2018, 52, 1787–1796. [Google Scholar] [CrossRef]
- Prajapati, A.; Dehal, A.; Kumar, A.R. Microplastics in Soils and Sediments: A Review of Characterization, Quantitation, and Ecological Risk Assessment. Water Air Soil Pollut. 2024, 235, 189. [Google Scholar] [CrossRef]
- Filella, M. Questions of size and numbers in environmental research on microplastics: Methodological and conceptual aspects. Environ. Chem. 2015, 12, 527–538. [Google Scholar] [CrossRef]
- Yang, J.; Monnot, M.; Sun, Y.; Asia, L.; Wong-Wah-Chung, P.; Doumenq, P.; Moulin, P. Microplastics in different water samples (seawater, freshwater, and wastewater): Methodology approach for characterization using micro-FTIR spectroscopy. Water Res. 2023, 232, 119711. [Google Scholar] [CrossRef] [PubMed]
- Willans, M.; Szczecinski, E.; Roocke, C.; Williams, S.; Timalsina, S.; Vongsvivut, J.; McIlwain, J.; Naderi, G.; Linge, K.L.; Hackett, M.J. Development of a rapid detection protocol for microplastics using reflectance-FTIR spectroscopic imaging and multivariate classification. Environ. Sci. Adv. 2023, 2, 663–674. [Google Scholar] [CrossRef]
- Xu, J.-L.; Thomas, K.V.; Luo, Z.; Gowen, A.A. FTIR and Raman imaging for microplastics analysis: State of the art, challenges and prospects. Trends Anal. Chem. 2019, 119, 115629. [Google Scholar] [CrossRef]
- Käppler, A.; Fischer, D.; Oberbeckmann, S.; Schernewski, G.; Labrenz, M.; Eichhorn, K.-J.; Voit, B. Analysis of environmental microplastics by vibrational microspectroscopy: FTIR, Raman or both? Anal. Bioanal. Chem. 2016, 408, 8377–8391. [Google Scholar] [CrossRef] [PubMed]
- Sekudewicz, I.; Dąbrowska, A.M.; Syczewski, M.D. Microplastic pollution in surface water and sediments in the urban section of the Vistula River (Poland). Sci. Total Environ. 2021, 762, 143111. [Google Scholar] [CrossRef]
- Girão, A.V. SEM/EDS and optical microscopy analysis of microplastics. In Handbook of Microplastics in the Environment; Springer International Publishing: Cham, Switzerland, 2022; pp. 57–78. [Google Scholar]
- Dąbrowska, A.; Mielańczuk, M.; Syczewski, M. The Raman spectroscopy and SEM/EDS investigation of the primary sources of microplastics from cosmetics available in Poland. Chemosphere 2022, 308, 136407. [Google Scholar] [CrossRef] [PubMed]
- Mansa, R.; Zou, S. Thermogravimetric analysis of microplastics: A mini review. Environ. Adv. 2021, 5, 100117. [Google Scholar] [CrossRef]
- Sorolla-Rosario, D.; Llorca-Porcel, J.; Pérez-Martínez, M.; Lozano-Castelló, D.; Bueno-López, A. Study of microplastics with semicrystalline and amorphous structure identification by TGA and DSC. J. Environ. Chem. Eng. 2022, 10, 106886. [Google Scholar] [CrossRef]
- Abbasi, S.; Razeghi, N.; Yousefi, M.R.; Podkościelna, B.; Oleszczuk, P. Microplastics identification in water by TGA–DSC Method: Maharloo Lake, Iran. Environ. Sci. Pollut. Res. 2023, 30, 67008–67018. [Google Scholar] [CrossRef]
- Dang, T.T.; Sogut, E.; Uysal-Unalan, I.; Corredig, M. Quantification of polystyrene microplastics in water, milk, and coffee using thermogravimetry coupled with Fourier transform infrared spectroscopy (TGA-FTIR). Chemosphere 2024, 368, 143777. [Google Scholar] [CrossRef]
- Lou, F.; Wang, J.; Sun, C.; Song, J.; Wang, W.; Pan, Y.; Huang, Q.; Yan, J. Influence of interaction on accuracy of quantification of mixed microplastics using Py-GC/MS. J. Environ. Chem. Eng. 2022, 10, 108012. [Google Scholar] [CrossRef]
- Goedecke, C.; Dittmann, D.; Eisentraut, P.; Wiesner, Y.; Schartel, B.; Klack, P.; Braun, U. Evaluation of thermoanalytical methods equipped with evolved gas analysis for the detection of microplastic in environmental samples. J. Anal. Appl. Pyrol. 2020, 152, 104961. [Google Scholar] [CrossRef]
- Bouzid, N.; Anquetil, C.; Dris, R.; Gasperi, J.; Tassin, B.; Derenne, S. Quantification of Microplastics by Pyrolysis Coupled with Gas Chromatography and Mass Spectrometry in Sediments: Challenges and Implications. Microplastics 2022, 1, 229–239. [Google Scholar] [CrossRef]
- Ermolin, M.S.; Ivaneev, A.I.; Savonina, E.Y.; Dzhenloda, R.K. Extraction of Microplastics from River Water in a Rotating Coiled Column Using a Water–Oil System. J. Anal. Chem. 2025, 80, 432–441. [Google Scholar] [CrossRef]
- Jung, E.S.; Choe, J.H.; Yoo, J.; Choi, T.M.; Lee, H.R.; Lee, C.Y.; Kim, D.H.; Pyo, S.G. Vibrational Spectroscopy for Microplastic Detection in Water: A Review. Appl. Spectrosc. Rev. 2024, 60, 193–214. [Google Scholar] [CrossRef]
- Li, H.; Xu, S.; Teng, J.; Jiang, X.; Zhang, H.; Qin, Y.; He, Y.; Fan, L. Deep learning assisted ATR-FTIR and Raman spectroscopy fusion technology for microplastic identification. Microchem. J. 2025, 212, 113224. [Google Scholar] [CrossRef]
- Campanale, C.; Savino, I.; Pojar, I. A practical overview of methodologies for sampling and analysis of microplastics in riverine environments. Sustainability 2020, 12, 6755. [Google Scholar] [CrossRef]
- ISO 24187-2023; Principles for the Analysis of Microplastics Present in the Environment. International Standard ISO: Geneva, Switzerland, 2023.
- Sotnikova, Y.S.; Karpova, E.V.; Song, D.I.; Polovyanenko, D.N.; Kuznetsova, T.A.; Radionova, S.G.; Bagryanskaya, E.G. The development of an analytical procedure for the determination of microplastics in freshwater ecosystems. Anal. Methods 2024, 16, 8019–8026. [Google Scholar] [CrossRef] [PubMed]
- Nandikes, G.; Banerjee, O.; Mirthipati, M.; Bhargavi, A.; Jones, H.; Pathak, P. Separation, Identification, and Quantification of Microplastics in Environmental Samples. In Microplastic Pollutants in Biotic Systems: Environmental Impact and Remediation Techniques; ACS Symposium Series; American Chemical Society: Washington, DC, USA, 2024; Volume 1482, pp. 1–19. [Google Scholar] [CrossRef]
- Periyasamy, A.P.; Tehrani-Bagha, A. A review on microplastic emission from textile materials and its reduction techniques. Polym. Degrad. Stab. 2022, 199, 109901. [Google Scholar] [CrossRef]
- Frank, Y.A.; Vorobiev, E.D.; Vorobiev, D.S.; Trifonov, A.A.; Antsiferov, D.V.; Soliman Hunter, T.; Wilson, S.P.; Strezov, V. Preliminary Screening for Microplastic Concentrations in the Surface Water of the Ob and Tom Rivers in Siberia, Russia. Sustainability 2021, 13, 80. [Google Scholar] [CrossRef]
- Mintenig, S.M.; Kooi, M.; Erich, M.W.; Primpke, S.; Redondo-Hasselerharm, P.E.; Dekker, S.C.; Koelmans, A.A.; van Wezel, A.P. A systems approach to understand microplastic occurrence and variability in Dutch riverine surface waters. Water Res. 2020, 176, 115723. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, L.K.; Bochow, M.; Imhof, H.K.; Oswald, S.E. Multi-temporal surveys for microplastic particles enabled by a novel and fast application of SWIR imaging spectroscopy—Study of an urban watercourse traversing the city of Berlin, Germany. Environ. Pollut. 2018, 239, 579–589. [Google Scholar] [CrossRef] [PubMed]


| Station_Number Sample | Sample Mass on Filter, mg | Mass Loss (TGA), mg | Suspended Particulate Organic Matter (MPs and NOM) Concentration, (mg/m3) | μ-FTIR Characterization: Polymer Types and Particle Numbers |
|---|---|---|---|---|
| 7-1 | 0.43 | 0.38 | 19.0 | PU (1), oil paint (2), acrylic (2) |
| 8-1 | 0.26 | 0.20 | 10 | PET (1), acryl-styrene copolymer (1) |
| 9-1 | 0.33 | 0.27 | 13.5 | PE (2), PS (1), PAN (2) |
| 10-1 | 0.27 | 0.19 | 9.5 | PVC (1), PP (1), silicone (1) |
| 11-1 | 0.21 | 0.12 | 6.0 | PE (1), PAN (1), PP (1), PET (1), EVA (1), alkyd resin (1) |
| Station (_№) | Microplastic Particle Concentration (µ-FTIR Microscopy), pcs/m3 | MPs Mass Concentration (pyro-GC-MS), µg/m3 | |||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| PVC | PP | PE | PS | PET | ABS | other | PVC | PP | PE | PS | PET | ABS | PMMA | Ʃ | |
| 1 | 0 | 100 | 150 | 0 | 0 | 0 | alkyd resins (100) | 90 | >838 | 355 | 10 | 75 | 0 | 9 | >1377 |
| 2 | 0 | 100 | >10,000 | 0 | 0 | 0 | PAN (150) | 80 | 0 | 370 | 75 | 130 | 0 | 0 | 655 |
| 3 | 0 | 0 | 0 | 0 | 0 | 0 | 275 | 38 | 750 | 35 | >203 | 7 | >12 | >1320 | |
| 4 | 0 | 50 | 250 | 0 | 0 | 0 | PA (50) | 365 | >838 | 1550 | 0 | >203 | 0 | 0 | >2956 |
| 5 | 50 | 0 | 0 | 50 | 50 | 0 | 60 | 321 | 407 | 109 | >203 | 0 | >12 | >1112 | |
| 6 | 0 | 350 | 200 | 0 | 0 | 0 | 195 | >838 | 1240 | 80 | 180 | 0 | 0 | >2533 | |
| 7-2 | 0 | 150 | 50 | 0 | 0 | 0 | 200 | >838 | 1040 | 435 | 165 | 1 | 0 | >2679 | |
| 8-2 | 150 | 0 | 50 | 100 | 50 | 0 | 309 | 96 | 1849 | 147 | >203 | 0 | 6 | >2610 | |
| 9-2 | 250 | 50 | 0 | 0 | 0 | 0 | 197 | 7 | 387 | 2 | 142 | 0 | 1 | 736 | |
| 10-2 | 0 | 100 | 0 | 2950 | 200 | 50 | polysiloxane (1800) | 130 | 90 | 210 | >1100 | >203 | 7 | 14 | >1754 |
| 11-2 | 0 | 0 | 0 | 0 | 50 | 0 | 1023 | 16 | 682 | 6 | 100 | 0 | 3 | 1830 | |
| 12 | 0 | 50 | 100 | 2900 | 150 | 50 | PU (50), N/I 1 (100) | 155 | 214 | 405 | >1100 | >203 | 3 | 4 | >2084 |
| 13 | 0 | 50 | 50 | 0 | 0 | 0 | PFR (50), polysiloxane (100), polyester (50) | 85 | 43 | 355 | 25 | 60 | 0 | 1 | 569 |
| 14 | 0 | 0 | 0 | 0 | 50 | 0 | poly(acrylate-acrylonitrile) (50), poly(styrene acrylate) (50) | 125 | 12 | 255 | 5 | 195 | 0 | 1 | 593 |
| 15 | 0 | 0 | 0 | 0 | 0 | 0 | polysiloxane (150) | 215 | 4 | 110 | 55 | 155 | 0 | 0 | 539 |
| 16 | 0 | 0 | 0 | 0 | 0 | 0 | polyacrylate (50) | 90 | 37 | 235 | 15 | 90 | 3 | 2 | 472 |
| 17 | 0 | 0 | 0 | 400 | 0 | 50 | 119 | 40 | 302 | 110 | >203 | 3 | 0 | >777 | |
| 18 | 0 | 0 | 0 | 0 | 0 | 0 | 65 | 131 | 285 | 5 | >203 | 1 | 2 | >692 | |
| 19 | 0 | 100 | 0 | 0 | 50 | 0 | polyester (50), poly(styrene- acrylate) (50) | 85 | 233 | 305 | 85 | 95 | 6 | 4 | 813 |
| 20 | 0 | 0 | 0 | 50 | 0 | 0 | 195 | 994 | 365 | 575 | >203 | 0 | 16 | >2348 | |
| 21 | 0 | 100 | 0 | 50 | 0 | 150 | 175 | 78 | 1260 | 230 | 90 | 387 | 9 | 2229 | |
| Object of Study | Sampling Tools | Sample Preparation | Microplastic Concentration (pcs/m3) | Size (mm) | Microplastic Mass Concentration (μg/m3) | Analytic Instruments | Reference |
|---|---|---|---|---|---|---|---|
| Ob River | Metal sampler, 20 L, filtration on a polyamide with a 0.10 mm mesh net | 1.70 g/mL sodium heteropolyoxotungstate solution; peracetic acid, 0.05 M Fe(II) and 30% H2O2, 90 °C | 0–>10,000 | 0.10–5.00 | 470–>2955 | μ-FTIR, pyro-GC-MS | our study |
| Tom River | Manta trawl with a 0.33 mm mesh net | 0.05 M Fe(II) and 30% H2O2, 70 °C; 1.19 g/mL NaCl solution | 29.2–57.2 | 0.30–5.00 | 22.9–199 | Optical microscopy, gravimetry | [65] |
| Ob River | Manta trawl with a 0.33 mm mesh net | 0.05 M Fe(II) and 30% H2O2, 70 °C; 1.19 g/mL NaCl solution | 26.5–114 | 0.30–5.00 | 56.0–107 | Optical microscopy, gravimetry | [65] |
| Volga River | Manta trawl with a 0.33 mm mesh net | 30% NaOH, 70–80 °C, 30% H2O2; saline solution | 0.16–4.10 | 0.30–5.00 | 40–1290 | Optical microscopy | [27] |
| Northern Dvina River | Neuston net with a 0.33 mm mesh net | Visual analysis; density separation; sieving | 0.004–0.010 | 0.33–5.00 | 20–40 | Optical microscopy, FTIR, gravimetry | [28] |
| Ofanto River | Plankton nets with a mesh size of 0.33 mm | 0.05 M Fe(II) and 30% H2O2, 70 °C; 1.2 g/mL NaCl solution | 0.9–13 | 0.30–5.00 | - | Optical microscopy | [23] |
| Amsterdam canals | Glass bottles (2 L capacity) | 1.2 g/mL NaCl solution | 48,000–187,000 | 0.01–5.00 | - | Optical microscopy | [29] |
| Amsterdam canals, Amstel River | UFO filtration system | 10% H2O2, 30 °C; 1.65 g/mL NaI solution | 16–1707 | 0.10–0.30 | 8.5–754 | μ-FTIR, pyro-GC-MS | [30] |
| Rhine River | Manta trawl with a 0.30 mm mesh net | Castor oil separation | 0.04–9.97 | 0.30–5.00 | - | Optical microscopy, ATR-FTIR | [24] |
| Seine River | Plankton net (mesh size: 0.08 mm) Manta trawl (mesh size: 0.33 mm) | Samples were filtered on pre-heated (500 °C, 4 h) glass fiber GF/A Whatman filters (1.6 μm) | 3–108 (Plankton net) 0.28–0.47 (Manta trawl) | 0.10–5.00 | - | Optical microscopy | [22] |
| Dommel River, Meuse River | Centrifugal pump filtering over stacked stainless-steel sieves (mesh: 0.30 mm, 0.10 mm, 0.02 mm) | 5% SDS; 10% KOH; 32% H2O2; 1.6 g/mL ZnCl2 solution | 160–11,532 (Dommel River), 67–1381 (Meuse River) | 0.02–5.00 | - | Optical microscopy, μ-FTIR (MP < 0.30 mm), ATR-FTIR (MP > 0.30 mm) | [66] |
| Elbe River |
CFC (Contifuge Stratos);
HC (MultiCyclone 12 Plus); Bulk water sampling (glass bottles) |
1.7–1.8 g/mL ZnCl2 solution; 10% SDS, 50 °C, 3 days; 30% H2O2, 37 °C, 2 days; 10 M HNO3, 20 °C, 1 day | 193–2072 (CFC); 269–574 (HC); up to 39,458 (glass bottles) | 0.01–5.00 | - | Optical microscopy; ATR-FTIR; FPA-FTIR imaging; Raman imaging | [25] |
| Teltow Canal, Berlin | 2.2 L Niskin bottle with a 0.02 mm plankton net | 30% H2O2 | 10–95,800 | 0.45–5.00 | - | Optical microscopy, SWIR imaging spectroscopy | [67] |
| Rivers of the Tibet Plateau | Flow sampler KLL-S4; 0.045 mm stainless steel sieve | 0.05 M Fe(II) and 30% H2O2; 70 °C; 1.5 g/mL ZnCl2 solution | 483–967 | 0.05–5.00 | - | Optical microscopy, μ-Raman spectroscopy | [33] |
| Antuã River | Motor pump with a 0.055 mm mesh net | 0.05 M Fe(II) and 30% H2O2, 75 °C; 1.6 g/mL ZnCl2 solution | 58–1265 | 0.06–5.00 | 5000–51,700 | Optical microscopy; ATR-FTIR | [31] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Sotnikova, Y.S.; Karpova, E.V.; Shundrina, I.K.; Osechkova, A.E.; Song, D.I.; Nefedov, A.A.; Sotnikov, A.V.; Polovyanenko, D.N.; Bagryanskaya, E.G. Microplastics in River Water: Features of Analytical Methods for Quantitative Determination. Environments 2026, 13, 50. https://doi.org/10.3390/environments13010050
Sotnikova YS, Karpova EV, Shundrina IK, Osechkova AE, Song DI, Nefedov AA, Sotnikov AV, Polovyanenko DN, Bagryanskaya EG. Microplastics in River Water: Features of Analytical Methods for Quantitative Determination. Environments. 2026; 13(1):50. https://doi.org/10.3390/environments13010050
Chicago/Turabian StyleSotnikova, Yulia S., Elena V. Karpova, Inna K. Shundrina, Aleksandra E. Osechkova, Dae Il Song, Andrey A. Nefedov, Aleksandr V. Sotnikov, Dmitriy N. Polovyanenko, and Elena G. Bagryanskaya. 2026. "Microplastics in River Water: Features of Analytical Methods for Quantitative Determination" Environments 13, no. 1: 50. https://doi.org/10.3390/environments13010050
APA StyleSotnikova, Y. S., Karpova, E. V., Shundrina, I. K., Osechkova, A. E., Song, D. I., Nefedov, A. A., Sotnikov, A. V., Polovyanenko, D. N., & Bagryanskaya, E. G. (2026). Microplastics in River Water: Features of Analytical Methods for Quantitative Determination. Environments, 13(1), 50. https://doi.org/10.3390/environments13010050

