Groundwater Quality in a Rural and Urbanized Region in Limpopo Province, South Africa
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Sites
2.2. Physico-Chemical Analysis
2.3. Water Character Analysis
2.4. Statistical Analysis
2.5. Bacterial Contamination
3. Results
3.1. Water Quality Parameters
3.2. Water Quality Indices
3.3. Multivariate Analysis
3.4. Microbiology Analysis
4. Discussion
4.1. Water Quality Indices and Parameters
4.2. Correlation and Principal Component Analysis
4.3. Bacterial Analysis
5. Environmental, Animal, and Human Effects on Analysis
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO. Guidelines for Drinking Water Quality, 4th ed.; WHO: Geneva, Switzerland, 2017. [Google Scholar]
- Jakeman, A.J.; Barreteau, O.; Hunt, R.; Rinaudo, J.D.; Ross, A.; Arshad, M.; Hamilton, S. Integrated Groundwater Management: An Overview of Concepts and Challenges. In Integrated Groundwater Management; Jakeman, A.J., Barreteau, O., Hunt, R.J., Rinaudo, J.D., Ross, A., Eds.; Springer: Cham, Switzerland, 2016. [Google Scholar] [CrossRef]
- Levallois, P.; Villanueva, C.M. Drinking Water Quality and Human Health: An Editorial. Int. J. Environ. Res. Public Health 2019, 16, 631. [Google Scholar] [CrossRef] [PubMed]
- Verlicchi, P.; Grillini, V. Surface and Groundwater Quality in South African Area—Analysis of the Most Critical Pollutants for Drinking Purposes. Proceedings 2020, 48, 3. [Google Scholar] [CrossRef]
- Gavrilescu, M. Water, Soil, and Plants Interactions in a Threatened Environment. Water 2021, 13, 2746. [Google Scholar] [CrossRef]
- Pitchard, M.; Mkandawire, T.; Óneill, T.G. Assessment of groundwater quality in shallow wells within the southern districts of Malawi. In Proceedings of the 8th WaterNet/WARFSA/GWP-SA Annual Symposium, Lusaka, Zambia, 31 October – 2 November 2007. [Google Scholar]
- Moyo, N. An analysis of the chemical and microbiological quality of ground water from boreholes and shallow wells in Zimbabwe. Phys. Chem. Earth 2013, 66, 27–32. [Google Scholar] [CrossRef]
- Rietveld, L.C.; Haarhoff, J.; Jagals, P. A tool for technical assessment of rural water supply systems in South Africa. Phys. Chem. Earth Parts A/B/C 2009, 34, 43–49. [Google Scholar] [CrossRef]
- Odiyo, J.O.; Makungo, R. Fluoride concentrations in groundwater and impact on human health in Siloam Village, Limpopo province, South Africa. Water SA 2012, 38, 731–736. [Google Scholar] [CrossRef]
- Potgieter, N.; Mudau, L.S.; Maluleke, F.R.S. The microbiological quality of private and communal boreholes in the Tshitale- hlanganani region of the Limpopo province, South Africa. Water Sci. Technol. 2006, 54, 371–377. [Google Scholar] [CrossRef]
- Vegter, J.R. Hydrogeology of Groundwater Region 7 Polokwane/Pietersburg Plateau; WRC Consultancy No. K8/466; Water Research Commission: Pretoria, South Africa, 2003; 53p. [Google Scholar]
- Rivett, U.; Champanis, M.; Wilson-Jones, T. Monitoring drinking water quality in South Africa: Designing information systems for local needs. Water SA 2013, 39, 409–414. Available online: http://www.scielo.org.za/scielo.php?script=sci_arttext&pid=S1816-79502013000300010&lng=en (accessed on 6 March 2025). [CrossRef]
- Misstear, B.; Vargas, C.R.; Lapworth, D.; Ouedraogo, I.; Podgorski, J. A global perspective on assessing groundwater quality. Hydrogeol. J. 2023, 31, 11–14. [Google Scholar] [CrossRef]
- APHA. Standard Methods for the Examination of the Water and Wastewater, 20th ed.; American Public Health Association: Washington, DC, USA, 1998. [Google Scholar]
- Hach. Water Analysis Handbook, 7th ed.; Hach Company: Loveland, CO, USA, 2012; 1796p. [Google Scholar]
- US Salinity Laboratory. Diagnosis and Improvement of Saline and Alkaline Soils; Richards, L.A., Ed.; Handbook No. 60; US Department of Agriculture: Washington, DC, USA, 1954. [Google Scholar]
- Todd, D.K. Groundwater Hydrology; Wiley: New York, NY, USA, 1980. [Google Scholar]
- Raghunath, H.M. Groundwater; Wiley Eastern: New Delhi, India, 1987. [Google Scholar]
- Kelley, W.P. Use of saline irrigation water. Soil. Sci. 1963, 95, 355–391. [Google Scholar] [CrossRef]
- Waterloo Hydrogeologic. Water Quality Data Analysis and Reporting Software. 2021. Available online: https://www.waterloohydrogeologic.com/products/aquachem/ (accessed on 1 January 2023).
- Addinsoft. XLSTAT, Analyse de Données et Statistique Avec MS Excel; Addinsoft: New York, NY, USA, 2007. [Google Scholar]
- MacFaddin, J.F. Biochemical Tests for Identification of Medical Bacteria, 2nd ed.; Williams and Wilkons: Baltimore, MD, USA, 1980; 527p. [Google Scholar]
- Bain, R.; Cronk, R.; Hossain, R.; Bonjour, S.; Onda, K.; Wright, J.; Yang, H.; Slaymaker, T.; Hunter, P.; Prüss-Ustün, A.; et al. Global assessment of exposure to faecal contamination through drinking water based on a systematic review. Trop. Med. Int. Health 2014, 19, 917–927. [Google Scholar] [CrossRef]
- Raihan, F.; Alam, J.B. Assessment of groundwater quality in Sunamganj Bangladesh. Iran. J. Environ. Health Sci. Eng. 2008, 6, 155–166. [Google Scholar]
- Mukonazwothe, M.; Munyai, L.F.; Mutoti, M.I. Groundwater quality evaluation for domestic and irrigation purposes for the Nwanedi Agricultural Community, Limpopo Province, South Africa. Heliyon 2022, 8, e09203. [Google Scholar] [CrossRef]
- Monira, U.; Sattar, G.S.; Mostafa, M.G. Assessment of surface water quality using the Water Quality Index (WQI) and multivariate statistical analysis (MSA), around tannery industry effluent discharge areas. H2Open J. 2024, 7, 130–148. [Google Scholar] [CrossRef]
- Wantasen, S.; Luntungan, J.N.; Tarore, A.E. Determination of the water quality of panasen river as a source of irrigation water. IOP Conf. Series Earth Environ. Sci. 2019, 314, 012034. [Google Scholar] [CrossRef]
- Joshi, D.M.; Kuman, A.; Agrawal, N. Assessment of the irrigation water quality of River Ganga in Haridwar district. Indian J. Chem. 2009, 2, 285–292. [Google Scholar]
- Bispham, N.Z.; Nowak, K.L. Drinking Water: The Saltier The Better? J. Am. Heart Assoc. 2019, 8, e012758. [Google Scholar] [CrossRef] [PubMed]
- Dinka, M.O.; Loiskand, W.; Ndambuki, J.M. Hydrochemical characterization of various surface water and groundwater resources available in Matahara areas, Fantalle Woreda of Oromiya region. J. Hydrol. Reg. Stud. 2015, 3, 444–456. [Google Scholar] [CrossRef]
- Van Reenen, D.D.; Roering, C.; Brand, G.; Smit, C.A.; Barton, J.M. The granulite-facies rocks of the Limpopo belt, Southern Africa. In Granulites and Crustal Evolution; Vielzeuf, D., Vidal, P., Eds.; NATO ASI Series; Springer: Dordrecht, The Netherlands, 1990; Volume 311. [Google Scholar] [CrossRef]
- Ayers, R.S.; Westcot, D.W. Water Quality for Agriculture, Irrigation and Drainage (Paper No. 29); FAO: Rome, Italy, 1985. [Google Scholar]
- Tanvir Rahman, M.A.T.M.; Saadat, A.H.M.; Islam, M.S.; Al-Mansur, M.A.; Ahmed, S. Groundwater characterization and selection of suitable water type for irrigation in the western region of Bangladesh. Appl. Water Sci. 2017, 7, 233–243. [Google Scholar] [CrossRef]
- Ali, A.A.H. Overview of the vital roles of macro minerals in the human body. J. Trace Elem. Miner. 2023, 4, 100076. [Google Scholar] [CrossRef]
- Mohammed, S.; Arshad, S.; Bashir, B.; Vad, A.; Alsalman, A.; Harsányi, E. Machine learning driven forecasts of agricultural water quality from rainfall ionic characteristics in Central Europe. Agric. Water Manag. 2024, 293, 108690. [Google Scholar] [CrossRef]
- Hakami, R.A.; Naser, R.S.; El-Bakkali, M.; Othman, M.D.M.; Yahya, M.S.; Raweh, S.; Belghyti, D. Groundwater quality deterioration evaluation for irrigation using several indices and geographic information systems: A case study. Desalination Water Treat. 2024, 320, 100645. [Google Scholar] [CrossRef]
- Nur, A.; Ishaku, J.; Yusuf, S. Groundwater Flow Patterns and Hydrochemical Facies Distribution Using Geographical Information System (GIS) in Damaturu, Northeast Nigeria. Int. J. Geosci. 2012, 3, 1096–1106. [Google Scholar] [CrossRef]
- Sengupta, P. Potential health impacts of hard water. Int. J. Prev. Med. 2013, 4, 866–875. [Google Scholar]
- Council for Geoscience (CGS). Limestone and Dolomite Map. 2023. Available online: https://login.mdpi.com/login?_target_path=https%3A%2F%2Fwww.preprints.org%2Fproduction%2Flayout%3FauthAll%3Dtrue (accessed on 1 January 2023).
- Bucher, K. Metamorphic Rocks. In Petrogenesis of Metamorphic Rocks; Springer Textbooks in Earth Sciences, Geography and Environment; Springer: Cham, Switzerland, 2023. [Google Scholar] [CrossRef]
- Zabala, M.; Manzano, M.; Vives, L. The origin of groundwater composition in the Pampeano aquifer underlying the Del Azul Creek basin, Argentina. Sci. Total Environ. 2015, 518, 168–188. [Google Scholar] [CrossRef]
- Viljoen, M. The Mpumalanga/Limpopo Escarpment: Geology and Fluvial Landforms. In Landscapes and Landforms of South Africa; Grab, S., Knight, J., Eds.; World Geomorphological Landscapes; Springer: Cham, Switzerland, 2015. [Google Scholar] [CrossRef]
- Elango, L.; Kannan, R. Rock–water interaction and its control on chemical composition of groundwater. Dev. Environ. Sci. 2007, 5, 229–243. [Google Scholar]
- Zou, Y.; Lou, S.; Zhang, Z.; Liu, S.; Zhou, X.; Zhou, F.; Radnaeva, L.D.; Nikitina, E.; Fedorova, I.V. Predictions of heavy metal concentrations by physiochemical water quality parameters in coastal areas of Yangtze river estuary. Mar. Pollut. Bull. 2024, 199, 115951. [Google Scholar] [CrossRef]
- Zhao, S.; Zhao, Y.; Cui, Z.; Zhang, H.; Zhang, J. Effect of pH, Temperature, and Salinity Levels on Heavy Metal Fraction in Lake Sediments. Toxics 2024, 12, 494. [Google Scholar] [CrossRef]
- Li, L.; He, Y.; Song, K.; Xie, F.; Li, H.; Sun, F. Derivation of water quality criteria of zinc to protect aquatic life in Taihu Lake and the associated risk assessment. J. Environ. Manag. 2021, 296, 113175. [Google Scholar] [CrossRef]
- Bakare, B.F.; Adeyinka, G.C. Evaluating the Potential Health Risks of Selected Heavy Metals across Four Wastewater Treatment Water Works in Durban, South Africa. Toxics 2022, 10, 340. [Google Scholar] [CrossRef]
- Malan, M.; Müller, F.; Cyster, L.; Raitt, L.; Aalbers, J. Heavy metals in the irrigation water, soils and vegetables in the Philippi horticultural area in the Western Cape Province of South Africa. Environ. Monit. Assess. 2014, 185, 4085. [Google Scholar] [CrossRef] [PubMed]
- Ashton, P.; Love, D.; Mahachi, H.; Dirks, P. An Overview of the Impact of Mining and Mineral Processing Operations on Water Resources and Water Quality in the Zambezi, Limpopo and Olifants Catchments in Southern Africa; Report to Minerals, Mining and Sustainable Development Project, Southern Africa; MMSD: Birnam Park, South Africa, 2001; 338p. [Google Scholar]
- Malakar, A.; Snow, D.D.; Ray, C. Irrigation Water Quality—A Contemporary Perspective. Water 2019, 11, 1482. [Google Scholar] [CrossRef]
- Department of Water Affairs and Forestry (DWAF). South African Water Quality Guidelines, 2nd ed.; Holmes, S., Ed.; Department of Water Affairs and Forestry: Pretoria, South Africa, 1996; Volume 1. [Google Scholar]
- WHO. Guidelines for Drinking Water Quality, 4th ed.; WHO: Geneva, Switzerland, 2011. [Google Scholar]
- WHO. Guidelines for Drinking Water Quality, 4th ed.; WHO: Geneva, Switzerland, 2023. [Google Scholar]
- McCaffrey, L.P. Distribution and origin of high fluoride groundwater in the Western Bushveld Areas. In Fluoride and Fluorosis: The Status of South African Research; University of Cape Town: Cape Town, South Africa, 1995; Volume 2. [Google Scholar]
- Grobler, S.R.; Dreyer, A.G.; Blignaut, R.J. Drinking water in South Africa: Implications for fluoride supplementation. J. South African Dent. Assoc. 2001, 56, 557–559. [Google Scholar]
- Shaji, E.; Bindu, J.V.; Thambi, D. High fluoride in groundwater of Palghat District, Kerala. Curr. Sci. 2007, 92, 240. [Google Scholar]
- Potgieter, N.; Becker, P.J.; Ehlers, M.M. Evaluation of the CDC safe water-storage intervention to improve the microbiological quality of point-of-use drinking water in rural communities in South Africa. Water SA 2009, 35, 505–516. [Google Scholar] [CrossRef]
- Odonkor, S.T.; Mahami, T. Escherichia coli as a tool for disease risk assessment of drinking water sources. Int. J. Microbiol. 2020, 2020, 2534130. [Google Scholar] [CrossRef]
- Johnson, M.R.; Anhaeusser, C.R.; Thomas, R.J. (Eds.) The Geology of South Africa; The Geological Society of South Africa; Council for Geosciences: Pretoria, South Africa, 2006; 691p. [Google Scholar]
- LIMCOM (Limpopo Watercourse Commission) Maps—The River Basin. Available online: https://limpopocommission.org/maps/maps-the-river-basin (accessed on 1 April 2025).
Location | Mankweng | Mankweng | Mankweng | Mankweng | Mankweng | Mankweng | Mankweng | Mankweng | Mankweng | Mankweng | Mankweng |
---|---|---|---|---|---|---|---|---|---|---|---|
Sample code | Mankanye-T | Frans-MBH-3 | Bankoeng BH-1 | Mankoeng BH5 | Makanye-BH | Klas-MBH | Mankoeng-T | Klas-M-TW3 | Mankoeng-TW3 | Sogoreng-BH-1 | Klass BH5 |
pH | 8.40 | 8.06 | 8.15 | 7.93 | 7.58 | 7.04 | 8.33 | 7.66 | 7.29 | 7.88 | 7.38 |
EC | 63.30 | 104.20 | 115.50 | 114.80 | 80.80 | 61.00 | 63.10 | 4.00 | 6.63 | 112.90 | 64.50 |
TDS | 411.45 | 677.30 | 750.80 | 746.20 | 525.20 | 396.50 | 410.15 | 26.00 | 43.10 | 733.85 | 419.25 |
TH | 119.27 | 146.04 | 284.14 | 237.78 | 238.33 | 168.64 | 116.65 | 16.47 | 21.28 | 321.75 | 190.88 |
F | 0.40 | 1.73 | 0.68 | 0.78 | 0.65 | 0.42 | 0.39 | 0.00 | 0.00 | 1.39 | 0.51 |
Cl | 22.21 | 67.20 | 53.28 | 64.10 | 60.93 | 44.25 | 22.04 | 4.89 | 5.73 | 111.49 | 58.06 |
SO4 | 7.22 | 17.31 | 54.34 | 58.07 | 40.84 | 24.21 | 7.57 | 0.31 | 1.59 | 43.26 | 28.72 |
K | 1.78 | 5.89 | 1.94 | 1.87 | 15.09 | 8.02 | 1.75 | 0.68 | 0.91 | 4.87 | 7.86 |
Ca | 17.22 | 25.16 | 49.22 | 34.92 | 46.75 | 29.80 | 16.83 | 5.45 | 5.30 | 66.47 | 35.53 |
Mg | 18.50 | 20.18 | 39.10 | 36.52 | 29.48 | 22.85 | 18.10 | 0.69 | 1.95 | 37.76 | 24.77 |
Na | 94.22 | 169.69 | 151.86 | 140.53 | 64.42 | 53.52 | 93.67 | 3.32 | 6.31 | 121.30 | 51.85 |
Zn | - | 0.01 | 0.03 | - | 0.10 | 0.58 | - | - | - | 0.14 | 0.27 |
Pb | 0.01 | 0.01 | 0.01 | - | 0.01 | 0.01 | - | - | - | 0.01 | 0.01 |
Mn | - | 0.01 | - | - | - | - | - | - | - | 0.02 | - |
V | 0.06 | 0.07 | 0.11 | 0.14 | 0.08 | 0.06 | 0.06 | 0.00 | 0.00 | 0.10 | 0.09 |
Cu | - | - | - | 0.01 | - | - | - | - | - | 0.01 | 0.01 |
Fe | - | - | - | 0.00 | - | - | - | - | - | - | - |
Ni | - | - | - | 0.45 | - | - | - | - | - | - | 0.01 |
B | - | 0.14 | 0.03 | 0.05 | - | - | - | - | - | 0.03 | 0.03 |
Se | 0.16 | 0.55 | 0.63 | 2.05 | - | 0.18 | 0.19 | 0.20 | 0.23 | 0.23 | 0.06 |
Ba | 0.02 | 0.05 | 0.03 | 0.01 | 0.06 | 0.03 | 0.02 | 0.02 | 0.02 | 0.04 | 0.03 |
Si | 6.51 | 14.11 | 9.92 | 9.60 | 12.00 | 13.17 | 6.36 | 1.60 | 1.99 | 7.52 | 12.53 |
Location | Dalmada | Dalmada | Dalmada | Dalmada | Dalmada | Dalmada | Dalmada | Control | Polokwane | Magobeskloof | |
Sample code | Baskop | DG-1 26 | D22 | D34 | D56 | B51 | D136 | DW | Filip-N12 | River-M | |
pH | 7.32 | 7.40 | 7.31 | 7.62 | 7.54 | 7.83 | 7.35 | 7.63 | 7.11 | 7.82 | |
EC | 116.70 | 4.92 | 123.40 | 104.40 | 99.50 | 97.10 | 129.40 | 0.90 | 1.30 | 5.73 | |
TDS | 758.55 | 31.98 | 802.10 | 678.60 | 646.75 | 631.15 | 841.10 | 5.85 | 8.45 | 37.24 | |
TH | 519.35 | 16.17 | 462.64 | 431.41 | 404.94 | 423.10 | 583.04 | - | - | 23.95 | |
F | 0.17 | - | 0.10 | 0.08 | 0.10 | 0.11 | - | - | - | - | |
Cl | 84.09 | 4.18 | 16.67 | 29.40 | 57.94 | 57.53 | 78.62 | 0.07 | 2.13 | 2.98 | |
SO4 | 18.42 | 0.59 | 228.38 | 73.96 | 45.95 | 43.50 | 45.06 | 0.14 | 0.60 | 0.53 | |
K | 7.04 | 0.96 | 10.98 | 7.34 | 12.30 | 6.16 | 6.16 | 0.15 | 0.10 | 0.77 | |
Ca | 14.59 | 4.90 | 40.94 | 46.41 | 51.76 | 42.40 | 39.61 | - | 2.30 | 8.50 | |
Mg | 117.20 | 0.95 | 87.45 | 76.55 | 66.88 | 76.97 | 117.48 | - | 0.00 | 0.66 | |
Na | 21.15 | 2.67 | 65.55 | 36.68 | 45.79 | 33.49 | 21.78 | - | 1.98 | 2.91 | |
Zn | 0.01 | 0.25 | 0.02 | 0.01 | 0.02 | 0.01 | 0.02 | - | - | 0.01 | |
Pb | 0.01 | - | 0.01 | 0.01 | 0.01 | - | 0.01 | - | - | - | |
Mn | 0.00 | 0.01 | - | - | - | - | - | - | - | - | |
V | 0.56 | 0.01 | 0.43 | 0.37 | 0.26 | 0.31 | 0.59 | - | - | - | |
Al | - | - | - | - | - | - | - | - | - | 0.04 | |
Cr | - | - | 0.03 | 0.01 | 0.01 | - | - | - | - | - | |
Cu | - | 0.01 | 0.00 | 0.01 | 0.03 | 0.03 | 0.02 | - | - | 0.01 | |
Fe | - | 0.08 | - | - | - | - | - | - | - | 0.12 | |
Ni | 0.01 | - | 0.01 | - | 0.01 | 0.01 | 0.02 | - | - | 0.10 | |
B | 0.02 | - | 0.22 | 0.10 | 0.08 | 0.04 | 0.04 | - | - | 0.01 | |
Se | 2.16 | 1.21 | 1.88 | 1.75 | 0.73 | 0.44 | 1.26 | 0.46 | - | 0.42 | |
Ba | 0.17 | 0.01 | 0.09 | 0.04 | 0.09 | 0.08 | 0.08 | - | - | 0.04 | |
Si | 10.28 | 1.70 | 12.23 | 10.66 | 13.86 | 12.85 | 13.11 | - | 0.18 | 2.38 |
Sample Location | Sample Code | Sample Depth (m) | SAR | SSP | MAR | KR | Na/Ca |
---|---|---|---|---|---|---|---|
Mankweng | Mankanye-T | 70 | 22.3 | 72.9 | 51.8 | 24.0 | 5.5 |
Mankweng | Frans-MBH-3 | 70 | 35.6 | 79.5 | 44.5 | 26.9 | 6.7 |
Mankweng | Bankoeng-BH-1 | 70 | 22.9 | 63.5 | 44.3 | 42.2 | 3.1 |
Mankweng | Mankoeng BH5 | 70 | 23.5 | 66.6 | 51.1 | 40.5 | 4.0 |
Mankweng | Makanye-BH | 70 | 10.4 | 51.1 | 38.7 | 30.9 | 1.4 |
Mankweng | Klas-MBH | 70 | 10.4 | 53.9 | 43.4 | 24.6 | 1.8 |
Mankweng | Mankoeng-T | 70 | 22.4 | 73.2 | 51.8 | 23.7 | 5.6 |
Mankweng | Klas-M-TW3 | 70 | 1.9 | 39.4 | 11.2 | 1.3 | 0.6 |
Mankweng | Mankoeng-TW3 | 70 | 3.3 | 49.9 | 26.9 | 3.1 | 1.2 |
Mankweng | Sogoreng-BH-1 | 70 | 16.8 | 54.8 | 36.2 | 39.6 | 1.8 |
Mankweng | Klass BH5 | 70 | 9.4 | 49.8 | 41.1 | 26.2 | 1.5 |
Dalmada | Baskop | 100 | 2.6 | 17.6 | 88.9 | 118.6 | 1.4 |
Dalmada | DG-126 | 50 | 1.6 | 38.3 | 16.2 | 1.5 | 0.5 |
Dalmada | D22 | 60 | 8.2 | 37.3 | 68.1 | 89.1 | 1.6 |
Dalmada | D34 | 120 | 4.7 | 26.4 | 62.3 | 77.3 | 0.8 |
Dalmada | D56 | 180 | 5.9 | 32.9 | 56.4 | 67.8 | 0.9 |
Dalmada | B51 | 55 | 4.3 | 24.9 | 64.5 | 77.8 | 0.8 |
Dalmada | D136 | 70 | 2.5 | 15.1 | 74.8 | 118.0 | 0.5 |
Polokwane | Filip-N12 | 70 | 1.8 | 47.5 | 0.0 | 0.9 | 0.9 |
Magoebaskloof | River-M | 1 | 1.4 | 28.7 | 7.2 | 1.0 | 0.3 |
Properties | F1 | F2 |
---|---|---|
pH | 0.001 | 6.379 |
EC | 9.403 | 0.570 |
TDS | 9.403 | 0.570 |
Total Hardness | 8.865 | 1.478 |
F | 0.982 | 17.844 |
Cl | 5.596 | 3.801 |
SO4 | 4.721 | 1.752 |
K | 5.611 | 0.076 |
Ca | 6.644 | 1.795 |
Mg | 7.603 | 3.536 |
Na | 1.923 | 13.603 |
Zn | 0.009 | 1.700 |
Pb | 4.025 | 3.613 |
Mn | 0.013 | 7.973 |
V | 6.559 | 5.415 |
Al | 1.419 | 1.178 |
Cr | 2.338 | 3.298 |
Cu | 2.494 | 0.975 |
Fe | 2.162 | 1.256 |
Ni | 0.021 | 0.000 |
B | 4.372 | 0.404 |
Se | 2.706 | 5.130 |
Ba | 5.084 | 3.089 |
Si | 8.039 | 0.767 |
Location | Sample Code | F1 | F2 |
---|---|---|---|
Mankweng | Mankanye-T | −1.487 | 1.569 |
Mankweng | Frans-MBH-3 | 1.717 | 4.543 |
Mankweng | Bankoeng-BH-1 | 1.260 | 2.214 |
Mankweng | Mankoeng-BH5 | 1.172 | 0.675 |
Mankweng | Makanye-BH | 1.138 | 0.928 |
Mankweng | Klas-MBH | −0.176 | 1.765 |
Mankweng | Mankoeng-T | −1.567 | 1.518 |
Mankweng | Klas-M-TW3 | −3.933 | −0.349 |
Mankweng | Mankoeng-TW3 | −3.825 | −1.062 |
Mankweng | Sogoreng-BH-1 | 2.157 | 4.071 |
Mankweng | Klass-BH5 | 0.378 | 0.890 |
Dalmada | Baskop | 3.320 | −2.428 |
Dalmada | DG-126 | −4.007 | −0.956 |
Dalmada | D22 | 5.128 | −3.238 |
Dalmada | D34 | 2.524 | −1.703 |
Dalmada | D56 | 3.512 | −1.089 |
Dalmada | B51 | 2.018 | −1.230 |
Dalmada | D136 | 3.841 | −2.135 |
Turfloop | DW | −4.276 | −0.950 |
Polokwane | N12 | −4.300 | −1.114 |
Magoebaskloof | River-M | −4.596 | −1.919 |
Location. | Sample Code | TC (cfu/100 mL) | E. coli (cfu/100 mL) |
---|---|---|---|
Mankweng | Mankanye-T | <1 | <1 |
Mankweng | Frans-MBH-3 | <1 | <1 |
Mankweng | Bankoeng-BH-1 | >201 | <1 |
Mankweng | Mankoeng-BH5 | >201 | <1 |
Mankweng | Makanye-BH | <1 | <1 |
Mankweng | Klas-MBH | >201 | <1 |
Mankweng | Mankoeng-T | <1 | <1 |
Mankweng | Klas-M-TW3 | <1 | <1 |
Mankweng | Mankoeng-TW3 | <1 | <1 |
Mankweng | Sogoreng-BH-1 | <1 | <1 |
Mankweng | Klass-BH5 | <1 | <1 |
Dalmada | Baskop | >201 | 1 |
Dalmada | DG-126 | <1 | <1 |
Dalmada | D22 | >201 | <1 |
Dalmada | D34 | 36 | <1 |
Dalmada | D56 | 95 | <1 |
Dalmada | B51 | 118 | <1 |
Dalmada | D136 | >201 | <1 |
Turfloop | DW | <1 | <1 |
Polokwane | N12 | 4 | <1 |
Magoebaskloof | River-M | >201 | <1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shokoohi, E.; Moyo, N. Groundwater Quality in a Rural and Urbanized Region in Limpopo Province, South Africa. Environments 2025, 12, 174. https://doi.org/10.3390/environments12060174
Shokoohi E, Moyo N. Groundwater Quality in a Rural and Urbanized Region in Limpopo Province, South Africa. Environments. 2025; 12(6):174. https://doi.org/10.3390/environments12060174
Chicago/Turabian StyleShokoohi, Ebrahim, and Ngoni Moyo. 2025. "Groundwater Quality in a Rural and Urbanized Region in Limpopo Province, South Africa" Environments 12, no. 6: 174. https://doi.org/10.3390/environments12060174
APA StyleShokoohi, E., & Moyo, N. (2025). Groundwater Quality in a Rural and Urbanized Region in Limpopo Province, South Africa. Environments, 12(6), 174. https://doi.org/10.3390/environments12060174