Dredge Sediment as an Opportunity: A Comprehensive and Updated Review of Beneficial Uses in Marine, River, and Lagoon Eco-Systems
Abstract
:1. Introduction
2. Methodology
3. Bibliometric Analysis
4. Towards the Reuse of Dredge Sediment
4.1. Remediation Techniques on Dredge Sediment
4.1.1. Electrochemical Remediation Technologies
4.1.2. Chemical Remediation
4.1.3. Solidification/Stabilization Methods
4.1.4. Adding Sorbent Amendments
4.1.5. Thermal Desorption
4.2. Biological Remediation Techniques
4.2.1. Bioremediation
4.2.2. Vermiremediation
4.2.3. Phyto-Remediation
5. Turning Dredge Sediment into a Resource: Recently Tested Strategies
5.1. Dredge Sediment Utilization as Inert Materials
5.2. Agricultural Applications of Dredge Sediment
5.3. Sustainable Management and Large-Scale Reuse of Dredge Sediment
6. Artificial Intelligence (AI) and Its Potential Role in Dredge Sediment Remediation
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
EGD | European Green Deal |
PTE | Ecological Transition Plan |
DO | Dissolved oxygen |
GHG | Greenhouse gas |
LCA | Life Cycle Assessment |
EK | Electrochemical remediation |
PAHs | Polycyclic aromatic hydrocarbons |
CA | Citric acid |
TW20 | Tween 20 |
EDTA | Ethylenediaminetetraacetic acid |
EDDS | Etilendiamminodisuccinic acid |
S/S | Solidification/Stabilization |
OPC | Portland cement |
IBPs | Industrial by-products |
PG | Phosphogypsum |
CAC | Calcium aluminate cement |
UCS | Unconfined compressive strength |
GAC | Granular activated carbon |
AC | Activated carbon |
MAC | Magnetic activated carbon |
BC | Biochar |
PCBs | Polychlorinated biphenyls |
DDT | Dichlorodiphenyltrichloroethane |
TPHs | Total petroleum hydrocarbons |
PCP | Pentachlorophenol |
TBT | Tributyltin |
DW | Dry weight |
AI | Artificial intelligence |
ANN | Artificial neural network |
ESCAP | Soil petroleum pollution assessment prototype |
HM | Heavy metal |
POF | Palm oil fiber |
DSD | Dredge sediment |
nZVI | Nano-zero valent iron |
TE | Trace element |
GW | Green waste |
References
- Dorleon, G.; Rigaud, S.; Techer, I. Management of dredged marine sediments in Southern France: Main keys to large-scale beneficial reuse. Environ. Sci. Pollut. Res. 2024. Available online: https://link.springer.com/article/10.1007/s11356-024-33129-9 (accessed on 21 March 2025). [CrossRef] [PubMed]
- OSPAR Commission. Environmental Impacts to Marine Species and Habitats of Dredging for Navigational Purposes. In OSPAR Biodiversity Series; OSPAR Commission: London, UK, 2004; Available online: https://www.ospar.org/documents?v=6987 (accessed on 31 March 2025).
- Bridges, T.S.; Gustavson, K.E.; Schroeder, P.; Ells, S.J.; Hayes, D.; Nadeau, S.C.; Palermo, M.R.; Patmontyy, C. Dredging processes and remedy effectiveness: Relationship to the 4 Rs of environmental dredging. Integr. Environ. Assess. Manag. 2010, 6, 619–630. [Google Scholar] [CrossRef] [PubMed]
- Simonson, W.D.; Miller, E.; Jones, A.; García-Rangel, S.; Thornton, H.; McOwen, C. Enhancing climate change resilience of ecological restoration—A framework for action. Perspect. Ecol. Conserv. 2021, 19, 300–310. [Google Scholar] [CrossRef]
- Costa-Pierce, B.A.; Weinstein, M.P. Use of dredge materials for coastal restoration. Ecol. Eng. 2002, 19, 181–186. [Google Scholar] [CrossRef]
- Padhye, L.P.; Srivastava, P.; Jasemizad, T.; Bolan, S.; Hou, D.; Shaheen, S.M.; Rinklebe, J.; O’Connor, D.; Lamb, D.; Wang, H.; et al. Contaminant containment for sustainable remediation of persistent contaminants in soil and groundwater. J. Hazard. Mater. 2023, 455, 131575. [Google Scholar] [CrossRef]
- Netherlands Enterprise Agency; Holland Circular Hotspot. Circular Economy & SDGs: How Circular Economy Practices Help to Achieve the Sustainable Development Goals. 2020. Available online: https://circulareconomy.europa.eu/platform/sites/default/files/3228_brochure_sdg_-_hch_cmyk_a4_portrait_-_0520-012.pdf (accessed on 31 March 2025).
- European Commission. The European Green Deal (COM(2019) 640 Final). 2019. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex:52019DC0640 (accessed on 31 March 2025).
- Ministry of the Environment and Energy Security. National Ecological Transition Plan (PTE). 2021. Available online: https://www.mase.gov.it/portale/piano-per-la-transizione-ecologica-pte- (accessed on 31 March 2025).
- European Parliament and Council. Directive 2000/60/EC establishing a framework for Community action in the field of water policy (Water Framework Directive). Off. J. Eur. Communities 2000, L327, 1–73. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32000L0060 (accessed on 31 March 2025).
- Council of the European Communities. Council Directive 75/442/EEC on waste (Waste Framework Directive). Off. J. Eur. Communities 1975, L194, 39–41. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:31975L0442 (accessed on 31 March 2025).
- Ministry for the Environment and Protection of Land and Sea. Ministerial Decree No. 173/2016: Procedures and technical criteria for the disposal at sea of dredged materials. Off. Gaz. Ital. Repub. 2016. No. 208. Available online: https://www.fao.org/faolex/results/details/en/c/LEX-FAOC161852/ (accessed on 31 March 2025).
- Liu, X.; Sathishkumar, K.; Zhang, H.; Saxena, K.K.; Zhang, F.; Naraginti, S.; Anbarasu, K.; Rajendiran, R.; Rajasekar, A.; Guo, X. Frontiers in environmental cleanup: Recent advances in remediation of emerging pollutants from soil and water. J. Hazard. Mater. Adv. 2024, 16, 100461. [Google Scholar] [CrossRef]
- Solanki, P.; Jain, B.; Hu, X.; Sancheti, G. A Review of Beneficial Use and Management of Dredged Material. Waste 2023, 1, 815–840. [Google Scholar] [CrossRef]
- Aria, M.; Cuccurullo, C. Bibliometrix: An R-tool for comprehensive science mapping analysis. J. Informetr. 2017, 11, 959–975. [Google Scholar] [CrossRef]
- Pasciucco, E.; Pasciucco, F.; Castagnoli, A.; Iannelli, R.; Pecorini, I. Removal of heavy metals from dredging marine sediments via electrokinetic hexagonal system: A pilot study in Italy. Heliyon 2024, 10, e27616. [Google Scholar] [CrossRef] [PubMed]
- Proietto, F.; D’Agostino, F.; Bonsignore, M.; Del Core, M.; Sprovieri, M.; Galia, A.; Scialdone, O. Electrochemical remediation of synthetic and real marine sediments contaminated by PAHs, Hg and As under low electric field values. Chemosphere 2024, 350, 141009. [Google Scholar] [CrossRef] [PubMed]
- Ammami, M.T.; Portet-Koltalo, F.; Benamar, A.; Duclairoir-Poc, C.; Wang, H.; Le Derf, F. Application of biosurfactants and periodic voltage gradient for enhanced electrokinetic remediation of metals and PAHs in dredged marine sediments. Chemosphere 2015, 125, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Vallejo, A.D.D.; Araruna, J.T.; Gonçalves, R.A.; Magalhães de Souza, R.F.; Liu, S.; Wang, H. Enhance electrokinetic remediation of potentially toxic elements in the dredged sediment of Camorim Lagoon. Eng. Sanit. Ambient. 2024, 29, e2024025. [Google Scholar] [CrossRef]
- Kanbar, H.J.; Ammami, M.T.; Benamar, A. Insights into processes and consequent metal (loid) behavior in dredged estuarine sediments upon electrokinetic treatment. Environ. Chall. 2024, 15, 100880. [Google Scholar] [CrossRef]
- Ayyanar, A.; Thatikonda, S. Enhanced electrokinetic removal of heavy metals from a contaminated lake sediment for ecological risk reduction. Soil Sediment Contam. 2021, 30, 12–34. [Google Scholar] [CrossRef]
- D’Agostino, F.; Bellante, A.; Bonsignore, M.; Del Core, M.; Clarizia, L.; Sabatino, N.; Giaramita, L.; Tranchida, G.; Chiavarini, S.; Sprovieri, M. A chemical remediation technique for a nearly-total removal of arsenic and mercury from contaminated marine sediments. Heliyon 2023, 9, e22633. [Google Scholar] [CrossRef]
- Ferrans, L.; Jani, Y.; Hogland, W. Chemical extraction of trace elements from dredged sediments into a circular economy perspective: Case study on Malmfjärden Bay, south-eastern Sweden. Resour. Environ. Sustain. 2021, 6, 100039. [Google Scholar] [CrossRef]
- Lumia, L.; Giustra, M.G.; Viviani, G.; Di Bella, G. Washing batch test of contaminated sediment: The case of augusta bay (SR, Italy). Appl. Sci. 2020, 10, 473. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, J.; Ding, J.; Gao, M.; Xue, C. Effect of recycled phosphogypsum and calcium aluminate cement on the strength behavior optimization of cement-treated dredged soil: A co-utilization of solid wastes. J. Environ. Manag. 2024, 353, 120020. [Google Scholar] [CrossRef]
- Wang, S.; He, X.; Cai, G.; Li, J.; Qin, H.; Ma, Y.; Gong, S.; Lang, L. Strength characteristic and micro-mechanism of organic dredged sludge solidified by cement incorporating sodium persulfate. Dev. Built Environ. 2024, 17, 100323. [Google Scholar] [CrossRef]
- De Gisi, S.; Todaro, F.; Mesto, E.; Schingaro, E.; Notarnicola, M. Recycling contaminated marine sediments as filling materials by pilot scale stabilization/solidification with lime, organoclay and activated carbon. J. Clean. Prod. 2020, 269, 122416. [Google Scholar] [CrossRef]
- Rämö, R.; Bonaglia, S.; Nybom, I.; Kreutzer, A.; Witt, G.; Sobek, A.; Gunnarsson, J.S. Sediment Remediation Using Activated Carbon: Effects of Sorbent Particle Size and Resuspension on Sequestration of Metals and Organic Contaminants. Environ. Toxicol. Chem. 2022, 41, 1096–1110. [Google Scholar] [CrossRef]
- Abel, S.; Akkanen, J. Novel, Activated Carbon-Based Material for in-Situ Remediation of Contaminated Sediments. Environ. Sci. Technol. 2019, 53, 3217–3224. [Google Scholar] [CrossRef]
- Han, Z.; Sani, B.; Akkanen, J.; Abel, S.; Nybom, I.; Karapanagioti, H.K.; Werner, D. A critical evaluation of magnetic activated carbon’s potential for the remediation of sediment impacted by polycyclic aromatic hydrocarbons. J. Hazard. Mater. 2015, 286, 41–47. [Google Scholar] [CrossRef]
- Falciglia, P.P.; Lumia, L.; Giustra, M.G.; Gagliano, E.; Roccaro, P.; Vagliasindi, F.G.A.; Di Bella, G. Remediation of petrol hydrocarbon-contaminated marine sediments by thermal desorption. Chemosphere 2020, 260, 127576. [Google Scholar] [CrossRef]
- Falciglia, P.P.; Ingrao, C.; De Guidi, G.; Catalfo, A.; Finocchiaro, G.; Farina, M.; Liali, M.; Lorenzano, G.; Valastro, G.; Vagliasindi, F.G.A. Environmental Life Cycle Assessment of marine sediment de-contamination by citric acid enhanced-microwave heating. Sci. Total Environ. 2018, 619–620, 72–82. [Google Scholar] [CrossRef]
- Wang, L.; Yuan, X.; Zhong, H.; Wang, H.; Wu, Z.; Chen, X.; Zeng, G. Release behavior of heavy metals during treatment of dredged sediment by microwave-assisted hydrogen peroxide oxidation. Chem. Eng. J. 2014, 258, 334–340. [Google Scholar] [CrossRef]
- Beolchini, F.; Rocchetti, L.; Dell’Anno, A. Degradation kinetics of butyltin compounds during the bioremediation of contaminated harbour sediments. Chem. Ecol. 2014, 30, 393–402. [Google Scholar] [CrossRef]
- Lors, C.; Tiffreau, C.; Laboudigue, A. Effects of bacterial activities on the release of heavy metals from contaminated dredged sediments. Chemosphere 2004, 56, 619–630. [Google Scholar] [CrossRef]
- Dell’anno, F.; Rastelli, E.; Buschi, E.; Barone, G.; Beolchini, F.; Dell’anno, A. Fungi Can Be More Effective Than Bacteria for the Bioremediation of Marine Sediments Highly Contaminated with Heavy Metals. Microorganisms 2022, 10, 993. [Google Scholar] [CrossRef] [PubMed]
- Javed, F.; Hashmi, I. Vermiremediation-Remediation of Soil Contaminated with Oil Using Earthworm (Eisenia fetida). Soil Sediment Contam. 2021, 30, 639–662. [Google Scholar] [CrossRef]
- Borah, G.; Deka, H. Vermiremediation of heavy metals (HMs)-contaminated agricultural land: Synergistic changes in soil enzyme activities and earthworm’s growth parameters. Environ. Sci. Pollut. Res. Int. 2023, 30, 115266–115278. [Google Scholar] [CrossRef]
- Carvalho, P.N.; Basto, M.C.P.; Silva, M.F.G.M.; Machado, A.; Bordalo, A.A.; Vasconcelos, M.T.S.D. Ability of salt marsh plants for TBT remediation in sediments. Environ. Sci. Pollut. Res. 2010, 17, 1279–1286. [Google Scholar] [CrossRef]
- Moreira Da Silva, M.; Duarte, D.N.R.; Isidoro, J.M.G.P. The role of Spartina maritima and Sarcocornia fruticosa on trace metals retention in Ria Formosa, Portugal. 2013; Unpublished manuscript. Available online: https://www.researchgate.net/publication/258775532 (accessed on 31 March 2025).
- Zand, A.D.; Bidhendi, G.N.; Mehrdadi, N. Phytoremediation of total petroleum hydrocarbons (TPHs) using plant species in Iran. Turk. J. Agric. For. 2010, 34, 429–438. [Google Scholar] [CrossRef]
- Nawrot, N.; Wojciechowska, E.; Pazdro, K.; Szmagliński, J.; Pempkowiak, J. Uptake, accumulation, and translocation of Zn, Cu, Pb, Cd, Ni, and Cr by P. australis seedlings in an urban dredged sediment mesocosm: Impact of seedling origin and initial trace metal content. Sci. Total Environ. 2021, 768, 144983. [Google Scholar] [CrossRef]
- Zhao, Z.; Benzerzour, M.; Abriak, N.E.; Damidot, D.; Courard, L.; Wang, D. Use of uncontaminated marine sediments in mortar and concrete by partial substitution of cement. Cem. Concr. Compos. 2018, 93, 155–162. [Google Scholar] [CrossRef]
- Ennahal, I.; Maherzi, W.; Benzerzour, M.; Mamindy, Y.; Abriak, N.E. Performance of Lightweight Aggregates Comprised of Sediments and Thermoplastic Waste. Waste Biomass Valor. 2021, 12, 515–530. [Google Scholar] [CrossRef]
- Mymrin, V.; Pan, R.C.Y.; Alekseev, K.; Avanci, M.A.; Stella, J.C.; Scremim, C.B.; Schiavini, D.N.; Pinto, L.S.; Berton, R.; Weber, S.L. Overburden soil and marine dredging sludge utilization for production of new composites as highly efficient environmental management. J. Environ. Manag. 2019, 236, 206–213. [Google Scholar] [CrossRef]
- Dang, T.A.; Kamali-Bernard, S.; Prince, W.A. Design of new blended cement based on marine dredged sediment. Constr. Build. Mater. 2013, 41, 602–611. [Google Scholar] [CrossRef]
- Adazabra, A.N.; Viruthagiri, G.; Atingabono, J. Developing fired clay bricks by incorporating scrap incinerated waste and river dredged sediment. Process Saf. Environ. Prot. 2023, 179, 108–123. [Google Scholar] [CrossRef]
- Hussain, M.; Levacher, D.; Leblanc, N.; Zmamou, H.; Djeran-Maigre, I.; Razakamanantsoa, A.; Saouti, L. Reuse of harbour and river dredged sediments in adobe bricks. Clean. Mater. 2022, 3, 100046. [Google Scholar] [CrossRef]
- Ouakouak, A.; Abdelhamid, M.; Thouraya, B.; Chahinez, H.O.; Hocine, G.; Hamdi, N.; Syafiuddin, A.; Boopathy, R. Development of a novel adsorbent prepared from dredging sediment for effective removal of dye in aqueous solutions. Appl. Sci. 2021, 11, 10722. [Google Scholar] [CrossRef]
- Wang, L.; Shao, Y.; Zhao, Z.; Chen, S.; Shao, X. Optimized utilization studies of dredging sediment for making water treatment ceramsite based on an extreme vertex design. J. Water Process Eng. 2020, 38, 101603. [Google Scholar] [CrossRef]
- Zentar, R.; Wang, H.; Wang, D. Comparative study of stabilization/solidification of dredged sediments with ordinary Portland cement and calcium sulfo-aluminate cement in the framework of valorization in road construction material. Constr. Build. Mater. 2021, 279, 122447. [Google Scholar] [CrossRef]
- Çevikbilen, G.; Başar, H.M.; Karadoğan, Ü.; Teymur, B.; Dağlı, S.; Tolun, L. Assessment of the use of dredged marine materials in sanitary landfills: A case study from the Marmara sea. Waste Manag. 2020, 113, 70–79. [Google Scholar] [CrossRef]
- Ferrans, L.; Schmieder, F.; Mugwira, R.; Marques, M.; Hogland, W. Dredged sediments as aplant-growing substrate: Estimation of health risk index. Sci. Total Environ. 2022, 846, 157463. [Google Scholar] [CrossRef]
- Tozzi, F.; del Bubba, M.; Petrucci, W.A.; Pecchioli, S.; Macci, C.; Hernández García, F.; Martínez Nicolás, J.J.; Giordani, E. Use of a remediated dredged marine sediment as a substrate for food crop cultivation: Sediment characterization and assessment of fruit safety and quality using strawberry (Fragaria × ananassa Duch.) as model species of contamination transfer. Chemosphere 2020, 238, 124651. [Google Scholar] [CrossRef]
- Kim, K.; Yoon, S.; Kwon, H.A.; Choi, Y. Effects of treatment agents during acid washing and pH neutralization on the fertility of heavy metal-impacted dredged marine sediment as plant-growing soil. Environ. Pollut. 2020, 267, 115466. [Google Scholar] [CrossRef]
- Beljin, J.; Arsenov, D.; Slijepčević, N.; Maletić, S.; Ðukanović, N.; Chalot, M.; Župunski, M.; Tomašević Pilipović, D. Recycling of polluted dredged sediment—Building new materials for plant growing. Waste Manag. 2023, 166, 13–24. [Google Scholar] [CrossRef]
- Mattei, P.; Pastorelli, R.; Rami, G.; Mocali, S.; Giagnoni, L.; Gonnelli, C.; Renella, G. Evaluation ofdredged sediment co-composted with green waste as plant growing media assessed by eco-toxicological tests, plant growth and microbial community structure. J. Hazard. Mater. 2017, 333, 144–153. [Google Scholar] [CrossRef] [PubMed]
- Cao, Q.; You, B.; Liu, W.; Xu, H.; Ma, S.; Wang, T. Using dredged sediments from Lake Taihu as a plant-growing substrate: Focusing on the impact of microcystins. J. Environ. Manag. 2024, 370, 122927. [Google Scholar] [CrossRef] [PubMed]
- Darmody, R.G.; Ruiz Diaz, D. Dredged Sediment: Application as an Agricultural Amendment on Sandy Soils; TR Series (Illinois Sustainable Technology Center) TR-066; Illinois Sustainable Technology Center: Champaign, IL, USA, 2017; Available online: https://hdl.handle.net/2142/97824 (accessed on 31 March 2025).
- Haasler, S.; Kragh, T.; Magid, J.; Gunnarsen, K.C.; Müller-Stöver, D.; Klamt, A.M.; Krogstrup, K.; Sorensen, H.; Nielsen, U.G.; Reitzel, K. Recycling of phosphorus from dredged lake sediment: Importance of iron-bound phosphates for plant growth. Sustain. Environ. 2024, 10, 693. [Google Scholar] [CrossRef]
- Eems-Dollard 2050. Available online: https://eemsdollard2050.nl/ (accessed on 31 March 2025).
- Femern A/S. Available online: https://femern.com/ (accessed on 31 March 2025).
- Suedel, B.C.; McQueen, A.D.; Wilkens, J.L.; Saltus, C.L.; Bourne, S.G.; Gailani, J.Z.; King, J.K.; Corbino, J.M. Beneficial use of dredged sediment as a sustainable practice for restoring coastal marsh habitat. Integr. Environ. Assess. Manag. 2022, 18, 1162–1173. [Google Scholar] [CrossRef]
- Yozzo, D.J.; Wilber, P.; Will, R.J. Beneficial use of dredged material for habitat creation, enhancement, and restoration in New York-New Jersey Harbor. J. Environ. Manag. 2004, 73, 39–52. [Google Scholar] [CrossRef]
- van der Wal, D.; Forster, R.M.; Rossi, F.; Hummel, H.; Ysebaert, T.; Roose, F.; Herman, P.M.J. Ecological evaluation of an experimental beneficial use scheme for dredged sediment disposal in shallow tidal waters. Mar. Pollut. Bull. 2011, 62, 99–108. [Google Scholar] [CrossRef]
- Baptist, M.J.; Gerkema, T.; van Prooijen, B.C.; van Maren, D.S.; van Regteren, M.; Schulz, K.; Colosimo, I.; Vroom, J.; van Kessel, T.; Grasmeijer, B.; et al. Beneficial use of dredged sediment to enhance salt marsh development by applying a ‘Mud Motor’. Ecol. Eng. 2019, 127, 312–323. [Google Scholar] [CrossRef]
- Staver, L.W.; Morris, J.T.; Cornwell, J.C.; Stevenson, J.C.; Nardin, W.; Hensel, P.; Owens, M.S.; Schwark, A. Elevation Changes in Restored Marshes at Poplar Island, Chesapeake Bay, MD: I. Trends and Drivers of Spatial Variability. Estuaries Coasts 2024, 47, 1784–1798. [Google Scholar] [CrossRef]
- McFall, B.C.; Brutsché, K.E.; Priestas, A.M.; Krafft, D.R. Evaluation Techniques for the Beneficial Use of Dredged Sediment Placed in the Nearshore. J. Waterw. Port Coast. Ocean Eng. 2021, 147. Available online: https://ascelibrary.org/doi/10.1061/%28ASCE%29WW.1943-5460.0000648 (accessed on 25 March 2025). [CrossRef]
- Silveira, T.M.; Santos, C.F.; Andrade, F. Beneficial use of dredged sand for beach nourishment and coastal landform enhancement—The case study of Tróia, Portugal. J. Coast. Conserv. 2013, 17, 825–832. [Google Scholar] [CrossRef]
- Dudhagara, D.R.; Rajpara, R.K.; Bhatt, J.K.; Gosai, H.B.; Dave, B.P. Bioengineering for polycyclic aromatic hydrocarbon degradation by Mycobacterium litorale: Statistical and artificial neural network (ANN) approach. Chemom. Intell. Lab. Syst. 2016, 159, 155–163. [Google Scholar] [CrossRef]
- Sanusi, S.N.A.; Halmi, M.I.E.; Abdullah, S.R.S.; Hassan, H.A.; Hamzah, F.M.; Idris, M. Comparative process optimization of pilot-scale total petroleum hydrocarbon (TPH) degradation by Paspalum scrobiculatum L. Hack using response surface methodology (RSM) and artificial neural networks (ANNs). Ecol. Eng. 2016, 97, 524–534. [Google Scholar] [CrossRef]
- Cristóbal, J.; Foster, G.; Caro, D.; Yunta, F.; Manfredi, S.; Tonini, D. Management of excavated soil and dredging spoil waste from construction and demolition within the EU: Practices, impacts and perspectives. Sci. Total Environ. 2024, 944, 173859. [Google Scholar] [CrossRef] [PubMed]
- Ulibarri, N.; Goodrich, K.A.; Wagle, P.; Brand, M.; Matthew, R.; Stein, E.D.; Sanders, B.F. Barriers and opportunities for beneficial reuse of sediment to support coastal resilience. Ocean Coast. Manag. 2020, 195, 105287. [Google Scholar] [CrossRef]
- European Commission. Proposal for a Regulation on Soil Monitoring and Resilience (Soil Monitoring Law). Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:52023PC0160 (accessed on 30 March 2025).
- Brils, J.; de Boer, P.; Mulder, J.; de Boer, E. Reuse of dredged material as a way to tackle societal challenges. J. Soils Sediments 2014, 14, 1638–1641. [Google Scholar] [CrossRef]
- US Dredge. Top 6 Benefits of Dredging. Available online: https://www.usdredge.com/learn/top-6-benefits-of-dredging (accessed on 30 March 2025).
- Moreno-Mateos, D.; Meli, P.; Vara-Rodríguez, M.I.; Aronson, J. Ecosystem response to interventions: Lessons from restored and created wetland ecosystems. J. Appl. Ecol. 2015, 52, 1528–1537. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fratini, C.; Anselmi, S.; Renzi, M. Dredge Sediment as an Opportunity: A Comprehensive and Updated Review of Beneficial Uses in Marine, River, and Lagoon Eco-Systems. Environments 2025, 12, 200. https://doi.org/10.3390/environments12060200
Fratini C, Anselmi S, Renzi M. Dredge Sediment as an Opportunity: A Comprehensive and Updated Review of Beneficial Uses in Marine, River, and Lagoon Eco-Systems. Environments. 2025; 12(6):200. https://doi.org/10.3390/environments12060200
Chicago/Turabian StyleFratini, Chiara, Serena Anselmi, and Monia Renzi. 2025. "Dredge Sediment as an Opportunity: A Comprehensive and Updated Review of Beneficial Uses in Marine, River, and Lagoon Eco-Systems" Environments 12, no. 6: 200. https://doi.org/10.3390/environments12060200
APA StyleFratini, C., Anselmi, S., & Renzi, M. (2025). Dredge Sediment as an Opportunity: A Comprehensive and Updated Review of Beneficial Uses in Marine, River, and Lagoon Eco-Systems. Environments, 12(6), 200. https://doi.org/10.3390/environments12060200