Influence of Organic Matter and Growing Conditions on Dissipation Behavior and Mobility of Two Pesticides in Soils
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Field Trial (Greenhouse Experiment)
2.3. Soil Column Experiment
2.4. Extraction of Soils and Water Sample Processing
2.4.1. Plant Sample Extraction
2.4.2. Extraction of Field Soil and Column Soils
2.5. Instrumental Analysis and Quality Control
2.6. Calculation of Half-Life and Leaching Index
2.7. Statistical Analysis
3. Results and Discussion
3.1. Method Validation
3.2. Dissipation Pattern and Half-Life
3.3. Distribution of Pesticides in the Soil Column
3.4. Distribution of Toxic Metabolites of Phorate in the Soil Column
3.5. Role of Organic Matter in Metabolic Transformation
3.6. Mobility and Leaching Index
3.7. Limitations of the Study
- (a)
- This study was conducted under greenhouse conditions; thus, the safe PHI derived from this study cannot be used as a reference value if a crop is grown under open-field conditions. As a result, the climatic conditions should be considered during open-field dissipation investigations.
- (b)
- (c)
- The column study followed the OECD guidelines for packed soil column experiments; however, other guidelines can be compared for more specific investigations. Moreover, a field lysimeter can be installed and the leaching behavior can be assessed under laboratory soil column and field conditions to minimize the climatic factors mediating data variations.
- (d)
- In this study, biochar derived from rice straw was used as an organic amendment. Several organic amendments derived from wastewater are gaining popularity for this purpose as a new strategy for sustainable waste management. Future studies can be designed to explore more organic amendments to enhance the sustainable management of waste and organic pollutants.
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fantke, P.; Gillespie, B.W.; Juraske, R.; Jolliet, O. Estimating Half-Lives for Pesticide Dissipation from Plants. Environ. Sci. Technol. 2014, 48, 8588–8602. [Google Scholar] [CrossRef] [PubMed]
- Handford, C.E.; Elliott, C.T.; Campbell, K. A review of the global pesticide legislation and the scale of challenge in reaching the global harmonization of food safety standards. Integr. Environ. Assess. Manag. 2015, 11, 525–536. [Google Scholar] [CrossRef] [PubMed]
- Nandi, R.; Kwak, S.Y.; Lee, S.H.; Sarker, A.; Kim, H.J.; Lee, D.J.; Heo, Y.J.; Kyung, K.S.; Kim, J.E. Dissipation Characteristics of Spirotetramat and Its Metabolites in Two Phenotypically Different Korean Vegetables under Greenhouse Conditions. Food Addit. Contam.-Part A Chem. Anal. Control Expo. Risk Assess. 2022, 39, 964–976. [Google Scholar] [CrossRef]
- Fantke, P.; Juraske, R. Variability of Pesticide Dissipation Half-Lives in Plants. Environ. Sci. Technol. 2013, 47, 3548–3562. [Google Scholar] [CrossRef]
- Tudi, M.; Ruan, H.D.; Wang, L.; Lyu, J.; Sadler, R.; Connell, D.; Chu, C. Agriculture Development, Pesticide Application and Its Impact on the Environment. Int. J. Environ. Res. Public Health 2021, 18, 1112. [Google Scholar] [CrossRef] [PubMed]
- Sarker, A.; Islam, T.; Rahman, S.; Nandi, R.; Kim, J.E. Uncertainty of Pesticides in Foodstuffs, Associated Environmental and Health Risks to Humans—A Critical Case of Bangladesh with Respect to Global Food Policy. Environ. Sci. Pollut. Res. 2021, 28, 54448–54465. [Google Scholar] [CrossRef]
- Dar, M.A.; Baba, Z.A.; Kaushik, G. A review on phorate persistence, toxicity and remediation by bacterial communities. Pedosphere 2022, 32, 171–183. [Google Scholar] [CrossRef]
- Holten, R.; Larsbo, M.; Jarvis, N.; Stenrød, M.; Almvik, M.; Eklo, O.M. Leaching of Five Pesticides of Contrasting Mobility through Frozen and Unfrozen Soil. Vadose Zone J. 2019, 18, 1–10. [Google Scholar] [CrossRef]
- Sabzevari, S.; Hofman, J. A Worldwide Review of Currently Used Pesticides’ Monitoring in Agricultural Soils. Sci. Total Environ. 2022, 812, 152344. [Google Scholar] [CrossRef]
- Hejazi, M.; Grant, J.H.; Peterson, E. Trade Impact of Maximum Residue Limits in Fresh Fruits and Vegetables. Food Policy 2022, 106, 102203. [Google Scholar] [CrossRef]
- Deng, H.; Feng, D.; He, J.X.; Li, F.Z.; Yu, H.M.; Ge, C.J. Influence of biochar amendments to soil on the mobility of atrazine using sorption-desorption and soil thin-layer chromatography. Ecol. Eng. 2017, 99, 381–390. [Google Scholar] [CrossRef]
- Sarker, A.; Lee, S.H.; Kwak, S.Y.; Nam, A.J.; Kim, H.J.; Kim, J.E. Residue Monitoring and Risk Assessment of Cyazofamid and Its Metabolite in Korean Cabbage Under Greenhouse Conditions. Bull. Environ. Contam. Toxicol. 2020, 105, 595–601. [Google Scholar] [CrossRef]
- Medina-Pastor, P.; Triacchini, G. The 2018 European Union report on pesticide residues in food. EFSA J. 2020, 18, e06057. [Google Scholar] [CrossRef]
- Chen, J.P.; Pehkonen, S.O.; Lau, C.C. Phorate and Terbufos adsorption onto four tropical soils. Colloids Surf. A Physicochem. Eng. Asp. 2004, 240, 55–61. [Google Scholar] [CrossRef]
- Sarker, A.; Kim, T.K.; Kim, S.I.; Jeong, W.T. Influence of Soil Types and Organic Amendment During Persistence, Mobility, and Distribution of Phorate and Terbufos in Soils. Korean J. Pestic. Sci. [CrossRef]
- Smith, D.L.; Garrison, M.C.; Hollowell, J.E.; Isleib, T.G.; Shew, B.B. Evaluation of Application Timing and Efficacy of the Fungicides Fluazinam and Boscalid for Control of Sclerotinia Blight of Peanut. Crop Prot. 2008, 27, 823–833. [Google Scholar] [CrossRef]
- Reilly, T.J.; Smalling, K.L.; Orlando, J.L.; Kuivila, K.M. Occurrence of Boscalid and Other Selected Fungicides in Surface Water and Groundwater in Three Targeted Use Areas in the United States. Chemosphere 2012, 89, 228–234. [Google Scholar] [CrossRef]
- Bhatt, D.; Srivastava, A.; Srivastava, P.C. An Insight into the Sorption Kinetics of Boscalid onto Soils: Effect of General Soil Properties. Chemosphere 2023, 325, 138274. [Google Scholar] [CrossRef] [PubMed]
- Carpio, M.J.; Sánchez-Martín, M.J.; Rodríguez-Cruz, M.S.; Marín-Benito, J.M. Effect of Organic Residues on Pesticide Behavior in Soils: A Review of Laboratory Research. Environments 2021, 8, 32. [Google Scholar] [CrossRef]
- Sarkar, S.; Mukhopadhyay, A.; Mukherjee, I. A Laboratory Study on Adsorption–Desorption Behavior of Flupyradifurone in Two Indian Soils: Effect of Soil Properties and Organic Amendment. J. Soils Sediments 2022, 22, 2022–2035. [Google Scholar] [CrossRef]
- Yu, S.; Zhang, W.; Dong, X.; Wang, F.; Yang, W.; Liu, C.; Chen, D. A Review on Recent Advances of Biochar from Agricultural and Forestry Wastes: Preparation, Modification and Applications in Wastewater Treatment. J. Environ. Chem. Eng. 2024, 12, 111638. [Google Scholar] [CrossRef]
- Carvalho, F.P. Pesticides, Environment, and Food Safety. Food Energy Secur. 2017, 6, 48–60. [Google Scholar] [CrossRef]
- Crépet, A.; Luong, T.M.; Baines, J.; Boon, P.E.; Ennis, J.; Kennedy, M.; Massarelli, I.; Miller, D.; Nako, S.; Reuss, R.; et al. An International Probabilistic Risk Assessment of Acute Dietary Exposure to Pesticide Residues in Relation to Codex Maximum Residue Limits for Pesticides in Food. Food Control 2021, 121, 107563. [Google Scholar] [CrossRef]
- Kalyabina, V.P.; Esimbekova, E.N.; Kopylova, K.V.; Kratasyuk, V.A. Pesticides: Formulants, Distribution Pathways and Effects on Human Health—A Review. Toxicol. Rep. 2021, 8, 1179–1192. [Google Scholar] [CrossRef] [PubMed]
- Živančev, N.V.; Kovačević, S.R.; Radović, T.T.; Radišić, M.M.; Dimkić, M.A. Mobility and sorption assessment of selected pesticides in alluvial aquifer. Environ. Sci. Pollut. Res. 2019, 26, 28725–28736. [Google Scholar] [CrossRef]
- Karlsson, A.S.; Weihermüller, L.; Tappe, W.; Mukherjee, S.; Spielvogel, S. Field Scale Boscalid Residues and Dissipation Half-Life Estimation in a Sandy Soil. Chemosphere 2016, 145, 163–173. [Google Scholar] [CrossRef]
- He, Y.; Meng, M.; Yohannes, W.K.; Khan, M.; Wang, M.; Abd EI-Aty, A.M.; Hacımüftüoğlu, F.; He, Y.; Gao, L.; She, Y. Dissipation Pattern and Residual Levels of Boscalid in Cucumber and Soil Using Liquid Chromatography-Tandem Mass Spectrometry. J. Environ. Sci. Health-Part B Pestic. Food Contam. Agric. Wastes 2020, 55, 388–395. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.J.; Jeong, W.T.; Kyung, K.S.; Lee, H.D.; Kim, D.; Song, H.S.; Kang, Y.; Noh, H.H. Dissipation and Distribution of Picarbutrazox Residue Following Spraying with an Unmanned Aerial Vehicle on Chinese Cabbage (Brassica campestris var. pekinensis). Molecules 2021, 26, 5671. [Google Scholar] [CrossRef]
- Lv, L.; Su, Y.; Dong, B.; Lu, W.; Hu, J.; Liu, X. Dissipation Residue Behaviors and Dietary Risk Assessment of Boscalid and Pyraclostrobin in Watermelon by HPLC-MS/MS. Molecules 2022, 27, 4410. [Google Scholar] [CrossRef]
- Negi, S.; Srivastava, A.; Pachauri, S.P.; Pathak, A.; Srivastava, P.C. Modulating Leaching Behavior of Boscalid Fungicide in Soil Through Organic Amendments. Soil Sediment Contam. 2024, 34, 71–84. [Google Scholar] [CrossRef]
- Loffredo, E.; Carnimeo, C.; D’Orazio, V.; Colatorti, N. Sorption and Release of the Pesticides Oxyfluorfen and Boscalid in Digestate from Olive Pomace and in Digestate-Amended Soil. J. Soils Sediments 2024, 24, 1489–1506. [Google Scholar] [CrossRef]
- Organisation for Economic Co-operation and Development (OECD). Test No. 312: Soil Leaching Test; OECD: Paris, France, 2004. [Google Scholar]
- MFDS PRL Ministry of Food and Drug Safety—Pesticide Residue Limit 2021. Pesticide Residue Limit (Pesticide MRLs). 2024. Available online: https://www.foodsafetykorea.go.kr/foodcode/02_01.jsp (accessed on 1 July 2024).
- Brandi, J.; Siragusa, G.; Robotti, E.; Marengo, E.; Cecconi, D. Analysis of Veterinary Drugs and Pesticides in Food Using Liquid Chromatography-Mass Spectrometry. TrAC-Trends Anal. Chem. 2024, 179, 117888. [Google Scholar] [CrossRef]
- Hua, L.; Dang, F.; Yu, L.; Zhao, H.; Wei, T.; An, F. Soil Residues and Crop Accumulation of Organophosphorus and Pyrethroid Pesticides in Agricultural Fields in Shaanxi, China. J. Soils Sediments 2024, 24, 2713–2723. [Google Scholar] [CrossRef]
- Chen, Y.; Han, J.; Chen, D.; Liu, Z.; Zhang, K.; Hu, D. Persistence, Mobility, and Leaching Risk of Flumioxazin in Four Chinese Soils. J. Soils Sediments 2021, 21, 1743–1754. [Google Scholar] [CrossRef]
- Shahid, M.; Khan, M.S.; Singh, U.B. Pesticide-Tolerant Microbial Consortia: Potential Candidates for Remediation/Clean-up of Pesticide-Contaminated Agricultural Soil. Environ. Res. 2023, 236, 116724. [Google Scholar] [CrossRef]
- Romero, A.; Santos, A.; Vicente, F.; Rodriguez, S.; Lafuente, A.L. In Situ Oxidation Remediation Technologies: Kinetic of Hydrogen Peroxide Decomposition on Soil Organic Matter. J. Hazard. Mater. 2009, 170, 627–632. [Google Scholar] [CrossRef]
- Wahab, A.; Muhammad, M.; Munir, A.; Abdi, G.; Zaman, W.; Ayaz, A.; Khizar, C.; Reddy, S.P.P. Role of Arbuscular Mycorrhizal Fungi in Regulating Growth, Enhancing Productivity, and Potentially Influencing Ecosystems under Abiotic and Biotic Stresses. Plants 2023, 12, 3102. [Google Scholar] [CrossRef]
- Sadegh-Zadeh, F.; Wahid, S.A.; Jalili, B. Sorption, Degradation and Leaching of Pesticides in Soils Amended with Organic Matter: A Review. Adv. Environ. Technol. 2017, 3, 119–132. [Google Scholar] [CrossRef]
- Pérez-Lucas, G.; El Aatik, A.; Vela, N.; Fenoll, J.; Navarro, S. Exogenous Organic Matter as Strategy to Reduce Pesticide Leaching through the Soil. Arch. Agron. Soil Sci. 2021, 67, 934–945. [Google Scholar] [CrossRef]
- Sarker, A.; Shin, W.S.; Al Masud, M.A.; Nandi, R.; Islam, T. A Critical Review of Sustainable Pesticide Remediation in Contaminated Sites: Research Challenges and Mechanistic Insights. Environ. Pollut. 2024, 341, 122940. [Google Scholar] [CrossRef]
- Manna, S.; Singh, N. Biochars Mediated Degradation, Leaching and Bioavailability of Pyrazosulfuron-Ethyl in a Sandy Loam Soil. Geoderma 2019, 334, 63–71. [Google Scholar] [CrossRef]
- Mendes, K.F.; de Sousa, R.N.; Takeshita, V.; Alonso, F.G.; Régo, A.P.J.; Tornisielo, V.L. Cow Bone Char as a Sorbent to Increase Sorption and Decrease Mobility of Hexazinone, Metribuzin, and Quinclorac in Soil. Geoderma 2019, 343, 40–49. [Google Scholar] [CrossRef]
- Sarker, A.; Kim, D.; Jeong, W.T. Environmental Fate and Sustainable Management of Pesticides in Soils: A Critical Review Focusing on Sustainable Agriculture. Sustainability 2024, 16, 10741. [Google Scholar] [CrossRef]
Name/Properties | Boscalid | Phorate |
---|---|---|
Molecular weight (g/mol) | 343.2 | 260.4 |
IUPAC name 1 | 2-chloro-N-[2-(4-chlorophenyl)phenyl]pyridine-3-carboxamide | diethoxy-(ethylsulfanylmethylsulfanyl)-sulfanylidene-λ5-phosphane |
LogP3 1 | 2.96 | 3.56 |
Vapor pressure 1 (20 °C) | 0.00000001 mmHg | 0.00084 mmHg |
Solubility in water 2 | 4.6 mg/L @ 20 °C | 50 mg/L @ 25 °C |
Chemical formula 2 | C18H12Cl2N2O | C7H17O2PS3 |
Persistence 2 | Persistent | Moderately persistent |
Sample or Matrix | Analytes | Spiking Level (µg/kg) | Mean Recovery (%) (n = 3) | % RSD *** (n = 3) | ** LOQ (µg/kg) | * LOD (µg/kg) |
---|---|---|---|---|---|---|
Soil | Phorate | 5 10 | 95.4 96.6 | 4.1 3.8 | 10.0 | 2.0 |
Phorate sulfoxide | 5 10 | 89.4 90.6 | 2.1 2.0 | 5.0 | 1.0 | |
Phorate sulfone | 5 10 | 95.5 96.2 | 3.2 3.2 | 5.0 | 1.0 | |
Phoratoxon | 5 10 | 101.3 99.5 | 1.8 1.9 | 5.0 | 1.0 | |
Phoratoxon sulfone | 5 10 | 87.5 88.0 | 2.5 2.4 | 5.0 | 1.0 | |
Phoratoxon sulfoxide | 5 10 | 104.8 103.6 | 1.5 1.4 | 5.0 | 1.0 | |
Boscalid | 5 10 | 98.0 97.8 | 3.6 3.5 | 10.0 | 2.0 | |
Korean cabbage | Phorate | 20 40 | 97.5 96.2 | 2.0 2.1 | 10.0 | 2.0 |
Phorate sulfoxide | 20 40 | 95.3 92.5 | 1.4 1.2 | 5.0 | 1.0 | |
Phorate sulfone | 20 40 | 88.8 85.3 | 1.3 1.3 | 5.0 | 1.0 | |
Phoratoxon | 20 40 | 95.6 94.2 | 2.5 2.7 | 5.0 | 1.0 | |
Phoratoxon sulfone | 20 40 | 89.0 85.9 | 1.5 2.0 | 5.0 | 1.0 | |
Phoratoxon sulfoxide | 20 40 | 94.5 96.0 | 2.0 1.6 | 5.0 | 1.0 | |
Boscalid | 20 40 | 88.5 87.0 | 2.7 2.5 | 10.0 | 2.0 |
Matrix | Pesticides or Chemicals | PHI (Pre-Harvest Interval) (Days) | Half-Life (t1/2) (Days) | Experimental Conditions |
---|---|---|---|---|
Korean cabbage | Bocalid | 0 | 23.5 | Field study (greenhouse investigation) |
Boscalid | 7 | 9.7 | ||
Boscalid | 14 | 8.6 | ||
Boscalid | 21 | 8.4 | ||
Phorate | 0 | 18.5 | ||
Phorate | 7 | 8.9 | ||
Phorate | 14 | 7.8 | ||
Phorate | 21 | 7.5 | ||
Soil | Boscalid | 21 | 25.4 | |
Phorate | 21 | 15.7 | ||
Sandy loam soil | Boscalid | Control | 22.4 | Soil column study |
Boscalid | Biochar-treated | 14.6 | ||
Boscalid | H2O2-treated | 35.8 | ||
Phorate | Control | 20.5 | ||
Phorate | Biochar-treated | 12.0 | ||
Phorate | H2O2-treated | 26.7 |
5 mL/day (Irrigation Rate) | |||||||
---|---|---|---|---|---|---|---|
Phorate (µg/L) | Boscalid (µg/L) | ||||||
Soil depth (cm) | 0–10 | 10–20 | 20–30 | Soil depth (cm) | 0–10 | 10–20 | 20–30 |
* SL-control | 0 | 0 | 0 | SL-control | 15.6 | 3.5 | 0 |
SL-biochar | 2.4 | 0 | 0 | SL-biochar | 32.5 | 5.8 | 0 |
SL-H2O2 | 1.9 | 0 | 0 | SL-H2O2 | 9.8 | 2.4 | 0 |
** L-control | 0 | 0 | 0 | L-control | 35.4 | 2.0 | 0 |
L-biochar | 3.6 | 0 | 0 | L-biochar | 45.2 | 1.3 | 0 |
L-H2O2 | 2.6 | 0 | 0 | L-H2O2 | 16.3 | 0.9 | 0 |
10 mL/day (Irrigation Rate) | |||||||
Soil depth (cm) | 0–10 | 10–20 | 20–30 | Soil depth (cm) | 0–10 | 10–20 | 20–30 |
* SL-control | 0 | 0 | 0 | SL-control | 18.2 | 4.6 | 0 |
SL-biochar | 3.5 | 0 | 0 | SL-biochar | 35.7 | 8.4 | 0 |
SL-H2O2 | 2.8 | 0 | 0 | SL-H2O2 | 11.2 | 3.2 | 0 |
** L-control | 0 | 0 | 0 | L-control | 40.2 | 3.6 | 0 |
L-biochar | 7.8 | 0 | 0 | L-biochar | 51.3 | 2.3 | 0 |
L-H2O2 | 4.3 | 0 | 0 | L-H2O2 | 19.0 | 1.5 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nandi, R.; Sarker, A.; Rana, M.M.; Hasan, A.K. Influence of Organic Matter and Growing Conditions on Dissipation Behavior and Mobility of Two Pesticides in Soils. Environments 2025, 12, 123. https://doi.org/10.3390/environments12040123
Nandi R, Sarker A, Rana MM, Hasan AK. Influence of Organic Matter and Growing Conditions on Dissipation Behavior and Mobility of Two Pesticides in Soils. Environments. 2025; 12(4):123. https://doi.org/10.3390/environments12040123
Chicago/Turabian StyleNandi, Rakhi, Aniruddha Sarker, Md Masud Rana, and Ahmed Khairul Hasan. 2025. "Influence of Organic Matter and Growing Conditions on Dissipation Behavior and Mobility of Two Pesticides in Soils" Environments 12, no. 4: 123. https://doi.org/10.3390/environments12040123
APA StyleNandi, R., Sarker, A., Rana, M. M., & Hasan, A. K. (2025). Influence of Organic Matter and Growing Conditions on Dissipation Behavior and Mobility of Two Pesticides in Soils. Environments, 12(4), 123. https://doi.org/10.3390/environments12040123