Assessment of the Effects of ZnO and CuO Engineered Nanoparticles on Physicochemical Properties of Volcanic Ash Soil and Phosphorus Availability
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals Used
2.2. ENPs
2.3. Volcanic Ash Soil Collection
2.4. Characterization of Volcanic Ash Soil and ENPs
2.5. Batch Ad–Desorption Studies
2.5.1. Effect of Doses
2.5.2. Effect of pH
2.5.3. Adsorptions Kinetic Studies
2.5.4. Adsorptions Isotherm Studies
2.5.5. Desorption Studies
2.5.6. Co-Existence Anions
2.5.7. Phosphorus Quantification
2.6. Data Analysis
3. Results and Discussion
3.1. Impact of CuO and ZnO ENPs on Soil Physicochemical Properties
3.2. Effect of the Doses
3.3. Effect of pH
3.4. Adsorption Kinetic Studies
3.4.1. Pseudo-First-Order and Pseudo-Second-Order Models
3.4.2. Elovich Model
3.4.3. Weber–Morris Model
3.5. Adsorption Isotherm Studies
3.5.1. Langmuir and Freundlich Models
3.5.2. Langmuir–Freundlich Model
3.6. Desorption Studies
3.7. Competitive Effects
4. Implications of Environmental Risk
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Janes-Bassett, V.; Blackwell, M.S.A.; Blair, G.; Davies, J.; Haygarth, P.M.; Mezeli, M.M.; Stewart, G. A Meta-Analysis of Phosphatase Activity in Agricultural Settings in Response to Phosphorus Deficiency. Soil Biol. Biochem. 2022, 165, 108537. [Google Scholar] [CrossRef]
- Barbosa, A.M.; Francelino, M.R.; Thomazini, A.; Schaefer, C.E.G.R.; Anjos, L.H.C.; Pereira, M.G.; Lyra, G.B. The Thermal Regime and Mineralogical Attributes of Highland Volcanic-Ash Soils from the Cotopaxi Volcano, Ecuador: Absent Permafrost and Little Pedogenesis. Geoderma Reg. 2022, 29, e00496. [Google Scholar] [CrossRef]
- Dahlgren, R.A.; Saigusa, M.; Ugolini, F.C. The Nature, Properties and Management of Volcanic Soils. Adv. Agron. 2004, 82, 113–182. [Google Scholar] [CrossRef]
- Borie, F.; Aguilera, P.; Castillo, C.; Valentine, A.; Seguel, A.; Barea, J.M.; Cornejo, P. Revisiting the Nature of Phosphorus Pools in Chilean Volcanic Soils as a Basis for Arbuscular Mycorrhizal Management in Plant P Acquisition. J. Soil Sci. Plant Nutr. 2019, 19, 390–401. [Google Scholar] [CrossRef]
- Velásquez, G.; Ngo, P.T.; Rumpel, C.; Calabi-Floody, M.; Redel, Y.; Turner, B.L.; Condron, L.M.; de la Luz Mora, M. Chemical Nature of Residual Phosphorus in Andisols. Geoderma 2016, 271, 27–31. [Google Scholar] [CrossRef]
- Suazo-Hernández, J.; Urdiales, C.; Poblete-Grant, P.; Pesenti, H.; Cáceres-Jensen, L.; Sarkar, B.; Bolan, N.; de la Luz Mora, M. Effect of Particle Size of Nanoscale Zero–Valent Copper on Inorganic Phosphorus Adsorption–Desorption in a Volcanic Ash Soil. Chemosphere 2023, 340, 139836. [Google Scholar] [CrossRef]
- Calabi-Floody, M.; Velásquez, G.; Gianfreda, L.; Saggar, S.; Bolan, N.; Rumpel, C.; Mora, M.L. Improving Bioavailability of Phosphorous from Cattle Dung by Using Phosphatase Immobilized on Natural Clay and Nanoclay. Chemosphere 2012, 89, 648–655. [Google Scholar] [CrossRef]
- Timofeeva, A.; Galyamova, M.; Sedykh, S. Prospects for Using Phosphate-Solubilizing Microorganisms as Natural Fertilizers in Agriculture. Plants 2022, 11, 2119. [Google Scholar] [CrossRef]
- Hannet, G.; Singh, K.; Fidelis, C.; Farrar, M.B.; Muqaddas, B.; Bai, S.H. Effects of Biochar, Compost, and Biochar-Compost on Soil Total Nitrogen and Available Phosphorus Concentrations in a Corn Field in Papua New Guinea. Environ. Sci. Pollut. Res. 2021, 28, 27411–27419. [Google Scholar] [CrossRef]
- Gogoi, A.; Mazumder, P.; Tyagi, V.K.; Tushara Chaminda, G.G.; An, A.K.; Kumar, M. Occurrence and Fate of Emerging Contaminants in Water Environment: A Review. Groundw. Sustain. Dev. 2018, 6, 169–180. [Google Scholar] [CrossRef]
- Cacciamali, A.; Pascucci, L.; Villa, R.; Dotti, S. Engineered Nanoparticles Toxicity on Adipose Tissue Derived Mesenchymal Stem Cells: A Preliminary Investigation. Res. Vet. Sci. 2022, 152, 134–149. [Google Scholar] [CrossRef] [PubMed]
- Asha, A.B.; Narain, R. Nanomaterials Properties. In Polymer Science and Nanotechnology: Fundamentals and Applications; Elsevier Inc.: Amsterdam, The Netherlands, 2020; pp. 343–359. ISBN 9780128168066. [Google Scholar]
- Khan, I.; Saeed, K.; Khan, I. Nanoparticles: Properties, Applications and Toxicities. Arab. J. Chem. 2019, 12, 908–931. [Google Scholar] [CrossRef]
- Li, R.; Shen, X.; Zhang, J.; Jiang, Q.; Wang, L.; Zhang, Y. Tailoring Biochar Supported Iron Nanoparticles to Activate Persulfate for Atrazine Degradation in Soil. J. Environ. Chem. Eng. 2024, 12, 111967. [Google Scholar] [CrossRef]
- Anandkumar, M.; Kannan, P.K.; Sudarsan, S.; Trofimov, E.A. High-Entropy Oxide (CeGdHfPrZr)O2 Nanoparticles as Reusable Photocatalyst for Wastewater Remediation. Surf. Interfaces 2024, 51, 104815. [Google Scholar] [CrossRef]
- Solymos, K.; Babcsányi, I.; Ariya, B.; Gyulavári, T.; Ágoston, Á.; Szamosvölgyi, Á.; Kukovecz, Á.; Kónya, Z.; Farsang, A.; Pap, Z. Photocatalytic and Surface Properties of Titanium Dioxide Nanoparticles in Soil Solutions. Environ. Sci. Nano 2024, 11, 1204–1216. [Google Scholar] [CrossRef]
- Adeyemi, J.O.; Fawole, O.A. Metal-Based Nanoparticles in Food Packaging and Coating Technologies: A Review. Biomolecules 2023, 13, 1092. [Google Scholar] [CrossRef]
- STATNANO Nanotechnology Products Database. Available online: https://statnano.com (accessed on 1 September 2024).
- Singh, H.; Sharma, A.; Bhardwaj, S.K.; Arya, S.K.; Bhardwaj, N.; Khatri, M. Recent Advances in the Applications of Nano-Agrochemicals for Sustainable Agricultural Development. Environ. Sci. Process. Impacts 2021, 23, 213–239. [Google Scholar] [CrossRef]
- Biswas, J.K.; Sarkar, D. Nanopollution in the Aquatic Environment and Ecotoxicity: No Nano Issue! Curr. Pollut. Rep. 2019, 5, 4–7. [Google Scholar] [CrossRef]
- Sheteiwy, M.S.; Shaghaleh, H.; Hamoud, Y.A.; Holford, P.; Shao, H.; Qi, W.; Hashmi, M.Z.; Wu, T. Zinc Oxide Nanoparticles: Potential Effects on Soil Properties, Crop Production, Food Processing, and Food Quality. Environ. Sci. Pollut. Res. 2021, 28, 36942–36966. [Google Scholar] [CrossRef]
- Thounaojam, T.C.; Meetei, T.T.; Devi, Y.B.; Panda, S.K.; Upadhyaya, H. Zinc Oxide Nanoparticles (ZnO-NPs): A Promising Nanoparticle in Renovating Plant Science. Acta Physiol. Plant. 2021, 43, 136. [Google Scholar] [CrossRef]
- Zafar, H.; Aziz, T.; Khan, B.; Mannan, A.; Rehman, R.U.; Zia, M. CuO and ZnO Nanoparticle Application in Synthetic Soil Modulates Morphology, Nutritional Contents, and Metal Analysis of Brassica Nigra. ACS Omega 2020, 5, 13566–13577. [Google Scholar] [CrossRef] [PubMed]
- Mahawar, L.; Živčák, M.; Barboricova, M.; Kovár, M.; Filaček, A.; Ferencova, J.; Vysoká, D.M.; Brestič, M. Effect of Copper Oxide and Zinc Oxide Nanoparticles on Photosynthesis and Physiology of Raphanus sativus L. under Salinity Stress. Plant Physiol. Biochem. 2024, 206, 108281. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Li, Y.; Pan, B.; Zhang, X.; Zhang, H.; Steinberg, C.E.W.; Qiu, H.; Vijver, M.G.; Peijnenburg, W.J.G.M. Application of Low Dosage of Copper Oxide and Zinc Oxide Nanoparticles Boosts Bacterial and Fungal Communities in Soil. Sci. Total Environ. 2021, 757, 143807. [Google Scholar] [CrossRef]
- Lv, W.; Geng, H.; Zhou, B.; Chen, H.; Yuan, R.; Ma, C.; Liu, R.; Xing, B.; Wang, F. The Behavior, Transport, and Positive Regulation Mechanism of ZnO Nanoparticles in a Plant-Soil-Microbe Environment. Environ. Pollut. 2022, 315, 120368. [Google Scholar] [CrossRef] [PubMed]
- Xiao, H.; Liu, N.; Tian, K.; Liu, S.; Ge, F. Accelerated Effects of Nano-ZnO on Phosphorus Removal by Chlorella Vulgaris: Formation of Zinc Phosphate Crystallites. Sci. Total Environ. 2018, 635, 559–566. [Google Scholar] [CrossRef]
- Parada, J.; Rubilar, O.; Diez, M.C.; Cea, M.; Sant’Ana da Silva, A.; Rodríguez-Rodríguez, C.E.; Tortella, G.R. Combined Pollution of Copper Nanoparticles and Atrazine in Soil: Effects on Dissipation of the Pesticide and on Microbiological Community Profiles. J. Hazard. Mater. 2019, 361, 228–236. [Google Scholar] [CrossRef]
- Suazo-Hernández, J.; Klumpp, E.; Arancibia-Miranda, N.; Poblete-Grant, P.; Jara, A.; Bol, R.; de la Luz Mora, M. Describing Phosphorus Sorption Processes on Volcanic Soil in the Presence of Copper or Silver Engineered Nanoparticles. Minerals 2021, 11, 373. [Google Scholar] [CrossRef]
- Suazo-Hernández, J.; Klumpp, E.; Arancibia-Miranda, N.; Jara, A.; Poblete-Grant, P.; Sepúlveda, P.; Bol, R.; de la Luz Mora, M. Combined Effect of Soil Particle Size Fractions and Engineered Nanoparticles on Phosphate Sorption Processes in Volcanic Soils Evaluated by Elovich and Langmuir-Freundlich Models. J. Soil Sci. Plant Nutr. 2022, 22, 3685–3696. [Google Scholar] [CrossRef]
- Caporale, A.G.; Violante, A. Chemical Processes Affecting the Mobility of Heavy Metals and Metalloids in Soil Environments. Curr. Pollut. Rep. 2016, 2, 15–27. [Google Scholar] [CrossRef]
- Olsen, S.; Sommers, L. Phosphorus. In Methods of Soil Analysis: Part 2. Chemical and Microbiological Properties; ASA Publisher: Monroe, MI, USA, 1982; Volume 9, pp. 403–430. [Google Scholar]
- Sadzawka, R.A.; Carrasco, R.M.A.; Grez, Z.R.; Mora de la Luz, M.G.; Flores, P.H.; Neaman, A. Métodos de Análisis Recomendados Para Suelos Chilenos; Comisión de Normalización y Acreditación (CNA): Santiago, Chile, 2006. [Google Scholar]
- Antônio, D.C.; Caldeira, C.L.; Freitas, E.T.F.; Delbem, I.D.; Gasparon, M.; Olusegun, S.J.; Ciminelli, V.S.T. Effects of Aluminum and Soil Mineralogy on Arsenic Bioaccessibility. Environ. Pollut. 2021, 274, 116482. [Google Scholar] [CrossRef]
- Barrett, E.P.; Joyner, L.G.; Halenda, P.P. The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms. J. Am. Chem. Soc. 1951, 73, 373–380. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, G.; Qiao, S.; Zhou, J. Magnetic Fe0/Iron Oxide-Coated Diatomite as a Highly Efficient Adsorbent for Recovering Phosphorus from Water. Chem. Eng. J. 2021, 412, 128696. [Google Scholar] [CrossRef]
- Murphy, J.; Riley, J.P. A Modified Single Solution Method for the Determination of Phosphate in Natural Waters. Anal. Chim. Acta 1962, 27, 31–36. [Google Scholar] [CrossRef]
- Gao, X.; Rodrigues, S.M.; Spielman-Sun, E.; Lopes, S.; Rodrigues, S.; Zhang, Y.; Avellan, A.; Duarte, R.M.B.O.; Duarte, A.; Casman, E.A.; et al. Effect of Soil Organic Matter, Soil pH, and Moisture Content on Solubility and Dissolution Rate of CuO NPs in Soil. Environ. Sci. Technol. 2019, 53, 4959–4967. [Google Scholar] [CrossRef] [PubMed]
- Verma, Y.; Singh, S.K.; Jatav, H.S.; Rajput, V.D.; Minkina, T. Interaction of Zinc Oxide Nanoparticles with Soil: Insights into the Chemical and Biological Properties. Environ. Geochem. Health 2021, 44, 221–234. [Google Scholar] [CrossRef]
- Wei, Y.; Liang, X.; Wu, H.; Cen, J.; Ji, Y. Efficient Phosphate Removal by Dendrite-like Halloysite-Zinc Oxide Nanocomposites Prepared via Noncovalent Hybridization. Appl. Clay Sci. 2021, 213, 106232. [Google Scholar] [CrossRef]
- Wu, P.; Cui, P.; Du, H.; Alves, M.E.; Zhou, D.; Wang, Y. Long-Term Dissolution and Transformation of ZnO in Soils: The Roles of Soil PH and ZnO Particle Size. J. Hazard. Mater. 2021, 415, 125604. [Google Scholar] [CrossRef]
- Jośko, I.; Dobrzyńska, J.; Dobrowolski, R.; Kusiak, M.; Terpiłowski, K. The Effect of pH and Ageing on the Fate of CuO and ZnO Nanoparticles in Soils. Sci. Total Environ. 2020, 721, 137771. [Google Scholar] [CrossRef] [PubMed]
- Mahdavi, S.; Akhzari, D. The Removal of Phosphate from Aqueous Solutions Using Two Nano-Structures: Copper Oxide and Carbon Tubes. Clean Technol. Environ. Policy 2016, 18, 817–827. [Google Scholar] [CrossRef]
- Luo, Z.; Zhu, S.; Liu, Z.; Liu, J.; Huo, M.; Yang, W. Study of Phosphate Removal from Aqueous Solution by Zinc Oxide. J. Water Health 2015, 13, 704–713. [Google Scholar] [CrossRef]
- Bolster, C.H. Kinetics of Phosphorous Sorption to Biochar-Amended Soils. Chemosphere 2023, 345, 140523. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhu, J.; Fu, Q.L.; Xiong, J.W.; Hong, C.; Hu, H.Q.; Violante, A. Adsorption of Phosphate onto Ferrihydrite and Ferrihydrite-Humic Acid Complexes. Pedosphere 2015, 25, 405–414. [Google Scholar] [CrossRef]
- Julich, D.; Gäth, S. Sorption Behavior of Copper Nanoparticles in Soils Compared to Copper Ions. Geoderma 2014, 235–236, 127–132. [Google Scholar] [CrossRef]
- Chang, M.; Liu, Y.; Xu, M.; Li, H.; Li, S. Particle Morphology and Soil Properties Affect the Retention of Copper Oxide Nanoparticles in Agricultural Soils. Environ. Geochem. Health 2024, 46, 281. [Google Scholar] [CrossRef]
- Choque-Quispe, D.; Ligarda-Samanez, C.A.; Choque-Quispe, Y.; Solano-Reynoso, A.M.; Ramos-Pacheco, B.S.; Zamalloa-Puma, M.M.; Álvarez-López, G.J.; Zamalloa-Puma, A.; Choque-Quispe, K.; Alzamora-Flores, H. Multimetal Removal in Aqueous Medium Using a Potato Starch/Nopal Mucilage Copolymer: A Study of Adsorption Kinetics and Isotherms. Results Eng. 2023, 18, 101164. [Google Scholar] [CrossRef]
- Pigna, M.; Jara, A.A.; de la Luz Mora, M.; Violante, A. Effect Of pH, Phosphate and/or Malate on Sulfate Sorption on Andisols. Rev. la Cienc. del suelo y Nutr. Veg. 2007, 7, 662–673. [Google Scholar] [CrossRef]
- Solomevich, S.O.; Dmitruk, E.I.; Bychkovsky, P.M.; Nebytov, A.E.; Yurkshtovich, T.L.; Golub, N.V. Fabrication of Oxidized Bacterial Cellulose by Nitrogen Dioxide in Chloroform/Cyclohexane as a Highly Loaded Drug Carrier for Sustained Release of Cisplatin. Carbohydr. Polym. 2020, 248, 116745. [Google Scholar] [CrossRef]
- Costigan, E.M.; Oehler, M.A.; MacRae, J.D. Phosphorus Recovery from Recirculating Aquaculture Systems: Adsorption Kinetics and Mechanism. J. Water Process Eng. 2022, 49, 102992. [Google Scholar] [CrossRef]
- Zhang, J.; Huang, W.; Yang, D.; Xiang, J.; Chen, Y. Removal and Recovery of Phosphorus from Secondary Effluent Using Layered Double Hydroxide-Biochar Composites. Sci. Total Environ. 2022, 844, 156802. [Google Scholar] [CrossRef]
- Ðurović-Pejčev, R.; Radmanović, S.; Tomić, Z.P.; Kaluđerović, L.; Đorđević, T. Characterization of the Clomazone Sorption Process in Four Agricultural Soils Using Different Kinetic Models. Environ. Sci. Process. Impacts 2023, 25, 542–553. [Google Scholar] [CrossRef]
- Marković-Nikolić, D.Z.; Cakić, M.D.; Petković, G.; Nikolić, G.S. Kinetics, Thermodynamics and Mechanisms of Phosphate Sorption onto Bottle Gourd Biomass Modified by (3-Chloro-2-Hydroxypropyl) Trimethylammonium Chloride. Prog. React. Kinet. Mech. 2019, 44, 267–285. [Google Scholar] [CrossRef]
- Tamungang, N.E.B.; Mvondo-Zé, A.D.; Ghogomu, J.N.; Mofor, N.A. Evaluation of Phosphorus Sorption Characteristics of Soils from the Bambouto Sequence (West Cameroon). Int. J. Biol. Chem. Sci. 2016, 10, 860. [Google Scholar] [CrossRef]
- Angkawijaya, A.E.; Santoso, S.P.; Bundjaja, V.; Soetaredjo, F.E.; Gunarto, C.; Ayucitra, A.; Ju, Y.H.; Go, A.W.; Ismadji, S. Studies on the Performance of Bentonite and Its Composite as Phosphate Adsorbent and Phosphate Supplementation for Plant. J. Hazard. Mater. 2020, 399, 123130. [Google Scholar] [CrossRef]
- Yang, J.; Xin, X.; Zhang, X.; Zhong, X.; Yang, W.; Ren, G.; Zhu, A. Effects of Soil Physical and Chemical Properties on Phosphorus Adsorption-Desorption in Fluvo-Aquic Soil under Conservation Tillage. Soil Tillage Res. 2023, 234, 105840. [Google Scholar] [CrossRef]
- Lv, J.; Zhang, S.; Luo, L.; Han, W.; Zhang, J.; Yang, K.; Christie, P. Dissolution and Microstructural Transformation of ZnO Nanoparticles under the Influence of Phosphate. Environ. Sci. Technol. 2012, 46, 7215–7221. [Google Scholar] [CrossRef]
- Mudunkotuwa, I.A.; Rupasinghe, T.; Wu, C.M.; Grassian, V.H. Dissolution of ZnO Nanoparticles at Circumneutral pH: A Study of Size Effects in the Presence and Absence of Citric Acid. Langmuir 2012, 28, 396–403. [Google Scholar] [CrossRef]
- Yin, Q.; Ren, H.; Wang, R.; Zhao, Z. Evaluation of Nitrate and Phosphate Adsorption on Al-Modified Biochar: Influence of Al Content. Sci. Total Environ. 2018, 631–632, 895–903. [Google Scholar] [CrossRef]
- Brazesh, B.; Mousavi, S.M.; Zarei, M.; Ghaedi, M.; Bahrani, S.; Hashemi, S.A. Biosorption. In Interface Science and Technology; Elsevier: Amsterdam, The Netherlands, 2021; Volume 33, pp. 587–628. ISBN 9780128188057. [Google Scholar]
- Sun, W.; Jiang, B.; Wang, F.; Xu, N. Effect of Carbon Nanotubes on Cd(II) Adsorption by Sediments. Chem. Eng. J. 2015, 264, 645–653. [Google Scholar] [CrossRef]
- Taghipour, M.; Jalali, M. Effect of Nanoparticles on Kinetics Release and Fractionation of Phosphorus. J. Hazard. Mater. 2015, 283, 359–370. [Google Scholar] [CrossRef]
- Almasri, D.A.; Saleh, N.B.; Atieh, M.A.; McKay, G.; Ahzi, S. Adsorption of Phosphate on Iron Oxide Doped Halloysite Nanotubes. Sci. Rep. 2019, 9, 3232. [Google Scholar] [CrossRef]
- Sun, H.; Zhou, Q.; Zhao, L.; Wu, W. Enhanced Simultaneous Removal of Nitrate and Phosphate Using Novel Solid Carbon Source/Zero-Valent Iron Composite. J. Clean. Prod. 2021, 289, 125757. [Google Scholar] [CrossRef]
- He-Yi, Z.; Wen-Hao, S. Classification, Uptake, Translocation, and Detection Methods of Nanoparticles in Crop Plants: A Review. Environ. Sci. 2024, 11, 1847–1870. [Google Scholar] [CrossRef]
- Chakraborty, T.K.; Chandra Ghosh, G.; Hossain, M.R.; Islam, M.S.; Habib, A.; Zaman, S.; Bosu, H.; Nice, M.S.; Haldar, M.; Khan, A.S. Human Health Risk and Receptor Model-Oriented Sources of Heavy Metal Pollution in Commonly Consume Vegetable and Fish Species of High Ganges River Floodplain Agro-Ecological Area, Bangladesh. Heliyon 2022, 8, e11172. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Lai, Y.; Yang, C.; Dong, L. Monitoring of Cu2+ Release from Controllably Synthesized Nano-Copper Pesticides. Environ. Pollut. Bioavailab. 2024, 36, 2300477. [Google Scholar] [CrossRef]
Kinetic Equations | Expression Formula | Parameters | References |
---|---|---|---|
Pseudo-first-order (PFO) | qt = Amount of anion adsorbed at any time (mmol kg−1) qe = Amount of anion adsorbed at equilibrium (mmol kg−1) k1 = Pseudo-first-order rate constant (min−1) t = Time (min) | [30,36] | |
Pseudo-second-order (PSO) * | qt = Amount of anion adsorbed at any time (mmol kg−1) qe = Amount of anion adsorbed at equilibrium (mmol kg−1) k2 = Pseudo-second-order rate constant (kg mmol−1 min−1) t = Time (min) | ||
Elovich | qt = Amount of anion adsorbed at any time (mmol kg−1) = Initial rate constant (mmol kg−1 min−1) = Number of sites available for the adsorption and desorption constant (kg mmol−1) t = Time (min) | ||
Weber–Morris | qt = Amount of anion adsorbed any time (mmol kg−1) = Intraparticle diffusion rate constant (mmol kg−1 min−0.5) = The thickness of the boundary layer (mmol kg−1) t = Time (min) |
Isotherm Equations | Expression Formula | Parameters | References |
---|---|---|---|
Langmuir | qe = Amount of adsorbed anion per unit mass of the adsorbent at equilibrium (mmol kg−1) qmax = Maximum adsorption capacity (mmol kg−1) KL = Constant of the adsorption energy (L mmol−1) Ce = Concentration of anion at equilibrium in the solution (mmol L−1) | [30,36] | |
Freundlich | qe = Amount of adsorbed anion per unit mass of the adsorbent at equilibrium (mmol kg−1) Ce = Concentration of anion at equilibrium in the solution (mmol L−1) KF = Freundlich adsorption coefficient (mmol kg−1) (L mmol−1)1/n n = Adsorption intensity (1 < n < 10) | ||
Langmuir− Freundlich | qe = Amount of adsorbed anion per unit mass of the adsorbent at equilibrium (mmol kg−1) qmax = Maximum adsorption capacity (mmol kg−1) Ce = Concentration of anion at equilibrium in the solution (mmol L−1) = Index of heterogeneity KL−F = Affinity constant (L mmol−1) |
LAU | LAU + 1% CuO–ENPs | LAU + 1% ZnO–ENPs | |
---|---|---|---|
P (mg kg−1) | 22 ± 0.8 | 22 ± 0.7 | 16 ± 0.8 |
pHH2O | 5.67 ± 0.4 | 6.03 ± 0.4 | 6.82 ± 0.3 |
OM (%) * | 15 ± 0.1 | 14 ± 0.1 | 14 ± 0.1 |
EC 1:5 (ds m−1) ** | 0.119 ± 0.003 | 0.143 ± 0.002 | 0.150 ± 0.003 |
K (cmol(+) kg−1) | 0.25 ± 0.01 | 0.26 ± 0.01 | 0.26 ± 0.01 |
Na (cmol(+) kg−1) | 0.06 ± 0.00 | 0.06 ± 0.00 | 0.06 ± 0.00 |
Ca (cmol(+) kg−1) | 5.99 ± 0.05 | 6.05 ± 0.04 | 6.03 ± 0.05 |
Mg (cmol(+) kg−1) | 1.25 ± 0.02 | 1.23 ± 0.01 | 1.27 ± 0.02 |
Al (cmol(+) kg−1) | 0.10 ± 0.00 | 0.07 ± 0.01 | 0.06 ± 0.00 |
ECEC (cmol(+) kg−1) *** | 7.65 ± 0.8 | 7.67 ± 0.7 | 7.68 ± 0.8 |
Zn (mg kg−1) | 1.32 ± 0.02 | 1.85 ± 0.02 | 789 ± 0.03 |
Cu (mg kg−1) | 2.08 ± 0.03 | 87 ± 0.04 | 0.5 ± 0.06 |
BET–specific surface area (m2 g−1) | 23.026 | 9.030 | 12.201 |
Average pore volume (cm3 g−1) | 0.022 | 0.007 | 0.009 |
Average pore size diameter (nm) | 3.810 | 3.836 | 3.828 |
Kinetic Parameters | LAU | LAU + 1% CuO–ENPs | LAU + 1% ZnO–ENPs |
---|---|---|---|
qexp (mmol kg−1) | 115.59 ± 5.02 | 126.90 ± 3.40 | 176.78 ± 6.20 |
qexp (%) | 46.55 | 50.67 | 69.64 |
PFO | |||
qe (mmol kg−1) | 98.54 ± 6.02 | 107.14 ± 6.77 | 134.94 ± 13.38 |
k1 (×10−3 min−1) | 191.92 ± 61.34 | 164.92 ± 53.53 | 172.22 ± 88.13 |
r2 | 0.783 | 0.780 | 0.576 |
PSO | |||
qe (mmol kg−1) | 103.53 ± 5.04 | 113.09 ± 5.65 | 146.72 ± 13.12 |
k2 (×10−3 kg mmol−1 min−1) | 2.53 ± 0.00 | 1.90 ± 0.00 | 1.11 ± 0.00 |
h (mmol kg−1 min−1) | 27.12 ± 0.00 | 24.30 ± 0.00 | 23.89 ± 0.00 |
r2 | 0.878 | 0.879 | 0.697 |
Elovich | |||
α (mmol kg−1 min−1) | 873.95 ± 25.12 | 517.81 ± 12.60 | 202.34 ± 15.07 |
β (kg−1 mmol) | 0.10 ± 0.00 | 0.09 ± 0.00 | 0.06 ± 0.01 |
r2 | 0.995 | 0.996 | 0.923 |
Weber–Morris | |||
Kint1 (mmol kg−1 min−0.5) | 5.03 ± 0.43 | 5.75 ± 0.42 | 7.85 ± 2.96 |
C1 (mmol kg−1) | 49.29 ± 1.47 | 49.48 ± 1.45 | 62.37 ± 7.14 |
r2 | 0.979 | 0.984 | 0.752 |
Kint2 (mmol kg−1 min−0.5) | 1.51 ± 0.04 | 1.70 ± 0.15 | 63.18 ± 4.18 |
C2 (mmol kg−1) | 73.05 ± 0.55 | 78.11 ± 1.98 | 3.98 ± 0.35 |
r2 | 0.999 | 0.985 | 0.977 |
Kint3 (mmol kg−1 min−0.5) | 0.15 ± 0.08 | 0.27 ± 0.03 | 0.15 ± 0.05 |
C3 (mmol kg−1) | 110.32 ± 2.55 | 116.65 ± 1.10 | 171.01 ± 1.70 |
r2 | 0.560 | 0.969 | 0.781 |
Isotherm Parameters | LAU | LAU + 1% CuO–ENPs | LAU + 1% ZnO–ENPs |
---|---|---|---|
Langmuir | |||
KL (L mmol−1) | 1.75 ± 0.30 | 2.08 ± 0.33 | 24.79 ± 3.51 |
qmax (mmol kg−1) | 117.22 ± 5.98 | 132.64 ± 6.25 | 139.13 ± 7.01 |
r2 | 0.989 | 0.991 | 0.938 |
Freundlich | |||
KF (mmol kg−1) (L mmol−1)1/n | 64.03 ± 3.32 | 76.40 ± 3.81 | 122.66 ± 9.51 |
n | 2.46 ± 0.26 | 2.42 ± 0.26 | 3.94 ± 0.86 |
r2 | 0.973 | 0.973 | 0.877 |
Langmuir–Freundlich | |||
KF–L (L mmol−1) | 0.99 ± 0.36 | 1.15 ± 0.34 | 16.53 ± 8.13 |
qmax (mmol kg−1) | 143.53 ± 16.39 | 159.89 ± 18.62 | 153.11 ± 23.27 |
n | 1.35 ± 0.15 | 1.30 ± 0.15 | 1.39 ± 0.46 |
r2 | 0.995 | 0.995 | 0.939 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suazo-Hernández, J.; Sans-Serramitjana, E.; de la Luz Mora, M.; Fuentes, B.; de los Ángeles Sepúlveda, M.; Silva-Yumi, J.; Celletti, S.; Celi, L.; Rivas, S.; Ruiz, A. Assessment of the Effects of ZnO and CuO Engineered Nanoparticles on Physicochemical Properties of Volcanic Ash Soil and Phosphorus Availability. Environments 2024, 11, 208. https://doi.org/10.3390/environments11090208
Suazo-Hernández J, Sans-Serramitjana E, de la Luz Mora M, Fuentes B, de los Ángeles Sepúlveda M, Silva-Yumi J, Celletti S, Celi L, Rivas S, Ruiz A. Assessment of the Effects of ZnO and CuO Engineered Nanoparticles on Physicochemical Properties of Volcanic Ash Soil and Phosphorus Availability. Environments. 2024; 11(9):208. https://doi.org/10.3390/environments11090208
Chicago/Turabian StyleSuazo-Hernández, Jonathan, Eulàlia Sans-Serramitjana, María de la Luz Mora, Barbara Fuentes, María de los Ángeles Sepúlveda, Jorge Silva-Yumi, Silvia Celletti, Luisella Celi, Sheina Rivas, and Antonieta Ruiz. 2024. "Assessment of the Effects of ZnO and CuO Engineered Nanoparticles on Physicochemical Properties of Volcanic Ash Soil and Phosphorus Availability" Environments 11, no. 9: 208. https://doi.org/10.3390/environments11090208
APA StyleSuazo-Hernández, J., Sans-Serramitjana, E., de la Luz Mora, M., Fuentes, B., de los Ángeles Sepúlveda, M., Silva-Yumi, J., Celletti, S., Celi, L., Rivas, S., & Ruiz, A. (2024). Assessment of the Effects of ZnO and CuO Engineered Nanoparticles on Physicochemical Properties of Volcanic Ash Soil and Phosphorus Availability. Environments, 11(9), 208. https://doi.org/10.3390/environments11090208