Initial Insights into Teleworking’s Effect on Air Quality in Madrid City
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area: The City of Madrid
2.2. Who Teleworks in the Madrid Region? A Teleworker Profile
2.3. Methods
2.4. Data Collection
3. Results
3.1. Descriptive Statistics
3.2. Correlation Analysis
3.3. Regression Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- EEA. Europe’s Air Quality Status 2023; EEA: Copenhagen, Denmark, 2023. [Google Scholar]
- Ramacher, M.O.P.; Badeke, R.; Fink, L.; Quante, M.; Karl, M.; Oppo, S.; Lenartz, F.; Dury, M.; Matthias, V. Assessing the Effects of Significant Activity Changes on Urban-Scale Air Quality across Three European Cities. Atmos. Environ. X 2024, 22, 100264. [Google Scholar] [CrossRef]
- Russo, A.; Sousa, P.M.; Durão, R.M.; Ramos, A.M.; Salvador, P.; Linares, C.; Díaz, J.; Trigo, R.M. Saharan Dust Intrusions in the Iberian Peninsula: Predominant Synoptic Conditions. Sci. Total Environ. 2020, 717, 137041. [Google Scholar] [CrossRef] [PubMed]
- Celis, J.E.; Morales, J.R.; Zaror, C.A.; Inzunza, J.C. A Study of the Particulate Matter PM10 Composition in the Atmosphere of Chillán, Chile. Chemosphere 2004, 54, 541–550. [Google Scholar] [CrossRef] [PubMed]
- Querol, X.; Alastuey, A.; Viana, M.M.; Rodriguez, S.; Artiñano, B.; Salvador, P.; Garcia Do Santos, S.; Fernandez Patier, R.; Ruiz, C.R.; De La Rosa, J.; et al. Speciation and Origin of PM10 and PM2.5 in Spain. J. Aerosol Sci. 2004, 35, 1151–1172. [Google Scholar] [CrossRef]
- Wu, J.; Qian, Y.; Wang, Y.; Wang, N. Analyzing the Contribution of Human Mobility to Changes in Air Pollutants: Insights from the COVID-19 Lockdown in Wuhan. ISPRS Int. J. Geo-Inf. 2021, 10, 836. [Google Scholar] [CrossRef]
- Sobrino, N.; Arce, R. Understanding Per-Trip Commuting CO2 Emissions: A Case Study of the Technical University of Madrid. Transp. Res. Part D Transp. Environ. 2021, 96, 102895. [Google Scholar] [CrossRef]
- Yang, J.; Shi, B.; Shi, Y.; Marvin, S.; Zheng, Y.; Xia, G. Air Pollution Dispersal in High Density Urban Areas: Research on the Triadic Relation of Wind, Air Pollution, and Urban Form. Sustain. Cities Soc. 2020, 54, 101941. [Google Scholar] [CrossRef]
- Urso, P.; Cattaneo, A.; Garramone, G.; Peruzzo, C.; Cavallo, D.M.; Carrer, P. Identification of Particulate Matter Determinants in Residential Homes. Build. Environ. 2015, 86, 61–69. [Google Scholar] [CrossRef]
- Logan, J. Tropospheric Ozone: Seasonal Behavior, Trends, and Anthropogenic Influence. J. Geophys. Res. 1985, 90, 463–482. [Google Scholar] [CrossRef]
- Jacob, D.J.; Heikes, B.G.; Fan, S.M.; Logan, J.A.; Mauzerall, D.L.; Bradshaw, J.D.; Singh, H.B.; Gregory, G.L.; Talbot, R.W.; Blake, D.R.; et al. Origin of Ozone and NOx in the Tropical Troposphere: A Photochemical Analysis of Aircraft Observations over the South Atlantic Basin. J. Geophys. Res. Atmos. 1996, 101, 24235–24250. [Google Scholar] [CrossRef]
- Hak, C.; Larssen, S.; Randall, S.; Guerreiro, C.; Denby, B.; Horálek, J. Traffic and Air Quality—Contribution of Traffic to Urban Air Quality in European Cities, 1st ed.; Papers, E.T., Ed.; European Topic Centre on Air and Climate Change: Brussels, Belgium, 2010. [Google Scholar]
- Kampa, M.; Castanas, E. Human Health Effects of Air Pollution. Environ. Pollut. 2008, 151, 362–367. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Batterman, S. Air Pollution and Health Risks Due to Vehicle Traffic. Sci. Total Environ. 2013, 450–451, 307–316. [Google Scholar] [CrossRef] [PubMed]
- Cohen, A.; Anderson, H.R.; Ostro, B.; Dev Pandey, K.; Krzyzanowski, M.; Kunzli, N.; Gutschmdt, K.; Pope, C.A., III; Romieu, I.; Samet, J.M.; et al. Comparative Quantification of Health Risks. Global and Regional Burden of Disease Attributable to Selected Major Risk Factors. In Urban Air Pollution; Ezzati, M., Lopez, A.D., Rodgers, A., Murray, C.J.L., Eds.; JSTOR and World Health Organization: Geneva, Switzerland, 2004; p. 729. [Google Scholar]
- Gualtieri, G.; Crisci, A.; Tartaglia, M.; Toscano, P.; Gioli, B. A Statistical Model to Assess Air Quality Levels at Urban Sites. Water. Air. Soil Pollut. 2015, 226, 394. [Google Scholar] [CrossRef]
- Pérez, I.A.; García, M.Á.; Sánchez, M.L.; Pardo, N.; Fernández-Duque, B. Key Points in Air Pollution Meteorology. Int. J. Environ. Res. Public Health 2020, 17, 8349. [Google Scholar] [CrossRef] [PubMed]
- Irwin, J.G.; Williams, M.L. Acid Rain: Chemistry and Transport. Environ. Pollut. 1988, 50, 29–59. [Google Scholar] [CrossRef]
- Madrid City Council. Action Protocol for Episodes of Nitrogen Dioxide Pollution in the City of Madrid; Madrid City Council: Madrid, Spanish, 2016; Volume 36. [Google Scholar]
- Bailey, D.E.; Kurland, N.B. A Review of Telework Research: Findings, New Directions, and Lessons for the Study of Modern Work. J. Organ. Behav. 2002, 23, 383–400. [Google Scholar] [CrossRef]
- Belzunegui-Eraso, A.; Erro-Garcés, A. Teleworking in the Context of the COVID-19 Crisis. Sustainability 2020, 12, 3662. [Google Scholar] [CrossRef]
- BOE Royal Decree 463/2020, of March 14, Declaring a State of Alarm for the Management of the Health Crisis Situation Caused by COVID-19. Off. State Gazzette 2020, 67, 25390–25400.
- Bhatti, A.; Akram, H.; Basit, H.M.; Khan, A.U.; Naqvi, S.M.R.; Bilal, M. E-Commerce Trends During COVID-19. Int. J. Futur. Gener. Commun. Netw. 2020, 13, 1449–1452. [Google Scholar]
- Eurostat. E-Commerce Statistics for Individuals. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=E-commerce_statistics_for_individuals (accessed on 8 November 2022).
- MINECO. Teleworking in Spain before, during and after the Pandemic. Available online: https://www.ontsi.es/es/publicaciones/el-teletrabajo-en-espana (accessed on 5 August 2023).
- BOE. Law 10/2021, of July 9, of Remote Working; Cortes Generales: Madrid, Spain, 2021; pp. 82540–82583. [Google Scholar]
- Metz, D. The Myth of Travel Time Saving. Transp. Rev. 2008, 28, 321–336. [Google Scholar] [CrossRef]
- Pérez, M.P.; Sánchez, A.M.; De Luis Carnicer, M.P.; Jiménez, M.J.V. The Environmental Impacts of Teleworking: A Model of Urban Analysis and a Case Study. Manag. Environ. Qual. An Int. J. 2004, 15, 656–671. [Google Scholar] [CrossRef]
- Colvile, R.N.; Hutchinson, E.J.; Mindell, J.S.; Warren, R.F. The Transport Sector as a Source of Air Pollution. Atmos. Environ. 2001, 35, 1537–1565. [Google Scholar] [CrossRef]
- Nicolas, J.P. Analysing Road Traffic Influences on Air Pollution: How to Achieve Sustainable Urban Development. Transp. Rev. 2000, 20, 219–232. [Google Scholar] [CrossRef]
- Shrivastava, R.; Neeta, S.; Geeta, G. Air Pollution Due to Road Transportation in India: A Review on Assessment and Reduction Strategies. J. Environ. Res. Dev. 2013, 8, 69–77. [Google Scholar]
- Forehead, H.; Huynh, N. Review of Modelling Air Pollution from Traffic at Street-Level—The State of the Science. Environ. Pollut. 2018, 241, 775–786. [Google Scholar] [CrossRef]
- Silva, A.C.T.; Branco, P.T.B.S.; Sousa, S.I.V. Impact of COVID-19 Pandemic on Air Quality: A Systematic Review. Int. J. Environ. Res. Public Health 2022, 19, 1950. [Google Scholar] [CrossRef]
- Chaston, T.B.; Knibbs, L.D.; Morgan, G.; Jalaludin, B.; Broome, R.; Dennekamp, M.; Johnston, F.H.; Vardoulakis, S. Air Pollution Mortality Benefits of Sustained COVID-19 Mobility Restrictions in Australian Cities. Public Health 2024, 226, 152–156. [Google Scholar] [CrossRef]
- Querol, X.; Massagué, J.; Alastuey, A.; Moreno, T.; Gangoiti, G.; Mantilla, E.; Duéguez, J.J.; Escudero, M.; Monfort, E.; Pérez García-Pando, C.; et al. Lessons from the COVID-19 Air Pollution Decrease in Spain: Now What? Sci. Total Environ. 2021, 779, 146380. [Google Scholar] [CrossRef]
- García-Ayllón, S.; Kyriakidis, P. Spatial Analysis of Environmental Impacts Linked to Changes in Urban Mobility Patterns during COVID-19: Lessons Learned from the Cartagena Case Study. Land 2022, 11, 81. [Google Scholar] [CrossRef]
- Baldasano, J.M. COVID-19 Lockdown Effects on Air Quality by NO2 in the Cities of Barcelona and Madrid (Spain). Sci. Total Environ. 2020, 741, 140353. [Google Scholar] [CrossRef]
- Kumari, P.; Toshniwal, D. Impact of Lockdown on Air Quality over Major Cities across the Globe during COVID-19 Pandemic. Urban Clim. 2020, 34, 100719. [Google Scholar] [CrossRef] [PubMed]
- Collivignarelli, M.C.; De Rose, C.; Abbà, A.; Baldi, M.; Bertanza, G.; Pedrazzani, R.; Sorlini, S.; Carnevale Miino, M. Analysis of Lockdown for CoViD-19 Impact on NO2 in London, Milan and Paris: What Lesson Can Be Learnt? Process Saf. Environ. Prot. 2021, 146, 952–960. [Google Scholar] [CrossRef] [PubMed]
- Gorrochategui, E.; Hernandez, I.; Pérez-Gabucio, E.; Lacorte, S.; Tauler, R. Temporal Air Quality (NO2, O3, and PM10) Changes in Urban and Rural Stations in Catalonia during COVID-19 Lockdown: An Association with Human Mobility and Satellite Data. Environ. Sci. Pollut. Res. 2022, 29, 18905–18922. [Google Scholar] [CrossRef] [PubMed]
- Jephcote, C.; Hansell, A.L.; Adams, K.; Gulliver, J. Changes in Air Quality during COVID-19 ‘Lockdown’ in the United Kingdom. Environ. Pollut. 2021, 272, 116011. [Google Scholar] [CrossRef]
- Gkatzelis, G.I.; Gilman, J.B.; Brown, S.S.; Eskes, H.; Gomes, A.R.; Lange, A.C.; McDonald, B.C.; Peischl, J.; Petzold, A.; Thompson, C.R.; et al. The Global Impacts of COVID-19 Lockdowns on Urban Air Pollution: A Critical Review and Recommendations. Elementa 2021, 9, 00176. [Google Scholar] [CrossRef]
- Shanableh, A.; Al-Ruzouq, R.; Khalil, M.A.; Gibril, M.B.A.; Hamad, K.; Alhosani, M.; Stietiya, M.H.; Al Bardan, M.; Almasoori, S.; Hammouri, N.A. COVID-19 Lockdown and the Impact on Mobility, Air Quality, and Utility Consumption: A Case Study from Sharjah, United Arab Emirates. Sustainability 2022, 14, 1767. [Google Scholar] [CrossRef]
- Wang, Q.; Yang, X. How Do Pollutants Change Post-Pandemic? Evidence from Changes in Five Key Pollutants in Nine Chinese Cities Most Affected by the COVID-19. Environ. Res. 2021, 197, 111108. [Google Scholar] [CrossRef]
- Rossi, R.; Ceccato, R.; Gastaldi, M. Effect of Road Traffic on Air Pollution. Experimental Evidence from COVID-19 Lockdown. Sustainability 2020, 12, 8984. [Google Scholar] [CrossRef]
- Briz-Redón, Á.; Belenguer-Sapiña, C.; Serrano-Aroca, Á. Changes in Air Pollution during COVID-19 Lockdown in Spain: A Multi-City Study. J. Environ. Sci. 2021, 101, 16–26. [Google Scholar] [CrossRef]
- Cárdenas-Montes, M. Evaluation of the Impact of Low-Emission Zone: Madrid Central as a Case Study. Atmos. Ocean. Phys. 2021, 39. [Google Scholar] [CrossRef]
- Connerton, P.; de Assunção, J.V.; de Miranda, R.M.; Slovic, A.D.; Pérez-Martínez, P.J.; Ribeiro, H. Air Quality during COVID-19 in Four Megacities: Lessons and Challenges for Public Health. Int. J. Environ. Res. Public Health 2020, 17, 5067. [Google Scholar] [CrossRef] [PubMed]
- Munir, S.; Coskuner, G.; Jassim, M.S.; Aina, Y.A.; Ali, A.; Mayfield, M. Changes in Air Quality Associated with Mobility Trends and Meteorological Conditions during COVID-19 Lockdown in Northern England, UK. Atmosphere 2021, 12, 504. [Google Scholar] [CrossRef]
- Cameletti, M. The Effect of Corona Virus Lockdown on Air Pollution: Evidence from the City of Brescia in Lombardia Region (Italy). Atmos. Environ. 2020, 239, 117794. [Google Scholar] [CrossRef] [PubMed]
- Kharvari, F.; Azimi, S.; O’Brien, W. A Preliminary Scenario Analysis of the Impacts of Teleworking on Energy Consumption and Greenhouse Gas (GHG) Emissions. J. Phys. Conf. Ser. 2021, 2069, 012077. [Google Scholar] [CrossRef]
- Eurostat. Rise in EU Population Working from Home. Available online: https://ec.europa.eu/eurostat/web/products-eurostat-news/-/ddn-20221108-1 (accessed on 8 November 2022).
- Sampath, S.; Saxena, S.; Mokhtarian, P.L. The Effectiveness of Telecommuting as a Transportation Control Measure. UC Berkeley Univ. Calif. Transp. Cent. 1991, 15, 250–260. [Google Scholar]
- Ravalet, E.; Rérat, P. Teleworking: Decreasing Mobility or Increasing Tolerance of Commuting Distances? Built Environ. 2019, 45, 582–602. [Google Scholar] [CrossRef]
- Kitou, E.; Horvath, A. Transportation Choices and Air Pollution Effects of Telework. J. Infrastruct. Syst. 2006, 12, 121–134. [Google Scholar] [CrossRef]
- Choo, S.; Mokhtarian, P.L.; Salomon, I. Does Telecommuting Reduce Vehicle-Miles Traveled? An Aggregate Time Series Analysis for the U.S. Transportation 2005, 32, 37–64. [Google Scholar] [CrossRef]
- Walls, M.; Safirova, E. A Review of the Literature on Telecommuting and Its Implications for Vehicle Travel and Emissions. In Proceedings of the Resources for the Future; US EPA, Ed.; Global Environment and Technology Foundation (GETF): Washington, DC, USA, 2004; p. 27. [Google Scholar]
- Koenig, B.E.; Henderson, D.K.; Mokhtarian, P.L. The Travel and Emissions Impacts of Telecommuting for the State of California Telecommuting Pilot Project. Transp. Res. Part C Emerg. Technol. 1996, 4, 13–32. [Google Scholar] [CrossRef]
- Badia, A.; Langemeyer, J.; Codina, X.; Gilabert, J.; Guilera, N.; Vidal, V.; Segura, R.; Vives, M.; Villalba, G. A Take-Home Message from COVID-19 on Urban Air Pollution Reduction through Mobility Limitations and Teleworking. npj Urban Sustain. 2021, 1, 35. [Google Scholar] [CrossRef]
- Cerqueira, E.D.V.; Motte-Baumvol, B.; Chevallier, L.B.; Bonin, O. Does Working from Home Reduce CO2 Emissions? An Analysis of Travel Patterns as Dictated by Workplaces. Transp. Res. Part D Transp. Environ. 2020, 83, 102338. [Google Scholar] [CrossRef]
- Caparrós Ruiz, A. Factors Determining Teleworking before and during COVID-19: Some Evidence from Spain and Andalusia. Appl. Econ. Anal. 2022, 30, 196–212. [Google Scholar] [CrossRef]
- Anik, M.A.H.; Habib, M.A. COVID-19 and Teleworking: Lessons, Current Issues and Future Directions for Transport and Land-Use Planning. Transp. Res. Rec. 2023, 03611981231166384. [Google Scholar] [CrossRef]
- Hostettler Macias, L.; Ravalet, E.; Rérat, P. Potential Rebound Effects of Teleworking on Residential and Daily Mobility. Geogr. Compass 2022, 16, e12657. [Google Scholar] [CrossRef]
- Al-Akioui, A.; Monzon, A. Teleworking and Its Impacts on Mobility in the Region of Madrid. Transp. Res. Procedia 2023, 71, 30–37. [Google Scholar] [CrossRef]
- Institute of Statistics. Population Census. Available online: https://gestiona.comunidad.madrid/iestadis/fijas/estructu/demograficas/censos/cenpob23_p_ana.htm (accessed on 14 June 2024).
- CRTM. Regional Transport Consortium of the Community of Madrid. Available online: https://www.crtm.es/ (accessed on 4 May 2022).
- OMM Report of the Metropolitan Mobility Observatory for 2020 and Progress 2021. Available online: https://observatoriomovilidad.es/informes/ (accessed on 13 August 2024).
- Madrid City Council Air Quality Annual Report 2019. Madrid City Counc. 2019, 1, 81.
- Levinson, D.M.; Kumar, A. Density and the Journey to Work. Growth Chang. 1997, 28, 147–172. [Google Scholar] [CrossRef]
- DGT Statistics Portal. Available online: https://sedeapl.dgt.gob.es/WEB_IEST_CONSULTA/categoria.faces (accessed on 11 January 2023).
- Pérez Rodríguez, J.; Castellanos Díez, H. Effect of Local Measures on the Update of the Circulating Vehicle Fleet and the Reduction of Associated Emissions: 10 Years of Experience in the City of Madrid. Cities 2024, 152, 105214. [Google Scholar] [CrossRef]
- Tarriño-Ortiz, J.; Gómez, J.; Soria-Lara, J.A.; Vassallo, J.M. Analyzing the Impact of Low Emission Zones on Modal Shift. Sustain. Cities Soc. 2022, 77, 103562. [Google Scholar] [CrossRef]
- Beckerman, B.; Jerrett, M.; Brook, J.R.; Verma, D.K.; Arain, M.A.; Finkelstein, M.M. Correlation of Nitrogen Dioxide with Other Traffic Pollutants near a Major Expressway. Atmos. Environ. 2008, 42, 275–290. [Google Scholar] [CrossRef]
- Puente, C. Otra Vez La Calima: Vuelve la Lluvia de “Barro” a Andalucía en un Cierre de Marzo Muy Húmedo. 2022. Available online: https://www.eldiario.es/andalucia/el_tiempo/vuelve-lluvia-barro-andalucia-cierre-marzo-humedo-tiempo_1_8859839.html (accessed on 13 August 2023).
- Transport Research Centre (TRANSyT-UPM). E.MORES-CM Project. Strategies for a Resilient and Sustainable Mobility of Passengers and Goods Post-COVID in the Community of Madrid. Available online: http://e.mores-cm.transyt-projects.es/ (accessed on 29 September 2023).
- INE. Survey on Equipment and Use of Information and Communication Technologies in Households. 2021. Available online: https://www.ine.es/dynt3/inebase/index.htm?padre=8320&capsel=8320 (accessed on 15 July 2023).
- StataCorp Stata 15.1. Available online: https://www.stata.com/ (accessed on 13 August 2024).
- Madrid City Council. Permanent Traffic Forecasts in the City of Madrid. Madrid City Council’s Open Data Portal. Available online: https://datos.madrid.es/portal/site/egob/menuitem.c05c1f754a33a9fbe4b2e4b284f1a5a0/?vgnextoid=fabbf3e1de124610VgnVCM2000001f4a900aRCRD&vgnextchannel=374512b9ace9f310VgnVCM100000171f5a0aRCRD&vgnextfmt=default (accessed on 4 November 2022).
- Madrid City Council Air Quality. Daily Data since 2001. Madrid City Council Open Data Portal. Available online: https://datos.madrid.es/portal/site/egob/menuitem.c05c1f754a33a9fbe4b2e4b284f1a5a0/?vgnextoid=aecb88a7e2b73410VgnVCM2000000c205a0aRCRD&vgnextchannel=374512b9ace9f310VgnVCM100000171f5a0aRCRD&vgnextfmt=default (accessed on 8 November 2022).
- AEMET Open Data Portal. Available online: https://www.aemet.es/es/datos_abiertos (accessed on 13 August 2024).
- Mukaka, M.M. Statistics Corner: A Guide to Appropriate Use of Correlation Coefficient in Medical Research. Malawi Med. J. 2012, 24, 69–71. [Google Scholar] [PubMed]
- Kim, M.J. Changes in the Relationship between Particulate Matter and Surface Temperature in Seoul from 2002–2017. Atmosphere 2019, 10, 238. [Google Scholar] [CrossRef]
- Shon, Z.H.; Kim, K.H.; Song, S.K. Long-Term Trend in NO2 and NOx Levels and Their Emission Ratio in Relation to Road Traffic Activities in East Asia. Atmos. Environ. 2011, 45, 3120–3131. [Google Scholar] [CrossRef]
- Bañuelos-Gimeno, J.; Blanco, A.; Díaz, J.; Linares, C.; López, J.A.; Navas, M.A.; Sánchez-Martínez, G.; Luna, Y.; Hervella, B.; Belda, F.; et al. Air Pollution and Meteorological Variables’ Effects on COVID-19 First and Second Waves in Spain. Int. J. Environ. Sci. Technol. 2022, 20, 2869–2882. [Google Scholar] [CrossRef] [PubMed]
- Bañuelos-Gimeno, J.; Sobrino, N.; Arce, R. Effects of Mobility Restrictions on Air Pollution in the Madrid Region during the COVID-19 Pandemic and Post-Pandemic Periods. Sustainability 2023, 15, 12702. [Google Scholar] [CrossRef]
- New Zeland Ministry of Environment Nitrogen Dioxide. Available online: https://environment.govt.nz/facts-and-science/air/air-pollutants/nitrogen-dioxide-effects-health/ (accessed on 31 July 2024).
- Querol, X.; Viana, M.; Alastuey, A.; Amato, F.; Moreno, T.; Castillo, S.; Pey, J.; de la Rosa, J.; Sánchez de la Campa, A.; Artíñano, B.; et al. Source Origin of Trace Elements in PM from Regional Background, Urban and Industrial Sites of Spain. Atmos. Environ. 2007, 41, 7219–7231. [Google Scholar] [CrossRef]
- Scheel, H.E.; Areskoug, H.; Geiß, H.; Gomiscek, B.; Granby, K.; Haszpra, L.; Klasinc, L.; Kley, D.; Laurila, T.; Lindskog, A.; et al. On the Spatial Distribution and Seasonal Variation of Lower-Troposphere Ozone over Europe. J. Atmos. Chem. 1997, 28, 11–28. [Google Scholar] [CrossRef]
- Khodakarami, J.; Ghobadi, P. Urban Pollution and Solar Radiation Impacts. Renew. Sustain. Energy Rev. 2016, 57, 965–976. [Google Scholar] [CrossRef]
- Gonzalez, J.N.; Sobrino, N.; Vassallo, J.M. Considering the City Context in Weighting Sustainability Criteria for Last-Mile Logistics Solutions. Int. J. Logist. Res. Appl. 2023, 1–21. [Google Scholar] [CrossRef]
- Irwin, F. Gaining the Air Quality and Climate Benefit for Telework; World Resources Institute: Washington, DC, USA, 2004. [Google Scholar]
- Kitou, E.; Horvath, A.; Masanet, E.; Student, G.; Professor, A. Putting in Perspective the Contribution of Transportation to the Environmental Effects of Telework. In Proceedings of the 81st Transportation Research Board Conference; Transportation Reseach Board, Ed.; Transportation Reseach Board: Washington, DC, USA, 2002; p. 20. [Google Scholar]
- Cools, M.; Moons, E.; Wets, G. Assessing the Impact of Weather on Traffic Intensity. Weather. Clim. Soc. 2010, 2, 60–68. [Google Scholar] [CrossRef]
- Hernandez-Tamurejo, A.; Herraez, B.R.; Agudo, M.L.M. Telework and the Limited Impact on Traffic Reduction—Case Study Madrid (Spain). Acta Logist. 2023, 10, 423–434. [Google Scholar] [CrossRef]
Pre-Pandemic | During the Pandemic | Post-Pandemic | |
---|---|---|---|
Percentage * (%) | 26.41% | 48.47% | 39.07% |
Age (mean, years) | 44.57 | 43.16 | 42.36 |
Gender | Mostly male M: 54.23% F: 45.77% | Mostly female M: 48.33% F: 51.67% | Equal distribution M: 49.75% F: 50.25% |
Income | Medium 1500–3000 EUR | Medium 1500–3000 EUR | Medium 1500–3000 EUR |
Employment | Employee | Employee | Employee |
House type | Apartment | Apartment | Apartment |
Variable | Period | Daily Mean | Std. Deviation | Min. | Max. |
---|---|---|---|---|---|
Traffic (per thousand of vehicles) | Pre-Pandemic | 17.60 | 2.91 | 10 | 23 |
During the Pandemic | 13.76 | 3.08 | 6 | 19 | |
After the Pandemic | 16.33 | 2.49 | 8 | 20 | |
NO2 (µg/m3) | Pre-Pandemic | 52.12 | 14.74 | 15 | 99 |
During the Pandemic | 34.99 | 12.56 | 10 | 78.5 | |
After the Pandemic | 33.45 | 10.82 | 14.5 | 71 | |
PM2.5 (µg/m3) | Pre-Pandemic | 10.64 | 4.3 | 3.5 | 25 |
During the Pandemic | 9.13 | 4.0 | 1.5 | 27.5 | |
After the Pandemic | 11.92 | 8.9 | 2.5 | 74 | |
PM10 (µg/m3) | Pre-Pandemic | 20.36 | 8.2 | 7 | 49.5 |
During the Pandemic | 17.69 | 8.2 | 3 | 53.5 | |
After the Pandemic | 22.00 | 14.35 | 5 | 125.5 | |
O3 (µg/m3) | Pre-Pandemic | 45.73 | 19.6 | 4.5 | 92 |
During the Pandemic | 47.43 | 18.73 | 4.5 | 88.5 | |
After the Pandemic | 51.66 | 19.68 | 6.29 | 90.08 | |
Temperature (°C) | Pre-Pandemic | 15.9 | 7.51 | 4 | 31 |
During the Pandemic | 15.8 | 7.17 | 0 | 30 | |
After the Pandemic | 16.8 | 7.67 | 5 | 32 | |
Rainfall (L/m2) | Pre-Pandemic | 1.3 | 2.81 | 0 | 19 |
During the Pandemic | 1.5 | 3.86 | 0 | 34 | |
After the Pandemic | 0.98 | 2.49 | 0 | 19 | |
Wind Speed (m/s) | Pre-Pandemic | 2.00 | 0.75 | 0 | 4 |
During the Pandemic | 1.98 | 0.89 | 0 | 6 | |
After the Pandemic | 2.12 | 0.97 | 1 | 6 |
Traffic | NO2 | PM2.5 | PM10 | O3 | Temperature | Rainfall | |
---|---|---|---|---|---|---|---|
Traffic | 1.0000 | ||||||
NO2 | 0.4500 | 1.0000 | |||||
PM2.5 | −0.1997 | 0.2563 | 1.0000 | ||||
PM10 | −0.0804 | 0.2153 | 0.8478 | 1.0000 | |||
O3 | −0.2588 | −0.6031 | −0.0166 | 0.0857 | 1.0000 | ||
Temperature | −0.3199 | −0.5424 | 0.2618 | 0.4692 | 0.6951 | 1.0000 | |
Rainfall | 0.0632 | 0.0668 | −0.0926 | −0.1796 | −0.1222 | −0.1932 | 1.0000 |
Wind speed | 0.0981 | −0.3361 | −0.3516 | −0.3470 | 0.2139 | −0.0592 | 0.1269 |
Traffic | NO2 | PM2.5 | PM10 | O3 | Temperature | Rainfall | |
---|---|---|---|---|---|---|---|
Traffic | 1.0000 | ||||||
NO2 | 0.5410 | 1.0000 | |||||
PM2.5 | 0.1150 | 0.3078 | 1.0000 | ||||
PM10 | 0.2017 | 0.3381 | 0.7928 | 1.0000 | |||
O3 | −0.4633 | −0.7163 | −0.2152 | −0.1041 | 1.0000 | ||
Temperature | −0.1338 | −0.4438 | 0.0430 | 0.1153 | 0.7392 | 1.0000 | |
Rainfall | −0.0511 | −0.0701 | 0.2006 | 0.0747 | −0.0615 | −0.0703 | 1.0000 |
Wind speed | −0.0728 | −0.2378 | −0.1381 | −0.0446 | 0.2323 | 0.1121 | −0.0185 |
Traffic | NO2 | PM2.5 | PM10 | O3 | Temperature | Rainfall | |
---|---|---|---|---|---|---|---|
Traffic | 1.0000 | ||||||
NO2 | 0.3888 | 1.0000 | |||||
PM2.5 | −0.1824 | −0.0575 | 1.0000 | ||||
PM10 | −0.0944 | −0.0050 | 0.9134 | 1.0000 | |||
O3 | −0.2560 | −0.7390 | 0.2781 | 0.3111 | 1.0000 | ||
Temperature | −0.2545 | −0.5082 | 0.5107 | 0.5454 | 0.7496 | 1.0000 | |
Rainfall | 0.0686 | 0.0032 | −0.1214 | 0.1343 | −0.1392 | −0.1302 | 1.0000 |
Wind speed | −0.0104 | −0.3295 | −0.0686 | −0.0931 | 0.2368 | 0.0276 | −0.1154 |
Variable | NO2 | PM2.5 | |||||
---|---|---|---|---|---|---|---|
Pre–Pandemic | During the Pandemic | Post–Pandemic | Pre–Pandemic | During the Pandemic | Post–Pandemic | ||
Traffic | 1.72 *** | 1.93 *** | 1.19 *** | 0.16 ** | 0.18 ** | −0.15 * | |
Telework | Ocasionally | −1.88 * | 2.51 * | 2.82 * | −0.53 * | 0.03 * | −2.02 * |
Once a month | 2.45 * | 0.99 * | −0.52 * | 1.12 * | 0.45 * | 5.01 ** | |
1–2 times per week | −1.09 * | −2.97 * | 0.50 * | 0.59 * | 0.32 * | −1.37 * | |
3–4 times per week | 0.61 * | −1.94 * | −0.01 * | 0.005 * | −0.79 * | −0.73 * | |
Daily | −1.42 * | −1.21 * | −1.81 * | 0.52 * | 0.63 * | 0.25 * | |
Temperature | −0.89 *** | −0.65 *** | −0.62 *** | 0.12 *** | 0.05 * | 0.58 *** | |
Rainfall | 0.03 * | −0.25 * | −0.50 ** | −0.04 * | 0.22 ** | −0.24 * | |
Wind Speed | −7.72 *** | −2.29 *** | −3.58 *** | −1.88 * | −0.64 ** | −0.94 ** | |
PM10 | O3 | ||||||
Pre–Pandemic | During the Pandemic | Post–Pandemic | Pre–Pandemic | During the Pandemic | Post–Pandemic | ||
Traffic | 0.28 ** | 0.61 *** | 0.37 * | −0.40 * | −2.21 *** | −0.55 ** | |
Telework | Ocasionally | −2.54+ | −0.38 * | −2.79 * | 1.73 * | 0.45 * | −1.01 * |
Once a month | 2.38 * | −1.10 * | 5.26 * | −4.71 * | −3.87 * | 1.83 * | |
1–2 times per week | 1.41 * | −0.02 * | −2.35 * | −0.20 * | 3.65 * | 1.73 * | |
3–4 times per week | −0.11 * | −0.79 * | −1.47 * | −6.76 ** | 1.82 * | 3.84 * | |
Daily | 0.68 * | 0.69 * | 1.28 * | 1.02 * | −0.05 * | 5.80 ** | |
Temperature | 0.51 *** | 0.18 ** | 1.04 *** | 1.82 *** | 1.77 *** | 1.83 *** | |
Rainfall | −0.16 * | 0.21 * | −0.47 * | −0.12 * | −0.14 * | −0.09 * | |
Wind Speed | −3.43 *** | 0.47 * | −1.89 ** | 6.88 *** | 2.82 *** | 4.24 *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bañuelos-Gimeno, J.; Sobrino, N.; Arce-Ruiz, R. Initial Insights into Teleworking’s Effect on Air Quality in Madrid City. Environments 2024, 11, 204. https://doi.org/10.3390/environments11090204
Bañuelos-Gimeno J, Sobrino N, Arce-Ruiz R. Initial Insights into Teleworking’s Effect on Air Quality in Madrid City. Environments. 2024; 11(9):204. https://doi.org/10.3390/environments11090204
Chicago/Turabian StyleBañuelos-Gimeno, Jorge, Natalia Sobrino, and Rosa Arce-Ruiz. 2024. "Initial Insights into Teleworking’s Effect on Air Quality in Madrid City" Environments 11, no. 9: 204. https://doi.org/10.3390/environments11090204
APA StyleBañuelos-Gimeno, J., Sobrino, N., & Arce-Ruiz, R. (2024). Initial Insights into Teleworking’s Effect on Air Quality in Madrid City. Environments, 11(9), 204. https://doi.org/10.3390/environments11090204