Association between Combined Metals and PFAS Exposure with Dietary Patterns: A Preliminary Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Cohort and Design
2.2. Calculation of DII Scores
2.3. Statistical Analysis
2.3.1. Descriptive Statistics
2.3.2. Bayesian Kernel Machine Regression
3. Results
3.1. Characteristics of the Sample Population
3.2. Correlation between Environmental Contaminants Variables and the DII
3.3. BKMR Analysis
3.3.1. Posterior Inclusion Probability of Environmental Contaminants with DII
3.3.2. Univariate Association of the DII and Combined PFAS and Heavy Metals
3.3.3. Bivariate Exposure–Response Function
3.3.4. Overall Exposure Effect of the DII in Relation to PFAS and Heavy Metal Exposure Percentiles
3.3.5. Single-Variable Effects of PFAS and Metals with the DII
3.3.6. Single-Variable Interaction Terms of PFAS and Metals on the DII
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Proportion | Std. Error | 95% Confidence Interval | |
---|---|---|---|
Gender @ DII | |||
Male—0 | 0.624 | 0.031 | 0.556, 0.689 |
Male—1 | 0.453 | 0.010 | 0.432, 0.475 |
Female—0 | 0.375 | 0.031 | 0.311, 0.444 |
Female—1 | 0.547 | 0.010 | 0.525, 0.568 |
Ethnicity @DII | |||
1—0 | 0.101 | 0.020 | 0.0661,0.153 |
1—1 | 0.0875 | 0.016 | 0.0589, 0.128 |
2—0 | 0.0748 | 0.012 | 0.0533,0.104 |
2—1 | 0.0664 | 0.009 | 0.0492, 0.0889 |
3—0 | 0.628 | 0.034 | 0.553, 0.697 |
3—1 | 0.630 | 0.025 | 0.575, 0.682 |
4—0 | 0.0781 | 0.012 | 0.0555, 0.109 |
4—1 | 0.120 | 0.017 | 0.0875, 0.162 |
5—0 | 0.0655 | 0.011 | 0.0458, 0.0927 |
5—1 | 0.0504 | 0.009 | 0.319, 0.0721 |
6—0 | 0.0522 | 0.016 | 0.0266, 0.0997 |
6—1 | 0.0464 | 0.005 | 0.0367, 0.0585 |
Alcohol @ DII | |||
Yes—0 | 0.941 | 0.010 | 0.915, 0.960 |
Yes—1 | 0.914 | 0.006 | 0.898, 0.928 |
No—0 | 0.0588 | 0.010 | 0.0403, 0.0853 |
No—1 | 0.0858 | 0.007 | 0.0724, 0.102 |
Smoking @DII | |||
Yes—0 | 0.400 | 0.227 | 0.352, 0.449 |
Yes—1 | 0.419 | 0.0167 | 0.384, 0.455 |
No—0 | 0.600 | 0.023 | 0.551, 0.648 |
No—1 | 0.581 | 0.017 | 0.545, 0.616 |
References
- Collaborators, G.A. Global, regional, and national burden of diseases and injuries for adults 70 years and older: Systematic analysis for the Global Burden of Disease 2019 Study. BMJ 2022, 376, e068208. [Google Scholar]
- Rakhra, V.; Galappaththy, S.L.; Bulchandani, S.; Cabandugama, P.K. Obesity and the western diet: How we got here. Mo. Med. 2020, 117, 536. [Google Scholar] [PubMed]
- Furman, D.; Campisi, J.; Verdin, E.; Carrera-Bastos, P.; Targ, S.; Franceschi, C.; Ferrucci, L.; Gilroy, D.W.; Fasano, A.; Miller, G.W.; et al. Chronic inflammation in the etiology of disease across the life span. Nat. Med. 2019, 25, 1822–1832. [Google Scholar] [CrossRef] [PubMed]
- Clark, M.; Hill, J.; Tilman, D. The diet, health, and environment trilemma. Annu. Rev. Environ. Resour. 2018, 43, 109–134. [Google Scholar] [CrossRef]
- Shivappa, N.; Steck, S.E.; Hurley, T.G.; Hussey, J.R.; Hébert, J.R. Designing and developing a literature-derived, population-based dietary inflammatory index. Public Health Nutr. 2014, 17, 1689–1696. [Google Scholar] [CrossRef]
- Cavicchia, P.P.; Steck, S.E.; Hurley, T.G.; Hussey, J.R.; Ma, Y.; Ockene, I.S.; Hébert, J.R. A New Dietary Inflammatory Index Predicts Interval Changes in Serum High-Sensitivity C-Reactive Protein. J. Nutr. 2009, 139, 2365–2372. [Google Scholar] [CrossRef] [PubMed]
- Hébert, J.R.; Shivappa, N.; Wirth, M.D.; Hussey, J.R.; Hurley, T.G. Perspective: The Dietary Inflammatory Index (DII)—Lessons Learned, Improvements Made, and Future Directions. Adv. Nutr. 2019, 10, 185–195. [Google Scholar] [CrossRef] [PubMed]
- Shivappa, N.; Hebert, J.R.; Marcos, A.; Diaz, L.-E.; Gomez, S.; Nova, E.; Michels, N.; Arouca, A.; González-Gil, E.; Frederic, G.; et al. Association between dietary inflammatory index and inflammatory markers in the HELENA study. Mol. Nutr. Food Res. 2017, 61, 1600707. [Google Scholar] [CrossRef] [PubMed]
- Libby, P. Inflammation in atherosclerosis. Nature 2002, 420, 868–874. [Google Scholar] [CrossRef]
- Ridker, P.M.; Everett, B.M.; Thuren, T.; MacFadyen, J.G.; Chang, W.H.; Ballantyne, C.; Fonseca, F.; Nicolau, J.; Koenig, W.; Anker, S.D.; et al. Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease. N. Engl. J. Med. 2017, 377, 1119–1131. [Google Scholar] [CrossRef]
- Li, R.; Zhan, W.; Huang, X.; Zhang, Z.; Zhou, M.; Bao, W.; Li, Q.; Ma, Y. Association of dietary inflammatory index and metabolic syndrome in the elderly over 55 years in Northern China. Br. J. Nutr. 2022, 128, 1082–1089. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Yang, M.; Yang, J.; Seery, S.; Ma, C.; Liu, Y.; Zhang, X.; Li, A.; Guo, H. Per- and polyfluoroalkyl substances and the associated thyroid cancer risk: A case-control study in China. Chemosphere 2023, 337, 139411. [Google Scholar] [CrossRef] [PubMed]
- Agency for Toxic Substances and Disease Registry. Per-and Polyfluoroalkyl Substances (PFAS) and Your Health. 2020. Available online: https://www.atsdr.cdc.gov/pfas/health-effects/index.html (accessed on 17 June 2024).
- Sunderland, E.M.; Hu, X.C.; Dassuncao, C.; Tokranov, A.K.; Wagner, C.C.; Allen, J.G. A review of the pathways of human exposure to poly- and perfluoroalkyl substances (PFASs) and present understanding of health effects. J. Expo. Sci. Environ. Epidemiol. 2019, 29, 131–147. [Google Scholar] [CrossRef] [PubMed]
- Poothong, S.; Papadopoulou, E.; Padilla-Sánchez, J.A.; Thomsen, C.; Haug, L.S. Multiple pathways of human exposure to poly- and perfluoroalkyl substances (PFASs): From external exposure to human blood. Environ. Int. 2020, 134, 105244. [Google Scholar] [CrossRef] [PubMed]
- Pizzurro, D.M.; Seeley, M.; Kerper, L.E.; Beck, B.D. Interspecies differences in perfluoroalkyl substances (PFAS) toxicokinetics and application to health-based criteria. Regul. Toxicol. Pharmacol. 2019, 106, 239–250. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Louie, A.; Rigutto, G.; Guo, H.; Zhao, Y.; Ahn, S.; Dahlberg, S.; Sholinbeck, M.; Smith, M.T. A systematic evidence map of chronic inflammation and immunosuppression related to per- and polyfluoroalkyl substance (PFAS) exposure. Environ. Res. 2023, 220, 115188. [Google Scholar] [CrossRef] [PubMed]
- Goodrich, J.A.; Walker, D.; Lin, X.; Wang, H.; Lim, T.; McConnell, R.; Conti, D.V.; Chatzi, L.; Setiawan, V.W. Exposure to perfluoroalkyl substances and risk of hepatocellular carcinoma in a multiethnic cohort. JHEP Rep. 2022, 4, 100550. [Google Scholar] [CrossRef] [PubMed]
- Grandjean, P.; Clapp, R. Perfluorinated Alkyl Substances:Emerging Insights Into Health Risks. New Solut. A J. Environ. Occup. Health Policy 2015, 25, 147–163. [Google Scholar] [CrossRef] [PubMed]
- Tchounwou, P.B.; Yedjou, C.G.; Patlolla, A.K.; Sutton, D.J. Heavy metal toxicity and the environment. Exp. Suppl. 2012, 101, 133–164. [Google Scholar] [CrossRef]
- Wang, X.; Mukherjee, B.; Park, S.K. Associations of cumulative exposure to heavy metal mixtures with obesity and its comorbidities among U.S. adults in NHANES 2003–2014. Environ. Int. 2018, 121, 683–694. [Google Scholar] [CrossRef]
- Duruibe, J.O.; Ogwuegbu, M.O.; Egwurugwu, J.N. Heavy Metal Pollution and Human Biotoxic Effects. Int. J. Phys. Sci. 2007, 2, 112–118. [Google Scholar]
- Haruna, I.; Obeng-Gyasi, E. Association of Combined Per-and Polyfluoroalkyl Substances and Metals with Chronic Kidney Disease. Int. J. Environ. Res. Public Health 2024, 21, 468. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Li, J.; Zhao, H.; Wang, Y.; Liu, J.; Shao, Y.; Xue, Y.; Xing, M. Synergistic effect of copper and arsenic upon oxidative stress, inflammation and autophagy alterations in brain tissues of Gallus gallus. J. Inorg. Biochem. 2018, 178, 54–62. [Google Scholar] [CrossRef] [PubMed]
- Zhou, R.; Peng, J.; Zhang, L.; Sun, Y.; Yan, J.; Jiang, H. Association between the dietary inflammatory index and serum perfluoroalkyl and polyfluoroalkyl substance concentrations: Evidence from NANHES 2007–2018. Food Funct. 2023. [Google Scholar] [CrossRef] [PubMed]
- Bashir, T.; Obeng-Gyasi, E. The Association between Multiple Per- and Polyfluoroalkyl Substances’ Serum Levels and Allostatic Load. Int. J. Environ. Res. Public Health 2022, 19, 5455. [Google Scholar] [CrossRef] [PubMed]
- Roth, K.; Imran, Z.; Liu, W.; Petriello, M.C. Diet as an Exposure Source and Mediator of Per- and Polyfluoroalkyl Substance (PFAS) Toxicity. Front. Toxicol. 2020, 2, 601149. [Google Scholar] [CrossRef] [PubMed]
- Aleksandrov, A.P.; Mirkov, I.; Tucovic, D.; Kulas, J.; Zeljkovic, M.; Popovic, D.; Ninkov, M.; Jankovic, S.; Kataranovski, M. Immunomodulation by heavy metals as a contributing factor to inflammatory diseases and autoimmune reactions: Cadmium as an example. Immunol. Lett. 2021, 240, 106–122. [Google Scholar] [CrossRef] [PubMed]
- Valko, M.; Morris, H.; Cronin, M. Metals, toxicity and oxidative stress. Curr. Med. Chem. 2005, 12, 1161–1208. [Google Scholar] [CrossRef] [PubMed]
- Bobb, J.F.; Valeri, L.; Claus Henn, B.; Christiani, D.C.; Wright, R.O.; Mazumdar, M.; Godleski, J.J.; Coull, B.A. Bayesian kernel machine regression for estimating the health effects of multi-pollutant mixtures. Biostatistics 2014, 16, 493–508. [Google Scholar] [CrossRef]
- Coull, B.A.; Bobb, J.F.; Wellenius, G.A.; Kioumourtzoglou, M.A.; Mittleman, M.A.; Koutrakis, P.; Godleski, J.J. Part 1. Statistical Learning Methods for the Effects of Multiple Air Pollution Constituents. Res. Rep. Health Eff. Inst. 2015, 183, 5–50. [Google Scholar]
- Bobb, J.F.; Claus Henn, B.; Valeri, L.; Coull, B.A. Statistical software for analyzing the health effects of multiple concurrent exposures via Bayesian kernel machine regression. Environ. Health 2018, 17, 67. [Google Scholar] [CrossRef] [PubMed]
- Steenland, K.; Winquist, A. PFAS and cancer, a scoping review of the epidemiologic evidence. Environ. Res. 2021, 194, 110690. [Google Scholar] [CrossRef] [PubMed]
- Balogun, M.; Obeng-Gyasi, E. Association of Combined PFOA, PFOS, Metals and Allostatic Load on Hepatic Disease Risk. J. Xenobiot. 2024, 14, 516–536. [Google Scholar] [CrossRef] [PubMed]
- Hossein-Khannazer, N.; Azizi, G.; Eslami, S.; Alhassan Mohammed, H.; Fayyaz, F.; Hosseinzadeh, R.; Usman, A.B.; Kamali, A.N.; Mohammadi, H.; Jadidi-Niaragh, F. The effects of cadmium exposure in the induction of inflammation. Immunopharmacol. Immunotoxicol. 2020, 42, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Takiguchi, M.; Yoshihara, S.i. New aspects of cadmium as endocrine disruptor. Environ. Sci. 2006, 13, 107–116. [Google Scholar] [PubMed]
- Georgescu, B.; Georgescu, C.; Dărăban, S.; Bouaru, A.; Pașcalău, S. Heavy metals acting as endocrine disrupters. Sci. Pap. Anim. Sci. Biotechnol. 2011, 44, 89. [Google Scholar]
- Wolf, M.B.; Baynes, J.W. Cadmium and mercury cause an oxidative stress-induced endothelial dysfunction. Biometals 2007, 20, 73–81. [Google Scholar] [CrossRef] [PubMed]
- Stafoggia, M.; Breitner, S.; Hampel, R.; Basagaña, X. Statistical approaches to address multi-pollutant mixtures and multiple exposures: The state of the science. Curr. Environ. Health Rep. 2017, 4, 481–490. [Google Scholar] [CrossRef]
- Le Magueresse-Battistoni, B.; Vidal, H.; Naville, D. Environmental pollutants and metabolic disorders: The multi-exposure scenario of life. Front. Endocrinol. 2018, 9, 582. [Google Scholar] [CrossRef]
- Pawelec, G.; Goldeck, D.; Derhovanessian, E. Inflammation, ageing and chronic disease. Curr. Opin. Immunol. 2014, 29, 23–28. [Google Scholar] [CrossRef]
- Yu, L.; Liu, W.; Wang, X.; Ye, Z.; Tan, Q.; Qiu, W.; Nie, X.; Li, M.; Wang, B.; Chen, W. A review of practical statistical methods used in epidemiological studies to estimate the health effects of multi-pollutant mixture. Environ. Pollut. 2022, 306, 119356. [Google Scholar] [CrossRef] [PubMed]
- Dominici, F.; Peng, R.D.; Barr, C.D.; Bell, M.L. Protecting human health from air pollution: Shifting from a single-pollutant to a multipollutant approach. Epidemiology 2010, 21, 187–194. [Google Scholar] [CrossRef] [PubMed]
Variable | * Participants (n) | Mean | Standard Error (SE) | Minimum | Maximum |
---|---|---|---|---|---|
Age (Years) | 9254 | 34.3 | 25.5 | 0.00 | 80.0 |
BMI (kg/m2) | 8005 | 26.6 | 8.26 | 12.3 | 86.2 |
Lead (µg/dL) | 6884 | 1.08 | 1.29 | 0.050 | 42.5 |
Cadmium (µg/L) | 7513 | 0.374 | 0.503 | 0.070 | 13.0 |
Mercury (µg/L) | 7513 | 1.14 | 2.27 | 0.200 | 63.6 |
PFOA (ng/mL) | 1929 | 1.71 | 1.82 | 0.140 | 52.9 |
PFOS (mg/mL) | 1929 | 6.51 | 7.74 | 0.140 | 105 |
DII | 7495 | 1.79 | 1.59 | −4.34 | 5.15 |
Mean | Std. Error | 95% Confidence Interval | p-Value | |
---|---|---|---|---|
PFOA | ||||
0 | 1.92 | 0.154 | 1.59, 2.25 | 0.137 |
1 | 0.170 | 0.066 | 1.56, 1.84 | |
PFOS | ||||
0 | 6.56 | 0.504 | 5.48, 7.63 | 0.067 |
1 | 5.64 | 0.219 | 5.18, 6.11 | |
Lead | ||||
0 | 1.06 | 0.073 | 0.904, 1.22 | 0.263 |
1 | 1.00 | 0.054 | 0.957, 1.16 | |
Cadmium | ||||
0 | 0.357 | 0.024 | 0.307, 0.409 | 0.360 |
1 | 0.382 | 0.014 | 0.352, 0.411 | |
Mercury | ||||
0 | 1.51 | 0.079 | 1.19, 1.66 | <0.0001 |
1 | 1.07 | 0.060 | 0.929, 1.17 | |
Age in Year | ||||
0 | 46.0 | 0.875 | 44.1, 47.8 | <0.0001 |
1 | 37.0 | 0.509 | 35.9, 38.1 | |
BMI | ||||
0 | 28.0 | 0.351 | 27.2, 28.7 | 0.390 |
1 | 28.0 | 0.237 | 27.1, 28.1 |
DII | Coefficient * | Std. Error | p-Value | 95% Confidence Interval |
---|---|---|---|---|
PFOA | −0.035 | 0.053 | 0.520 | −0.149, 0.079 |
PFOS | −0.008 | 0.011 | 0.471 | −0.030, 0.015 |
Lead | 0.016 | 0.058 | 0.787 | −0.108, 0.140 |
Cadmium | 0.369 | 0.013 | 0.012 | 0.092, 0.647 |
Mercury | −0.123 | 0.031 | 0.001 | −0.189, −0.057 |
Variable | PIP |
---|---|
Lead | 0.560 |
Cadmium | 1.000 |
Mercury | 1.000 |
PFOA | 0.592 |
PFOS | 0.852 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Odediran, A.; Obeng-Gyasi, E. Association between Combined Metals and PFAS Exposure with Dietary Patterns: A Preliminary Study. Environments 2024, 11, 127. https://doi.org/10.3390/environments11060127
Odediran A, Obeng-Gyasi E. Association between Combined Metals and PFAS Exposure with Dietary Patterns: A Preliminary Study. Environments. 2024; 11(6):127. https://doi.org/10.3390/environments11060127
Chicago/Turabian StyleOdediran, Augustina, and Emmanuel Obeng-Gyasi. 2024. "Association between Combined Metals and PFAS Exposure with Dietary Patterns: A Preliminary Study" Environments 11, no. 6: 127. https://doi.org/10.3390/environments11060127
APA StyleOdediran, A., & Obeng-Gyasi, E. (2024). Association between Combined Metals and PFAS Exposure with Dietary Patterns: A Preliminary Study. Environments, 11(6), 127. https://doi.org/10.3390/environments11060127