Constraints on Organic Matter Stability in Pyrenean Subalpine Grassland Soils: Physical Protection, Biochemical Quality, and the Role of Free Iron Forms
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sites and Soils
2.2. Standard Soil Analyses
2.3. Soil Incubation and Microbial C Measurements
2.4. Evaluation of SOM Biochemical Quality
2.5. Size Fractionation of SOM
2.6. Extraction of Forms of Free Fe
2.7. Statistical Analyses
3. Results
3.1. Changes in C Stability with Depth
3.2. Microbial Parameters
3.3. Effects of SOM Biochemical Quality (q) on the Size of the Active Pool
3.4. Effects of SOM Biochemical Quality on C Stability
3.5. Relationships between Size Fractions and C Stability
3.6. Iron Forms: Distribution in the Soil Profiles and Effect on Microbial Activity
3.7. Principal Component Analysis (PCA)
4. Discussion
4.1. Position within the Soil Profile
4.2. Insight about the Role of Free Fe Forms
4.3. Drivers of SOM Stability: Physical Protection versus Biochemical Quality
4.4. An Overall View
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Pedon | Horizon | Depth | Color | Structure | pH a | Texture b |
---|---|---|---|---|---|---|
I | Oi | 0–2 | 10YR 3/4 | – | 6.5 | |
A1 | 2–9 | 10YR 3/3 | Strong, crumb, fine | 6.1 | CL | |
A2 | 9–24 | 10YR 3/4 | Strong, crumb, medium | 6.1 | CL | |
Bw | 24–69 | 10YR 4/4 | Very weak, subangular blocky, medium | 8.4 | SL | |
2C | >69 | – | – | – | ||
II | Oi | 0–2 | – | – | – | |
A1 | 2–22 | 5YR 4/5 | Very strong, crumb, fine | 6.1 | C | |
A2 | 22–44 | 10YR 4/5 | Very strong, crumb, medium | 6.8 | SL | |
Bw | 44–77 | 10YR 5/6 | Strong, subangular blocky, medium | 7.4 | L | |
2C | >77 | – | – | – | ||
III | O | 0–5 | 7.5YR 2/2.5 | – | 6.3 | |
A | 5–10 | 7.5YR 4/3 | Strong, crumb, fine | 6.6 | CL | |
Bw1 | 10–40 | 7.5YR 3/4 | Moderate, crumb, medium | 6.6 | CL | |
Bw2 | >40 | 7.5YR 3/4 | Moderate, crumb, medium | 6.7 | CL | |
IV | O | 0–5 | 7.5YR 3/2 | – | ||
A1 | 5–10 | 7.5YR3/4 | Strong, crumb, medium | 7.4 | CL | |
A2 | 10–20 | 7.5YR 4/2 | Strong, crumb, medium | 7.5 | CL | |
A3 | 20–30 | 7.5YR 3/3 | Strong, crumb, medium | 7.8 | CL | |
Bw | >30 | 7.5YR 3/3 | Strong, crumb, medium | 7.8 | CL |
Appendix B
- The complete table (Table A7), with the correlations between the indicators of biochemical quality q (obtained through the acid hydrolysis procedures) and the indicators of decomposition, i.e., microbial activity.
Pedon | Depth (cm) | OC | Total N | FeDIT | FeTMM | FeCIT | FeDTPA |
---|---|---|---|---|---|---|---|
I | 0–5 | 114.8 | 8.64 | 43.5 | 1.12 | 0.543 | 41.6 |
5–10 | 68.0 | 4.22 | 51.9 | 1.17 | 0.568 | 13.6 | |
10–20 | 38.0 | 3.21 | 57.1 | 1.15 | 0.508 | 6.0 | |
20–30 | 25.4 | 1.23 | 57.5 | 1.24 | 0.392 | 3.0 | |
30–40 | 19.4 | 1.04 | 55.8 | 1.12 | 0.357 | 2.4 | |
40–60 | 14.0 | 0.91 | 54.1 | 2.16 | 0.349 | 3.5 | |
II | 0–5 | 345.1 | 21.50 | 25.5 | 1.10 | 0.254 | 56.8 |
5–10 | 125.9 | 9.46 | 70.4 | 1.01 | 0.866 | 19.1 | |
10–20 | 96.1 | 4.26 | 76.4 | 0.98 | 0.861 | 8.7 | |
20–30 | 83.6 | 3.05 | 80.5 | 0.90 | 0.658 | 4.9 | |
III | 0–5 | 109.4 | 6.10 | 58.2 | 1.10 | 0.583 | 13.6 |
5–10 | 86.4 | 2.61 | 59.6 | 1.10 | 0.636 | 12.0 | |
10–20 | 87.3 | 3.08 | 60.9 | 1.12 | 0.594 | 6.3 | |
20–30 | 49.9 | 1.81 | 64.3 | 1.32 | 0.457 | 4.3 | |
30–40 | 42.7 | 1.30 | 70.2 | 1.18 | 0.454 | 2.2 | |
40–60 | 40.5 | 1.05 | 69.8 | 1.14 | 0.505 | 1.6 | |
IV | 0–5 | 199.9 | 6.37 | 38.8 | 1.61 | 1.040 | 50.2 |
5–10 | 90.3 | 1.44 | 50.2 | 0.88 | 0.724 | 22.2 | |
10–20 | 71.9 | 1.00 | 55.0 | 0.84 | 0.503 | 7.1 | |
20–30 | 42.1 | 0.66 | 63.1 | 0.83 | 0.485 | 3.0 | |
30–40 | 34.2 | 0.54 | 61.3 | 0.88 | 0.507 | 1.3 |
Incubation Experiment | Active C | ||||||
---|---|---|---|---|---|---|---|
Pedon | Depth (cm) | Cresp33 | BRR | MAR | Microbial C | Soluble C | Active C |
I | 0–5 | 74.01 | 1.028 | 42.57 | 24.14 | 7.94 | 32.08 |
5–10 | 41.36 | 0.561 | 21.58 | 25.99 | 3.22 | 29.21 | |
10–20 | 34.89 | 0.445 | 18.69 | 23.79 | 6.13 | 29.92 | |
20–30 | 36.68 | 0.458 | 25.25 | 18.13 | 7.49 | 25.62 | |
30–40 | 25.63 | 0.412 | 23.09 | 17.84 | 7.40 | 25.23 | |
40–60 | 25.75 | 0.379 | 23.27 | 16.30 | 11.83 | 28.13 | |
II | 0–5 | 36.65 | 0.550 | 27.68 | 19.88 | 4.19 | 24.07 |
5–10 | 31.45 | 0.539 | 20.14 | 26.74 | 4.59 | 31.33 | |
10–20 | 14.83 | 0.290 | 12.98 | 22.35 | 2.81 | 25.17 | |
20–30 | 18.03 | 0.224 | 13.58 | 16.53 | 3.20 | 19.73 | |
III | 0–5 | 42.03 | 0.648 | 23.29 | 27.84 | 4.14 | 31.99 |
5–10 | 25.87 | 0.383 | 17.90 | 21.38 | 3.59 | 24.97 | |
10–20 | 24.73 | 0.406 | 22.12 | 18.37 | 3.41 | 21.78 | |
20–30 | 18.40 | 0.288 | 21.99 | 13.08 | 4.05 | 17.13 | |
30–40 | 13.93 | 0.252 | 24.31 | 10.35 | 3.47 | 13.82 | |
40–60 | 11.33 | 0.168 | 27.85 | 6.03 | 3.97 | 10.00 | |
IV | 0–5 | 74.82 | 1.461 | 51.03 | 28.64 | 6.97 | 35.61 |
5–10 | 38.26 | 0.422 | 17.77 | 23.73 | 3.16 | 26.90 | |
10–20 | 30.62 | 0.294 | 13.81 | 21.27 | 2.26 | 23.53 | |
20–30 | 23.49 | 0.406 | 20.16 | 20.12 | 2.85 | 22.98 | |
30–40 | 29.41 | 0.432 | 18.21 | 23.71 | 1.54 | 25.25 |
POM | OMC | ||||
---|---|---|---|---|---|
Pedon | Depth (cm) | cSa | fSa | cSi | fSi + Cl |
I | 0–5 | 11.66 | 12.17 | 12.18 | 63.99 |
5–10 | 5.00 | 5.26 | 7.92 | 81.82 | |
10–20 | 16.52 | 13.43 | 6.54 | 63.51 | |
20–30 | 2.15 | 2.32 | 3.80 | 91.72 | |
30–40 | 1.50 | 1.63 | 0.98 | 95.89 | |
40–60 | 1.34 | 2.74 | 4.33 | 91.59 | |
II | 0–5 | 25.04 | 18.31 | 7.90 | 48.76 |
5–10 | 15.99 | 13.16 | 5.90 | 64.96 | |
10–20 | 3.51 | 6.66 | 7.20 | 82.63 | |
20–30 | 5.04 | 5.00 | 2.67 | 87.29 | |
III | 0–5 | 5.63 | 8.56 | 13.75 | 72.06 |
5–10 | 2.58 | 5.16 | 10.64 | 81.63 | |
10–20 | 2.42 | 6.39 | 8.78 | 82.42 | |
20–30 | 1.50 | 4.77 | 4.28 | 89.45 | |
30–40 | 2.04 | 2.06 | 6.00 | 89.90 | |
40–60 | 1.69 | 1.75 | 4.12 | 92.44 | |
IV | 0–5 | 13.26 | 15.31 | 13.54 | 57.89 |
5–10 | 14.80 | 6.69 | 7.38 | 71.12 | |
10–20 | 9.70 | 7.16 | 8.12 | 75.02 | |
20–30 | 6.72 | 3.70 | 5.33 | 84.26 | |
30–40 | 6.15 | 3.95 | 6.00 | 83.91 |
HCl | H2SO4 | ||||
---|---|---|---|---|---|
Pedon | Depth (cm) | RIC | LP I | LP II | RIC |
I | 0–5 | 34.20 | 45.08 | 10.72 | 44.21 |
5–10 | 30.53 | 46.37 | 13.25 | 40.38 | |
10–20 | 30.51 | 49.93 | 12.58 | 37.49 | |
20–30 | 28.38 | 52.27 | 12.06 | 35.67 | |
30–40 | 22.15 | 42.26 | 21.77 | 35.96 | |
40–60 | 30.63 | 52.07 | 11.38 | 36.55 | |
II | 0–5 | 37.41 | 40.26 | 13.42 | 46.32 |
5–10 | 35.73 | 41.98 | 12.82 | 45.20 | |
10–20 | 39.07 | 43.10 | 12.06 | 44.84 | |
20–30 | 40.39 | 41.78 | 12.28 | 45.94 | |
III | 0–5 | 35.20 | 45.94 | 10.14 | 43.92 |
5–10 | 35.40 | 42.87 | 11.46 | 45.68 | |
10–20 | 34.79 | 46.58 | 11.66 | 41.76 | |
20–30 | 34.13 | 46.09 | 13.51 | 40.40 | |
30–40 | 32.69 | 45.59 | 12.59 | 41.81 | |
40–60 | 38.08 | 44.26 | 12.45 | 43.30 | |
IV | 0–5 | 37.42 | 39.39 | 11.23 | 49.38 |
5–10 | 33.86 | 44.32 | 10.27 | 45.42 | |
10–20 | 29.55 | 49.15 | 12.86 | 37.99 | |
20–30 | 32.51 | 46.53 | 11.72 | 41.75 | |
30–40 | 37.52 | 47.22 | 9.17 | 43.61 |
First Hydrolysate (LP I) | Second Hydrolysate (LP II) | ||||||
---|---|---|---|---|---|---|---|
Pedon | Depth (cm) | Glu | Tan | XAD+ | Glu | Tan | XAD+ |
I | 0–5 | 23.29 | 6.85 | 11.36 | 2.53 | 1.26 | 3.88 |
5–10 | 29.68 | 8.00 | 9.26 | 2.41 | 1.81 | 3.91 | |
10–20 | 39.80 | 12.00 | 14.14 | 2.39 | 1.58 | 4.85 | |
20–30 | 39.06 | 13.26 | 12.08 | 2.26 | 2.00 | 4.51 | |
30–40 | 35.36 | 16.59 | 13.84 | 3.21 | 2.62 | 6.92 | |
40–60 | 37.28 | 21.15 | 14.21 | 2.27 | 1.73 | 6.25 | |
II | 0–5 | 12.73 | 2.48 | 7.56 | 2.14 | 0.89 | 3.15 |
5–10 | 21.41 | 6.33 | 13.76 | 5.50 | 1.46 | 6.93 | |
10–20 | 24.21 | 6.60 | 11.09 | 1.58 | 1.85 | 4.14 | |
20–30 | 22.50 | 5.44 | 10.01 | 1.57 | 1.88 | 3.57 | |
III | 0–5 | 20.36 | 6.07 | 9.55 | 1.95 | 2.57 | 4.68 |
5–10 | 23.64 | 5.70 | 13.47 | 2.03 | 2.63 | 4.01 | |
10–20 | 20.94 | 6.09 | 12.39 | 1.31 | 3.23 | 0.53 | |
20–30 | 29.54 | 6.17 | 13.31 | 3.23 | 3.73 | 0.80 | |
30–40 | 30.11 | 4.38 | 13.17 | 3.57 | 3.42 | 3.98 | |
40–60 | 29.47 | 4.09 | 13.67 | 3.21 | 3.78 | 4.81 | |
IV | 0–5 | 18.56 | 5.63 | 10.91 | 2.85 | 1.42 | 2.44 |
5–10 | 19.76 | 7.51 | 11.05 | 1.81 | 2.59 | 4.38 | |
10–20 | 21.55 | 7.15 | 9.70 | 1.18 | 2.95 | 3.81 | |
20–30 | 30.42 | 8.01 | 12.35 | 2.38 | 3.58 | 4.77 | |
30–40 | 29.57 | 7.40 | 13.60 | 2.04 | 4.26 | 7.17 |
Incubation Experiment | Active C | |||||
---|---|---|---|---|---|---|
Parameter | Cresp33 | BRR | MAR | Microbial C | Soluble C | Active C |
Total OC | 0.422 † | 0.476 † | 0.384 † | 0.343 | −0.093 | 0.281 |
Total N | 0.383 † | 0.393 † | 0.333 | 0.313 | 0.041 | 0.306 |
N:OC | 0.313 | 0.259 | 0.201 | 0.281 | 0.575 ** | 0.487 * |
RIC | 0.283 | 0.406 † | 0.294 | 0.303 | −0.383 † | 0.130 |
C in LP I | −0.148 | −0.313 | −0.271 | −0.151 | 0.276 | −0.031 |
C in LP II | −0.229 | −0.185 | −0.071 | −0.258 | 0.203 | −0.159 |
C II/total hydrolysate | −0.153 | −0.053 | 0.037 | −0.183 | 0.088 | −0.135 |
Carbohydrates in LP I | −0.284 | −0.318 | −0.166 | −0.337 | 0.424 † | −0.145 |
Carbohydrates in LP II | −0.006 | 0.118 | 0.258 | −0.098 | 0.203 | −0.011 |
Total carbohydrates | −0.277 | −0.295 | −0.129 | −0.340 | 0.439 * | −0.142 |
Carbohydrates: II/tot | 0.243 | 0.369 † | 0.394 † | 0.169 | 0.019 | 0.165 |
Phenolics in LP I | −0.025 | −0.081 | −0.087 | −0.020 | 0.733 *** | 0.271 |
Phenolics in LP II | −0.539 * | −0.493 * | −0.315 | −0.478 * | −0.493 * | −0.635 ** |
Total phenolics | −0.143 | −0.190 | −0.157 | −0.125 | 0.630 ** | 0.133 |
Phenolics: II/tot | −0.460 * | −0.373 † | −0.140 | −0.505 * | −0.688 *** | −0.739 *** |
XAD+ in LP I | −0.340 | −0.258 | −0.081 | −0.354 | 0.294 | −0.212 |
XAD+ in LP II | −0.097 | −0.133 | −0.212 | 0.143 | 0.206 | 0.214 |
XAD+ total | −0.272 | −0.240 | −0.174 | −0.142 | 0.306 | −0.011 |
XAD+ II/tot | −0.055 | −0.036 | −0.189 | 0.293 | 0.076 | 0.302 |
Carbohydrate/Phenolic C | −0.117 | −0.033 | 0.196 | −0.316 | −0.308 | −0.415 † |
Carbohydrate/XAD+ C | −0.132 | −0.183 | −0.041 | −0.300 | 0.245 | −0.181 |
References
- Kögel Knabner, I.; Ekschmitt, K.; Flessa, H.; Guggenberger, G.; Matzner, E.; Marschner, B.; von Lützow, M. An integrative approach of organic matter stabilization in temperate soils: Linking chemistry, physics, and biology. J. Plant Nutr. Soil Sci. 2008, 171, 5–13. [Google Scholar] [CrossRef]
- Bosatta, E.; Agren, G. Theoretical analysis of decomposition of heterogeneous substrates. Soil Biol. Biochem. 1985, 17, 601–610. [Google Scholar] [CrossRef]
- Kögel Knabner, I.; Guggenberger, G.; Kleber, M.; Kandeler, E.; Kalbitz, K.; Scheu, S.; Eusterhues, K.; Leifeld, J. Organo mineral associations in temperate soils: Integrating biology, mineralogy, and organic matter chemistry. J. Plant Nutr. Soil Sci. 2008, 171, 61–82. [Google Scholar] [CrossRef]
- Krull, E.S.; Baldock, J.A.; Skjemstad, J.O. Importance of mechanisms and processes of the stabilisation of soil organic matter for modelling carbon turnover. Funct. Plant Biol. 2003, 30, 207–222. [Google Scholar] [CrossRef]
- Mikutta, R.; Kleber, M.; Torn, M.S.; Jahn, R. Stabilization of soil organic matter: Association with minerals or chemical recalcitrance? Biogeochemistry 2006, 77, 25–56. [Google Scholar] [CrossRef]
- Marschner, B.; Brodowski, S.; Dreves, A.; Gleixner, G.; Gude, A.; Grootes, P.M.; Hamer, U.; Heim, A.; Jandl, G.; Ji, R.; et al. How relevant is recalcitrance for the stabilization of organic matter in soils? J. Plant Nutr. Soil Sci. 2008, 171, 91–110. [Google Scholar] [CrossRef]
- Dungait, J.A.J.; Hopkins, D.W.; Gregory, A.S.; Whitmore, A.P. Soil organic matter turnover is governed by accessibility not recalcitrance. Glob. Change Biol. 2012, 18, 1781–1796. [Google Scholar] [CrossRef]
- Schmidt, M.W.I.; Torn, M.S.; Abiven, S.; Dittmar, T.; Guggenberger, G.; Janssens, I.A.; Kleber, M.; Kögel-Knabner, I.; Lehmann, J.; Manning, D.A.C.; et al. Persistence of soil organic matter as an ecosystem property. Nature 2011, 478, 49–56. [Google Scholar] [CrossRef]
- Von Lützow, M.; Kögel Knabner, I.; Ekschmitt, K.; Flessa, H.; Guggenberger, G.; Matzner, E.; Marschner, B. SOM fractionation methods: Relevance to functional pools and to stabilization mechanisms. Soil Biol. Biochem. 2007, 39, 2183–2207. [Google Scholar] [CrossRef]
- Lopez-Sangil, L.; Rovira, P. Sequential chemical extractions of the mineral-associated soil organic matter: An integrated approach for the fractionation of organo-mineral complexes. Soil Biol. Biochem. 2013, 62, 57–67. [Google Scholar] [CrossRef]
- Kleber, M.; Bourg, I.C.; Coward, E.K.; Hansel, C.M.; Myneni, S.C.B.; Nunan, N. Dynamic interactions at the mineral-organic matter interface. Nat. Rev. Earth Environ. 2021, 2, 402–421. [Google Scholar] [CrossRef]
- Duchaufour, P. Pédologie, Vol. I: Pédogénèse et Classification; Masson: Paris, France, 1979. [Google Scholar]
- Stevenson, F.J. Humus Chemistry; Wiley & Sons: New York, NY, USA, 1982. [Google Scholar]
- Sollins, P.; Homann, P.; Caldwell, B.A. Stabilization and destabilization of soil organic matter: Mechanisms and controls. Geoderma 1996, 74, 65–105. [Google Scholar] [CrossRef]
- Gartzia-Bengoetxea, N.; Virto, I.; Arias-González, A.; Enrique, A.; Fernández-Ugalde, D.; Barré, P. Mineral control of organic carbon storage in acid temperate forest soils in the Basque Country. Geoderma 2020, 358, 113998. [Google Scholar] [CrossRef]
- Adhikari, D.; Sowers, T.; Stuckey, J.W.; Wang, X.; Sparks, D.L.; Yang, Y. Formation and redox reactivity of ferrihydrite-organic carbon-calcium co-precipitates. Geochim. Cosmochim. Acta 2019, 244, 86–98. [Google Scholar] [CrossRef]
- Osafo, N.O.A.; Jan, J.; Valero, A.; Porcal, P.; Petrash, D.A.; Borovec, J. Organic matter character as a critical factor determining the fate and stability of its association with iron in sediments. J. Soils Sediments 2022, 22, 1865–1875. [Google Scholar] [CrossRef]
- Gonzalez-Prieto, S.J.; Lista, M.A.; Carballas, M.; Carballas, T. Humic substances in a catena of estuarine soils: Distribution of organic nitrogen and carbon. Sci. Total Environ. 1989, 81, 363–372. [Google Scholar] [CrossRef]
- Giannetta, B.; Plaza, C.; Zaccone, C.; Vischetti, C.; Rovira, P. Ecosystem type effects on the stabilization of organic matter in soils: Combining size fractionation with sequential chemical extractions. Geoderma 2019, 353, 423–434. [Google Scholar] [CrossRef]
- IUSS Working Group WRB. World Reference Base for Soil Resources 2006; World Soil Resources Reports No. 103; FAO: Rome, Italy, 2006. [Google Scholar]
- Poch, R.M.; Boixadera, J. Sòls de la Cerdanya. Guia de Camp; Departament de Medi Ambient i Ciències del Sòl, Universitat de Lleida: Lleida, Spain, 2008. [Google Scholar]
- Poch, R.M.; Simó, I.; Boixadera, J. Itinerario por la comarca de La Cerdanya. In Itinerarios Edáficos por Cataluña: El Priorat, la Cerdanya y el Penedès; Alcañiz, J.M., Ed.; Institut Geològic de Catalunya, Dept de Territori i Sostenibilitat. Generalitat de Catalunya: Barcelona, Spain, 2011; pp. 124–158. [Google Scholar]
- Berg, B.; Laskowski, R. Litter Decomposition: A Guide to Carbon and Nutrient Turnover; Advances in Ecological Research; Elsevier: Amsterdam, The Netherlands, 2006; Volume 36. [Google Scholar] [CrossRef]
- Vance, E.D.; Brookes, P.C.; Jenkinson, D.S. An extraction method for measuring soil microbial biomass C. Soil Biol. Biochem. 1987, 19, 703–707. [Google Scholar] [CrossRef]
- Rovira, P.; Vallejo, V.R. Labile and recalcitrant pools of carbon and nitrogen in organic matter decomposing at different depths in soil: An acid hydrolysis approach. Geoderma 2002, 107, 109–141. [Google Scholar] [CrossRef]
- Rovira, P.; Vallejo, V.R. Labile, recalcitrant, and inert organic matter in mediterranean forest soils. Soil Biol. Biochem. 2007, 39, 202–215. [Google Scholar] [CrossRef]
- Dubois, M.; Giles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric method for the determination of sugars and related substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Soon, Y.K.; Abboud, S. A comparison of some methods for soil organic carbon determination. Commun. Soil Sci. Plant. Anal. 1991, 22, 943–954. [Google Scholar] [CrossRef]
- Ribéreau-Gayon, P. Les Composés Phénoliques des Végétaux; Dunod: Paris, France, 1968. [Google Scholar]
- Mehra, O.P.; Jackson, M.L. Iron oxide removal from soils and clays by a dithionite citrate system buffered with sodium bicarbonate. Clays Clay Min. 1960, 7, 317–327. [Google Scholar] [CrossRef]
- Pansu, M.; Gautheyrou, J. Handbook of Soil Analysis: Mineralogical, Organic and Inorganic Methods; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Fäth, J.; Kohlpainter, M.; Blum, U.; Göttlein, A.; Mellert, K.H. Assessing phosphorus nutrition of the main European tree species by simple soil extraction methods. For. Ecol. Manag. 2019, 432, 895–901. [Google Scholar] [CrossRef]
- Lindsay, W.L.; Norvell, W.A. Development of a DTPA test for zinc, iron, manganese, and copper. Soil Sci. Soc. Am. J. 1978, 42, 421–428. [Google Scholar] [CrossRef]
- Fäth, J.; Mellert, K.; Blum, U.; Göttlein, A. Citric acid extraction—An underestimated method in forest nutrition? J. Plant Nutr. Soil Sci. 2019, 182, 691–693. [Google Scholar] [CrossRef]
- Rovira, P.; Jorba, M.; Romanyà, J. Active and passive organic matter fractions in mediterranean forest soils. Biol. Fertil. Soils 2010, 46, 355–369. [Google Scholar] [CrossRef]
- Wood, C.W.; Mitchell, R.J.; Zutter, B.R.; Lin, C.L. Loblolly pine plant community effects on soil carbon and nitrogen. Soil Sci. 1992, 154, 410–419. [Google Scholar]
- Álvarez, R.; Daniel, P.E.; Santanatoglia, O.J.; García, R. Mineralización de carbono en un suelo agrícola: Relación entre la disponibilidad del substrato y la biomasa microbiana. Agrochimica 1993, 37, 55–62. [Google Scholar]
- Cadisch, G.; Imhof, H.; Urquiaga, S.; Boddey, R.M.; Giller, K. Carbon turnover (δ13C) and nitrogen mineralization potential of particulate light soil organic matter after rainforest clearing. Soil Biol. Biochem. 1996, 28, 1555–1567. [Google Scholar] [CrossRef]
- Garcia-Pausas, J.; Casals, P.; Camarero, L.; Huguet, C.; Thompson, R.; Sebastià, M.T.; Romanyà, J. Factors regulating carbon mineralization in the surface and subsurface soils of Pyrenean Mountain grasslands. Soil Biol. Biochem. 2008, 40, 2803–2810. [Google Scholar] [CrossRef]
- Llorente, M.; Turrión, M.B. Microbiological parameters as indicators of soil organic carbon dynamics in relation to different land use management. Eur. J. For. Res. 2009, 129, 73–81. [Google Scholar] [CrossRef]
- Boutton, T.W.; Archer, S.R.; Midwood, A.J.; Zitzer, S.F.; Bol, R. d13C values of soil organic carbon and their use in documenting vegetation change in a subtropical savanna ecosystem. Geoderma 1998, 82, 5–41. [Google Scholar] [CrossRef]
- Rasmussen, C.; Heckman, K.; Wieder, W.R.; Keiluweit, M.; Lawrence, C.R.; Berhe, A.A.; Blankinship, J.C.; Crow, S.E.; Druhan, J.L.; Hicks Pies, C.E.; et al. Beyond clay: Towards an improved set of variables for predicting soil organic matter content. Biogeochemistry 2018, 137, 297–306. [Google Scholar] [CrossRef]
- Wiesmeier, M.; Urbanski, L.; Hobley, E.; Lang, B.; von Lützow, M.; Marin-Spiotta, E.; van Wesemael, B.; Rabot, E.; Liess, M.; Garcia-Franco, N.; et al. Soil organic carbon storage as a key function of soils—A review of drivers and indicators at various scales. Geoderma 2019, 333, 149–162. [Google Scholar] [CrossRef]
- Kirsten, M.; Mikutta, R.; Vogel, C.; Thompson, A.; Mueller, C.W.; Kimaro, D.N.; Bergsma, H.L.T.; Feger, K.H.; Kalbitz, K. Iron oxides and aluminous clays selectively control soil carbon storage and stability in the humid tropics. Nat. Sci. Rep. 2021, 11, 5076. [Google Scholar] [CrossRef] [PubMed]
- Von Lützow, M.; Kögel-Knabner, I.; Ekschmitt, K.; Matzner, E.; Guggenberger, G.; Marschner, B.; Flessa, H. Stabilization of organic matter in temperate soils: Mechanisms and their relevance under different soil conditions—A review. Eur. J. Soil Sci. 2006, 57, 426–445. [Google Scholar] [CrossRef]
- Spielvogel, S.; Prietzel, J.; Kögel-Knabner, I. Soil organic matter stabilization in acidic forest soils is preferential and soil-type specific. Eur. J. Soil Sci. 2008, 59, 674–692. [Google Scholar] [CrossRef]
- Giannetta, B.; Zaccone, C.; Plaza, C.; Siebecker, M.G.; Rovira, P.; Vischetti, C.; Sparks, D.L. The role of Fe(III) in soil organic matter stabilization in two size fractions having opposite features. Sci. Total Environ. 2019, 653, 667–674. [Google Scholar] [CrossRef]
- Bonde, T.A.; Christensen, B.T.; Cerri, C.C. Dynamics of soil organic matter as reflected by natural C13 abundance in particle size fractions of forested and cultivated oxisols. Soil Biol. Biochem. 1992, 24, 275–277. [Google Scholar] [CrossRef]
- Skjemstad, J.; Catchpoole, V.R.; Le Feuvre, R.P. Carbon dynamics in vertisols under several crops as assessed by natural abundance 13C. Aust. J. Soil Res. 1994, 32, 311–321. [Google Scholar] [CrossRef]
- Balesdent, J. The significance of organic separates to carbon dynamics and its modelling in some cultivated soils. Eur. J. Soil Sci. 1996, 47, 485–493. [Google Scholar] [CrossRef]
- Koutika, L.S.; Dassonville, N.; Vanderhoeven, S.; Chapuis-Lardy, L.; Meerts, P. Relationships between C respiration and fine particulate organic matter (250–50 µm) weight. Eur. J. Soil Biol. 2008, 44, 18–21. [Google Scholar] [CrossRef]
- Wander, M.M.; Yun, W.; Goldstein, W.A.; Aref, S.; Khan, S.A. Organic N and particulate organic matter fractions in organic and conventional farming systems with a history of manure application. Plant Soil 2007, 291, 311–321. [Google Scholar] [CrossRef]
- Díaz-Pinés, E.; Rubio, A.; Van Miegroet, H.; Montes, F.; Benito, M. Does tree species composition control soil organic carbon pools in Mediterranean mountain forests? For. Ecol. Manag. 2011, 262, 1895–1904. [Google Scholar] [CrossRef]
- Duval, M.E.; Galantini, J.A.; Iglesias, J.O.; Canelo, S.; Martínez, J.M.; Vall, L. Analysis of organic fractions as indicators of soil quality under natural and cultivated systems. Soil Tillage Res. 2013, 131, 11–19. [Google Scholar] [CrossRef]
- Just, C.; Poeplau, C.; Don, A.; van Wesemael, B.; Kögel-Knabner, I.; Wiesmeier, M. A simple approach to isolate slow and fast cycling organic carbon fractions in Central European soils—Importance of dispersion method. Front. Soil Sci. 2021, 1, 692583. [Google Scholar] [CrossRef]
- Oades, J.M.; Kirkman, M.A.; Wagner, G.H. The use of gas-liquid chromatography for the determination of sugars extracted from soils with sulfuric acid. Soil Sci. Soc. Am. Proc. 1970, 34, 230–235. [Google Scholar] [CrossRef]
- Wardle, D.A. A comparative assessment of factors which influence microbial biomass carbon and nitrogen levels in soil. Biol. Rev. 1992, 67, 321–358. [Google Scholar] [CrossRef]
- Rumpel, C.; Kögel-Knabner, I. Microbial use of lignite compared to recent plant litter as substrates in reclaimed coal mine soils. Soil Biol. Biochem. 2004, 36, 67–75. [Google Scholar] [CrossRef]
- Namour, P.; Müller, M.C. Fractionation of organic matter from wastewater treatment plants before and after a 21-day biodegradability test: A physical-chemical method for measurement of the refractory part of effluents. Water Res. 1998, 32, 2224–2231. [Google Scholar] [CrossRef]
- Soil Survey Staff. Keys to Soil Taxonomy, 11th ed.; USDA-NRCS: Washington, DC, USA, 2010.
Pedon I | Pedon II | Pedon III | Pedon IV | |
---|---|---|---|---|
Longitude | 414,290 | 417,300 | 413,217 | 410,827 |
Latitude | 4,686,750 | 4,683,900 | 4,687,325 | 4,689,084 |
Altitude | 1820 | 1940 | 1726 | 1694 |
Substrate | Detritic materials over Devonian limestones, and siliceous schists | Detritic materials over Devonian limestones, and siliceous schists | Detritic limestones, Devonian- Carboniferous | Carboniferous sandstones and schists. |
Slope (%) | 5 | 15 | 45 | 5 |
Aspect | W | S | N | NE |
Dominant vegetation | Mesobromion-type grassland | Mesobromion-type grassland | Mesobromion-type grassland | Mesobromion-type grassland, with Buxus sempervirens. |
Parameter | Soluble C | Microbial C | Active C |
---|---|---|---|
N:OC | 0.575 ** | 0.281 | 0.487 * |
RIC | −0.383 † | 0.303 | 0.130 |
Carbohydrates in LP I | 0.424 † | −0.337 | −0.145 |
Total carbohydrates | 0.439 * | −0.340 | −0.142 |
Phenolics in LP I | 0.733 *** | −0.020 | 0.271 |
Phenolics in LP II | −0.493 * | −0.478 * | −0.635 ** |
Total phenolics | 0.630 ** | −0.125 | 0.133 |
Phenolics: II/tot | −0.688 *** | −0.505 * | −0.739 *** |
Carbohydrate/Phenolic C | −0.308 | –0.316 | −0.415 † |
Parameter | Cresp33 | BRR | MAR |
---|---|---|---|
Total OC | 0.422 † | 0.476 † | 0.384 † |
Total N | 0.383 † | 0.393 † | 0.333 |
RIC | 0.283 | 0.406 † | 0.294 |
Carbohydrates: II/total | 0.243 | 0.369 † | 0.394 † |
Phenolics in LP II | −0.539 * | −0.493 * | −0.315 |
Phenolics: II/total | −0.460 * | −0.373 † | −0.140 |
Fe dithionite | Fe citrate | Fe DTPA | Fe Tamm | |
---|---|---|---|---|
Cresp33 | −0.700 *** | 0.308 | 0.743 *** | 0.187 |
BRR | −0.623 *** | 0.444 * | 0.753 *** | 0.285 |
Soluble C | −0.335 | −0.204 | 0.166 | 0.810 *** |
Microbial C | −0.379 † | 0.509 * | 0.463 * | −0.137 |
Active C | −0.483 * | 0.392 † | 0.495 * | 0.192 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rovira, P.; Sauras-Yera, T.; Poch, R.M. Constraints on Organic Matter Stability in Pyrenean Subalpine Grassland Soils: Physical Protection, Biochemical Quality, and the Role of Free Iron Forms. Environments 2024, 11, 126. https://doi.org/10.3390/environments11060126
Rovira P, Sauras-Yera T, Poch RM. Constraints on Organic Matter Stability in Pyrenean Subalpine Grassland Soils: Physical Protection, Biochemical Quality, and the Role of Free Iron Forms. Environments. 2024; 11(6):126. https://doi.org/10.3390/environments11060126
Chicago/Turabian StyleRovira, Pere, Teresa Sauras-Yera, and Rosa Maria Poch. 2024. "Constraints on Organic Matter Stability in Pyrenean Subalpine Grassland Soils: Physical Protection, Biochemical Quality, and the Role of Free Iron Forms" Environments 11, no. 6: 126. https://doi.org/10.3390/environments11060126
APA StyleRovira, P., Sauras-Yera, T., & Poch, R. M. (2024). Constraints on Organic Matter Stability in Pyrenean Subalpine Grassland Soils: Physical Protection, Biochemical Quality, and the Role of Free Iron Forms. Environments, 11(6), 126. https://doi.org/10.3390/environments11060126