Drought Monitoring Using Moderate Resolution Imaging Spectroradiometer-Derived NDVI Anomalies in Northern Algeria from 2011 to 2022
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection and Processing
2.3. Calculation of NDVI, Rainfall, and Temperature Anomalies
2.4. Drought Severity Classification
2.5. Statistical Analysis of the Relationship between NDVI and Climate Anomalies
3. Results
3.1. Spatial and Temporal Changes in Seasonal NDVI from 2011 to 2022
3.2. Drought Severity Assessment
3.3. Temporal Variations in NDVI, Rainfall, and Temperature Anomalies
3.4. Correlation of NDVI Anomaly with Rainfall and Temperature Anomalies
4. Discussion
4.1. Spatial and Temporal Patterns of Drought in Algeria during the Period 2011–2022
4.2. Relationship between NDVI and Climatic Factors
4.3. Limitations and Future Research Opportunities
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lee, R.H.; Navarro-Navarro, L.A.; Ley, A.L.; Hartfield, K.; Tolleson, D.R.; Scott, C.A. Spatio-temporal dynamics of climate change, land degradation, and water insecurity in an arid rangeland: The Río San Miguel watershed, Sonora, Mexico. J. Arid. Environ. 2021, 193, 104539. [Google Scholar] [CrossRef]
- Sandford, R. The Human Face of Water Insecurity. In Water Security in a New World; Springer Nature: New York, NY, USA, 2017; pp. 1–24. [Google Scholar] [CrossRef]
- Tsakiris, G.; Loukas, A.; Pangalou, D.; Vangelis, H.; Tigkas, D.; Rossi, G.; Cancelliere, A. Chapter 7. Drought Characterization. Drought Manag. Guidel. Tech. Annex. 2007, 58, 85–102. [Google Scholar]
- Intergovernmental Panel on Climate Change (IPCC). Desertification. In Climate Change and Land: IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems; Cambridge University Press: Cambridge, UK, 2019; pp. 66–70. [Google Scholar] [CrossRef]
- Chakilu, G.G.; Sándor, S.; Zoltán, T.; Phinzi, K. Climate change and the response of streamflow of watersheds under the high emission scenario in Lake Tana sub-basin, upper Blue Nile basin, Ethiopia. J. Hydrol. Reg. Stud. 2022, 42, 101175. [Google Scholar] [CrossRef]
- Jenkins, K.; Dobson, B.; Decker, C.; Hall, J.W. An Integrated Framework for Risk-Based Analysis of Economic Impacts of Drought and Water Scarcity in England and Wales. Water Resour. Res. 2021, 57, e2020WR027715. [Google Scholar] [CrossRef]
- Haile, G.G.; Tang, Q.; Li, W.; Liu, X.; Zhang, X. Drought: Progress in broadening its understanding. WIREs Water 2019, 7, e1407. [Google Scholar] [CrossRef]
- Mitra, S.; Srivastava, P. Comprehensive Drought Assessment Tool for Coastal Areas, Bays, and Estuaries: Development of a Coastal Drought Index. J. Hydrol. Eng. 2021, 26, 04020055. [Google Scholar]
- Wilhite, D.A. Chapter 1 Drought as a Natural Hazard: Concepts and Definitions. In Droughts: A Global Assesment; Routledge: London, UK, 2000. [Google Scholar]
- Dai, A. Drought under global warming: A review. Wiley Interdiscip. Rev. Clim. Change 2011, 2, 45–65, Erratum in Wiley Interdiscip. Rev. Clim. Change 2012, 3, 617. [Google Scholar]
- Zhong, R.; Chen, X.; Lai, C.; Wang, Z.; Lian, Y.; Yu, H.; Wu, X. Drought monitoring utility of satellite-based precipitation products across mainland China. J. Hydrol. 2018, 568, 343–359. [Google Scholar] [CrossRef]
- Mishra, A.K.; Singh, V.P. A review of drought concepts. J. Hydrol. 2010, 391, 202–216. [Google Scholar] [CrossRef]
- Sun, Y.; Solomon, S.; Dai, A.; Portmann, R.W. How Often Does It Rain? J. Clim. 2006, 19, 916–934. [Google Scholar] [CrossRef]
- Wilhite, D.A.; Glantz, M.H. Understanding: The Drought Phenomenon: The Role of Definitions. Water Int. 1985, 10, 111–120. [Google Scholar] [CrossRef]
- Lam, M.R.; Matanó, A.; Van Loon, A.F.; Odongo, R.A.; Teklesadik, A.D.; Wamucii, C.N.; Homberg, M.J.C.v.D.; Waruru, S.; Teuling, A.J. Linking reported drought impacts with drought indices, water scarcity and aridity: The case of Kenya. Nat. Hazards Earth Syst. Sci. 2023, 23, 2915–2936. [Google Scholar] [CrossRef]
- Ahmadalipour, A.; Moradkhani, H. Multi-dimensional assessment of drought vulnerability in Africa: 1960–2100. Sci. Total. Environ. 2018, 644, 520–535. [Google Scholar] [CrossRef] [PubMed]
- Lyon, B. Seasonal Drought in the Greater Horn of Africa and Its Recent Increase during the March–May Long Rains. J. Clim. 2014, 27, 7953–7975. [Google Scholar] [CrossRef]
- Derdous, O.; Bouamrane, A.; Mrad, D. Spatiotemporal analysis of meteorological drought in a Mediterranean dry land: Case of the Cheliff basin–Algeria. Model. Earth Syst. Environ. 2020, 7, 135–143. [Google Scholar] [CrossRef]
- Gader, K.; Gara, A.; Vanclooster, M.; Khlifi, S.; Slimani, M. Drought assessment in a south Mediterranean transboundary catchment. Hydrol. Sci. J. 2020, 65, 1300–1315. [Google Scholar] [CrossRef]
- Tramblay, Y.; Koutroulis, A.; Samaniego, L.; Vicente-Serrano, S.M.; Volaire, F.; Boone, A.; Le Page, M.; Llasat, M.C.; Albergel, C.; Burak, S.; et al. Challenges for drought assessment in the Mediterranean region under future climate scenarios. Earth-Sci. Rev. 2020, 210, 103348. [Google Scholar] [CrossRef]
- Giorgi, F.; Lionello, P. Climate change projections for the Mediterranean region. Glob. Planet. Chang. 2008, 63, 90–104. [Google Scholar] [CrossRef]
- Collins, M.; Knutti, R. Long-Term Climate Change: Projections, Commitments and Irreversibility. Climate Change 2013 the Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2013; pp. 1029–1136. [Google Scholar] [CrossRef]
- Reay, D.; Sabine, C.; Smith, P.; Hymus, G. Intergovernmental Panel on Climate Change. Fourth Assessment Report; Cambridge University Press: Cambridge, UK; Geneva, Switzerland, 2007; Available online: https://www.ipcc.ch (accessed on 11 April 2007). [CrossRef]
- Elair, C.; Chaham, K.R.; Hadri, A. Assessment of drought variability in the Marrakech-Safi region (Morocco) at different time scales using GIS and remote sensing. Water Supply 2023, 23, 4592–4624. [Google Scholar] [CrossRef]
- Meddi, H.; Meddi, M.; Assani, A.A. Study of Drought in Seven Algerian Plains. Arab. J. Sci. Eng. 2013, 39, 339–359. [Google Scholar] [CrossRef]
- Meddi, M.; Hubert, P. Impact de la Modification du Régime Pluviométrique sur les Ressources en eau du Nord-Ouest de L’algérie; IAHS publication: Wallingford, UK, 2003; pp. 229–235. [Google Scholar]
- Mellak, S.; Souag-Gamane, D. Spatio-temporal analysis of maximum drought severity using Copulas in Northern Algeria. J. Water Clim. Chang. 2020, 11, 68–84. [Google Scholar] [CrossRef]
- Nouaceur, Z.; Laignel, B.; Turki, I. Changements climatiques au Maghreb: Vers des conditions plus humides et plus chaudes sur le littoral algérien? Physio-Géo. Géographie Phys. Environ. 2013, 7, 307–323. [Google Scholar] [CrossRef]
- Salamani, M.; Hirche, A.; Boughani, A.; Alia, E.; Ezzouar, B.; Alger, A. Évolution de la pluviosité annuelle dans quelques stations arides algériennes. Sécheresse 2007, 18, 314–320. [Google Scholar]
- Seltzer, P.; Lasserre, A.; Grandjean, A.; Auberty, R.; Fourey, A. Le Climat de l’Algérie. par P. Seltzer... Étude publiée avec le concours de A. Lasserre... Mlle A. Grandjean, R. Au-berty et A. Fourey. [Préface de P. Queney.]; Impr. La Typo-Litho et de J. Carbonel réunies: Dely Ibrahim, Algeria, 1946. [Google Scholar]
- Fellag, M.; Achite, M.; Walega, A. Spatial-temporal characterization of meteorological drought using the Standardized precipitation index. Case study in Algeria. Acta Sci. Polonorum. Form. Circumiectus 2021, 20, 19–31. [Google Scholar] [CrossRef]
- AghaKouchak, A.; Farahmand, A.; Melton, F.S.; Teixeira, J.; Anderson, M.C.; Wardlow, B.D.; Hain, C.R. Remote sensing of drought: Progress, challenges and opportunities. Rev. Geophys. 2015, 53, 452–480. [Google Scholar] [CrossRef]
- Palmer, W.C. Meteorological Drought; Department of Commerce, Weather Bureau: Washington, DC, USA, 1965. [Google Scholar]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef]
- Mckee, T.B.; Doesken, N.J.; Kleist, J. The relationship of drought frequency and duration to time scales. In Proceedings of the Eighth Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993; pp. 17–22. [Google Scholar]
- Bijaber, N.; El Hadani, D.; Saidi, M.; Svoboda, M.D.; Wardlow, B.D.; Hain, C.R.; Poulsen, C.C.; Yessef, M.; Rochdi, A. Developing a Remotely Sensed Drought Monitoring Indicator for Morocco. Geosciences 2018, 8, 55. [Google Scholar] [CrossRef]
- Derradji, T.; Belksier, M.-S.; Bouznad, I.-E.; Zebsa, R.; Bengusmia, D.; Guastaldi, E. Spatio-temporal drought monitoring and detection of the areas most vulnerable to drought risk in Mediterranean region, based on remote sensing data (Northeastern Algeria). Arab. J. Geosci. 2022, 16, 1. [Google Scholar] [CrossRef]
- Hadri, A.; El, M.; Saidi, M.; Boudhar, A. Multiscale drought monitoring and comparison using remote sensing in a Mediterranean arid region: A case study from west-central Morocco. Arab. J. Geosci. 2021, 14, 118. [Google Scholar]
- Ntale, H.K.; Gan, T.Y. Drought indices and their application to East Africa. Int. J. Clim. 2003, 23, 1335–1357. [Google Scholar] [CrossRef]
- Aksoy, S.; Gorucu, O.; Sertel, E. 2019 the Eighth International Conference on Agro-Geoinformatics. In Proceedings of the 8th International Conference on Agro-Geoinformatics (Agro-Geoinformatics), Istanbul, Turkey, 16–19 July 2019. [Google Scholar]
- Su, B.; Huang, J.; Fischer, T.; Wang, Y.; Kundzewicz, Z.W.; Zhai, J.; Sun, H.; Wang, A.; Zeng, X.; Wang, G.; et al. Drought losses in China might double between the 1.5 °C and 2.0 °C warming. Proc. Natl. Acad. Sci. USA 2018, 115, 10600–10605. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Xu, Q.; Wang, Y.; Zhao, Z.; Zhang, X.; Liu, H.; Gao, J. Agricultural drought dynamics in China during 1982–2020: A depiction with satellite remotely sensed soil moisture. GIScience Remote Sens. 2023, 60, 2257469. [Google Scholar] [CrossRef]
- Touhami, I.; Moutahir, H.; Assoul, D.; Bergaoui, K.; Aouinti, H.; Bellot, J.; Andreu, J.M. Multi-year monitoring land surface phenology in relation to climatic variables using MODIS-NDVI time-series in Mediterranean forest, Northeast Tunisia. Acta Oecologica 2021, 114, 103804. [Google Scholar] [CrossRef]
- Nanzad, L.; Zhang, J.; Tuvdendorj, B.; Nabil, M.; Zhang, S.; Bai, Y. NDVI anomaly for drought monitoring and its correlation with climate factors over Mongolia from 2000 to 2016. J. Arid. Environ. 2019, 164, 69–77. [Google Scholar] [CrossRef]
- Easterling, D.R. Global Data Sets for Analysis of Climate Extremes. In Extremes in a Changing Climate: Detection, Analysis and Uncertainty; Springer: Dordrecht, The Netherlands, 2013; pp. 347–361. [Google Scholar] [CrossRef]
- AghaKouchak, A.; Nakhjiri, N. A near real-time satellite-based global drought climate data record. Environ. Res. Lett. 2012, 7, 044037. [Google Scholar] [CrossRef]
- Hateffard, F.; Szatmári, G.; Novák, T.J. Applicability of machine learning models for predicting soil organic carbon content and bulk density under different soil conditions. Soil Sci. Ann. 2023, 74, 165879. [Google Scholar] [CrossRef]
- Krishna, T.M.; Ravikumar, G.; Krishnaveni, M. Remote sensing based agricultural drought assessment in Palar basin of Tamil Nadu state, India. J. Indian Soc. Remote Sens. 2009, 37, 9–20. [Google Scholar] [CrossRef]
- Rhee, J.; Im, J.; Carbone, G.J. Monitoring agricultural drought for arid and humid regions using multi-sensor remote sensing data. Remote Sens. Environ. 2010, 114, 2875–2887. [Google Scholar] [CrossRef]
- Sandeep, P.; Reddy, G.O.; Jegankumar, R.; Kumar, K.A. Monitoring of agricultural drought in semi-arid ecosystem of Peninsular India through indices derived from time-series CHIRPS and MODIS datasets. Ecol. Indic. 2020, 121, 107033. [Google Scholar] [CrossRef]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring Vegetation Systems in the Great Plains with ERTS. Third ERTS-1 Symposium NASA. NASA Spec. Publ. 1974, 351, 309–317. [Google Scholar]
- Kogan, F. Application of vegetation index and brightness temperature for drought detection. Adv. Space Res. 1995, 15, 91–100. [Google Scholar] [CrossRef]
- Lu, J.; Carbone, G.J.; Gao, P. Mapping the agricultural drought based on the long-term AVHRR NDVI and North American Regional Reanalysis (NARR) in the United States, 1981–2013. Appl. Geogr. 2019, 104, 10–20. [Google Scholar] [CrossRef]
- Singh, R.P.; Roy, S.; Kogan, F. Vegetation and temperature condition indices from NOAA AVHRR data for drought monitoring over India. Int. J. Remote Sens. 2003, 24, 4393–4402. [Google Scholar] [CrossRef]
- Wang, H.; Chen, A.; Wang, Q.; He, B. Drought dynamics and impacts on vegetation in China from 1982 to 2011. Ecol. Eng. 2015, 75, 303–307. [Google Scholar] [CrossRef]
- Peters, A.J.; Rundquist, D.C.; Wilhite, D.A. Satellite detection of the geographic core of the 1988 Nebraska drought. Agric. For. Meteorol. 1991, 57, 35–47. [Google Scholar] [CrossRef]
- Buras, A.; Rammig, A.; Zang, C.S. Quantifying impacts of the 2018 drought on European ecosystems in comparison to 2003. Biogeosciences 2020, 17, 1655–1672. [Google Scholar] [CrossRef]
- Van Hoek, M.; Jia, L.; Zhou, J.; Zheng, C.; Menenti, M. Early Drought Detection by Spectral Analysis of Satellite Time Series of Precipitation and Normalized Difference Vegetation Index (NDVI). Remote Sens. 2016, 8, 422. [Google Scholar] [CrossRef]
- Ji, L.; Peters, A.J. Assessing vegetation response to drought in the northern Great Plains using vegetation and drought indices. Remote Sens. Environ. 2003, 87, 85–98. [Google Scholar] [CrossRef]
- Li, R.; Tsunekawa, A.; Tsubo, M. Index-based assessment of agricultural drought in a semi-arid region of Inner Mongolia, China. J. Arid. Land 2013, 6, 3–15. [Google Scholar] [CrossRef]
- Wang, J.; Price, K.P.; Rich, P.M. Spatial patterns of NDVI in response to precipitation and temperature in the central Great Plains. Int. J. Remote Sens. 2001, 22, 3827–3844. [Google Scholar] [CrossRef]
- Anyamba, A.; Wang, J.; Liu, W.T. NDVI anomaly patterns over Africa during the 1997/98 ENSO warm event. Int. J. Remote Sens. 2001, 22, 1847–1859. [Google Scholar] [CrossRef]
- Liu, W.T.; Juárez, R.N. ENSO drought onset prediction in northeast Brazil using NDVI. Int. J. Remote Sens. 2010, 22, 3483–3501. [Google Scholar] [CrossRef]
- Kamble, M.V.; Ghosh, K.; Rajeevan, M.; Samui, R.P. Drought monitoring over India through Normalized Difference Vegetation Index (NDVI). Mausam 2010, 61, 537–546. [Google Scholar] [CrossRef]
- Achour, K.; Meddi, M.; Zeroual, A.; Bouabdelli, S.; Maccioni, P.; Moramarco, T. Spatio-temporal analysis and forecasting of drought in the plains of northwestern Algeria using the standardized precipitation index. J. Earth Syst. Sci. 2020, 129, 42. [Google Scholar] [CrossRef]
- Bentchakal, M.; Medjerab, A.; Chibane, B.; Rahmani, S.E.A. Meteorological drought and remote sensing data: An approach to assess fire risks in the Algerian forest. Model. Earth Syst. Environ. 2021, 8, 3847–3858. [Google Scholar] [CrossRef]
- Berhail, S.; Tourki, M.; Merrouche, I.; Bendekiche, H. Geo-statistical assessment of meteorological drought in the context of cli-mate change: Case of the Macta basin (Northwest of Algeria). Model. Earth Syst. Environ. 2021, 8, 81–101. [Google Scholar]
- Elouissi, A.; Benzater, B.; Dabanli, I.; Habi, M.; Harizia, A.; Hamimed, A. Drought investigation and trend assessment in Macta watershed (Algeria) by SPI and ITA methodology. Arab. J. Geosci. 2021, 14, 1329. [Google Scholar] [CrossRef]
- Frih, B.; Oulmi, A.; Guendouz, A. Study of Drought Tolerance of Some Durum Wheat (Triticum durum Desf.) Genotypes Growing under Semi-arid Conditions in Algeria. Int. J. Bio-resource Stress Manag. 2021, 12, 137–141. [Google Scholar] [CrossRef]
- Habibi, B.; Meddi, M. Meteorological drought hazard analysis of wheat production in the semi-arid basin of Cheliff–Zahrez Nord, Algeria. Arab. J. Geosci. 2021, 14, 1045. [Google Scholar] [CrossRef]
- Hallouz, F.; Meddi, M.; Mahé, G.; Rahmani, S.A.; Karahacane, H.; Brahimi, S. Analysis of meteorological drought sequences at various timescales in semi-arid climate: Case of the Cheliff watershed (northwest of Algeria). Arab. J. Geosci. 2020, 13, 280. [Google Scholar] [CrossRef]
- Khezazna, A.; Amarchi, H.; Derdous, O.; Bousakhria, F. Drought monitoring in the Seybouse basin (Algeria) over the last decades. J. Water Land Dev. 2017, 33, 79–88. [Google Scholar] [CrossRef]
- Henchiri, M.; Liu, Q.; Essifi, B.; Javed, T.; Zhang, S.; Bai, Y.; Zhang, J. Spatio-Temporal Patterns of Drought and Impact on Vegetation in North and West Africa Based on Multi-Satellite Data. Remote Sens. 2020, 12, 3869. [Google Scholar] [CrossRef]
- Habibi, B.; Meddi, M.; Emre, T.; Boucefiane, A.; Rahmouni, A. Drought assessment and characterization using SPI, EDI and DEPI indices in northern Algeria. Nat. Hazards 2024, 120, 5201–5231. [Google Scholar] [CrossRef]
- Derdour, A.; Bouarfa, S.; Kaid, N.; Baili, J.; Al-Bahrani, M.; Menni, Y.; Ahmad, H. Assessment of the impacts of climate change on drought in an arid area using drought indices and Landsat remote sensing data. Int. J. Low-Carbon Technol. 2022, 17, 1459–1469. [Google Scholar] [CrossRef]
- Thiemig, V.; Rojas, R.; Zambrano-Bigiarini, M.; Levizzani, V.; De Roo, A. Validation of Satellite-Based Precipitation Products over Sparsely Gauged African River Basins. J. Hydrometeorol. 2012, 13, 1760–1783. [Google Scholar] [CrossRef]
- Boudiaf, B.; Şen, Z.; Boutaghane, H. Climate change impact on rainfall in north-eastern Algeria using innovative trend analyses (ITA). Arab. J. Geosci. 2021, 14, 511. [Google Scholar] [CrossRef]
- Jean-Pierre, L.; Philippe, G.; Mohamed, A.; Abdelmatif, D.; Larbi, B. Climate evolution and possible effects on sur-face water resources of North Algeria. Curr. Sci. 2010, 98, 1056–1062. [Google Scholar]
- Hersbach, H.; Bell, B.; Berrisford, P.; Biavati, G.; Horányi, A.; Muñoz Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Rozum, I.; et al. ERA5 monthly averaged data on single levels from 1940 to present. 2023. Available online: https://scholar.google.com/citations?view_op=view_citation&hl=fr&user=TOdNTtAAAAAJ&cstart=20&pagesize=80&sortby=pubdate&citation_for_view=TOdNTtAAAAAJ:q3oQSFYPqjQC (accessed on 29 April 2024).
- Muñoz Sabater j. ERA5-Land hourly data from 1950 to presen. Copernicus Climate Change Service (C3S) Climate Data Store (CDS) 2019. Available online: https://cds.climate.copernicus.eu/cdsapp#!/dataset/10.24381/cds.e2161bac?tab=overview (accessed on 28 April 2024).
- Kusch, E.; Davy, R. KrigR—A tool for downloading and statistically downscaling climate reanalysis data. Environ. Res. Lett. 2022, 17, 024005. [Google Scholar] [CrossRef]
- Tucker, C.J. Red and Photographic Infrared linear Combinations for Monitoring Vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef]
- Anyamba ATucker, C.J. Historical Perspectives on AVHRR NDVI and Vegetation Drought Monitoring. In Remote Sensing of Drought, 1st ed.; CRC Press: Boca Raton, FL, USA, 2012. [Google Scholar] [CrossRef]
- Vaani, N.; Porchelvan, P. Assessment of long term agricultural drought in Tamilnadu, India using NDVI anomaly. Disaster Adv. 2017, 10, 1–10. [Google Scholar]
- Arguez, A.; Vose, R.S. The Definition of the Standard WMO Climate Normal: The Key to Deriving Alternative Climate Normals. Bull. Am. Meteorol. Soc. 2011, 92, 699–704. [Google Scholar] [CrossRef]
- Legesse, G.; Suryabhagavan, K.V. Remote sensing and GIS based agricultural drought assessment in East Shewa zone, Ethio-pia. Trop. Ecol. 2014, 55, 349–363. [Google Scholar]
- Kourouma, J.M.; Eze, E.; Negash, E.; Phiri, D.; Vinya, R.; Girma, A.; Zenebe, A. Assessing the spatio-temporal variability of NDVI and VCI as indices of crops productivity in Ethiopia: A remote sensing approach. Geomat. Nat. Hazards Risk 2021, 12, 2880–2903. [Google Scholar] [CrossRef]
- Wickham, H. ggplot2 Elegant Graphics for Data Analysis; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Xiao, C.; Ye, J.; Esteves, R.M.; Rong, C. Using Spearman’s correlation coefficients for exploratory data analysis on big dataset. Concurr. Comput. Pract. Exp. 2015, 28, 3866–3878. [Google Scholar] [CrossRef]
- Janse, R.J.; Hoekstra, T.; Jager, K.J.; Zoccali, C.; Tripepi, G.; Dekker, F.W.; van Diepen, M. Conducting correlation analysis: Important limitations and pitfalls. Clin. Kidney J. 2021, 14, 2332–2337. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A language and environment for statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- Schober, P.; Boer, C.; Schwarte, L.A. Correlation Coefficients: Appropriate Use and Interpretation. Anesth. Analg. 2018, 126, 1763–1768. [Google Scholar] [CrossRef] [PubMed]
- Thi, N.Q.; Govind, A.; Le, M.-H.; Linh, N.T.; Anh, T.T.M.; Hai, N.K.; Ha, T.V. Spatiotemporal characterization of droughts and vegetation response in Northwest Africa from 1981 to 2020. Egypt. J. Remote Sens. Space Sci. 2023, 26, 393–401. [Google Scholar] [CrossRef]
- Abbes, M.; Hamimed, A.; Lafrid, A.; Mahi, H.; Nehal, L. Use of high spatial resolution satellite data for monitoring and character-ization of drought conditions in the Northwestern Algeria. Min. Sci. 2018, 25, 85–113. [Google Scholar] [CrossRef]
- De Jong, R.; Verbesselt, J.; Zeileis, A.; Schaepman, M.E. Shifts in Global Vegetation Activity Trends. Remote Sens. 2013, 5, 1117–1133. [Google Scholar] [CrossRef]
- Zhou, L.; Tucker, C.J.; Kaufmann, R.K.; Slayback, D.; Shabanov, N.V.; Myneni, R.B. Variations in Northern Vegetation Activity Inferred from Satellite Data of Vegetation Index during 1981 to 1999. J. Geophys. Res. Atmos. 2001, 106, 20069–20083. [Google Scholar] [CrossRef]
- Tucker, C.J.; Slayback, D.A.; Pinzon, J.E.; Los, S.O.; Myneni, R.B.; Taylor, M.G. Higher northern latitude normalized difference vegetation index and growing season trends from 1982 to 1999. Int. J. Biometeorol. 2001, 45, 184–190. [Google Scholar] [CrossRef]
- Piao, S.; Fang, J.; Zhou, L.; Zhu, B.; Tan, K.; Tao, S. Changes in vegetation net primary productivity from 1982 to 1999 in China. Glob. Biogeochem. Cycles 2005, 19. [Google Scholar] [CrossRef]
- Ghabi, M.; Khelifa, D.; Benmansour, N. Exploring Relationships Between Precipitation (Trmm) and Vegetation Dynamics (Case Study of Sidi Bel Abbes). In Proceedings of the 7th International Conference on Cartography and GIS, Sozopol, Bulgary, 18–23 June 2018. [Google Scholar]
- Fayech, D.; Tarhouni, J. Climate variability and its effect on normalized difference vegetation index (NDVI) using remote sensing in semi-arid area. Model. Earth Syst. Environ. 2020, 7, 1667–1682. [Google Scholar] [CrossRef]
- Brumbaugh, F. What is an I.Q.? J. Exp. Educ. 1955, 23, 359–363. [Google Scholar] [CrossRef]
- Jiang, Z.; Huete, A.R.; Didan, K.; Miura, T. Development of a two-band enhanced vegetation index without a blue band. Remote Sens. Environ. 2008, 112, 3833–3845. [Google Scholar] [CrossRef]
- Piao, S.; Mohammat, A.; Fang, J.; Cai, Q.; Feng, J. NDVI-based increase in growth of temperate grasslands and its responses to climate changes in China. Glob. Environ. Chang. 2006, 16, 340–348. [Google Scholar] [CrossRef]
- Hou, W.; Gao, J.; Wu, S.; Dai, E. Interannual Variations in Growing-Season NDVI and Its Correlation with Climate Variables in the Southwestern Karst Region of China. Remote Sens. 2015, 7, 11105–11124. [Google Scholar] [CrossRef]
- Chakraborty, T.; Hsu, A.; Manya, D.; Sheriff, G. A spatially explicit surface urban heat island database for the United States: Characterization, uncertainties, and possible applications. ISPRS J. Photogramm. Remote Sens. 2020, 168, 74–88. [Google Scholar] [CrossRef]
- Wang, C.; Wang, J.; Naudiyal, N.; Wu, N.; Cui, X.; Wei, Y.; Chen, Q. Multiple Effects of Topographic Factors on Spatio-Temporal Variations of Vegetation Patterns in the Three Parallel Rivers Region, Southeast Qinghai-Tibet Plateau. Remote Sens. 2021, 14, 151. [Google Scholar] [CrossRef]
- Eklundh, L.; Jöhnsson, P. TIMESAT 3.3 Software Manual; Lund University: Lund, Sweden, 2017; pp. 1–92. [Google Scholar]
- Armstrong, R.A. Should Pearson’s correlation coefficient be avoided? Ophthalmic Physiol. Opt. 2019, 39, 316–327. [Google Scholar] [CrossRef]
- Hastie, T.; Friedman, J.; Tibshirani, R. The Elements of Statistical Learning; Springer Series in Statistics; Springer: New York, NY, USA, 2001. [Google Scholar] [CrossRef]
- Kendall, M.G. A New Measure of Rank Correlation. Biometrika 1938, 30, 81. [Google Scholar] [CrossRef]
- Székely, G.J.; Rizzo, M.L. Brownian Distance Covariance. Ann. Appl. Stat. 2009, 3, 1236–1265. [Google Scholar] [CrossRef] [PubMed]
Climate Variable | Equation | EN | Description |
---|---|---|---|
Rainfall | (4) | = mean rainfall value of the growing season in each i year; = first month of the growing season; = last month of the growing season in the i year. | |
(5) | = long-term mean rainfall; n = number of years considered for calculating the long-term mean, equal to 30 years (1990–2020). | ||
(6) | = rainfall anomaly for the growing season of the i year. | ||
Temperature | (7) | = mean temperature value of the growing season in each i year; = the first month of the growing season; = last month of the growing season in the i year. | |
(8) | = long-term mean temperature; n = number of years considered for calculating the long-term mean, equal to 30 years (1990–2020). | ||
(9) | = temperature anomaly for the growing season of the i year. |
Drought Class | Non-Drought | Slight Drought | Moderate Drought | Severe Drought | Very Severe Drought |
---|---|---|---|---|---|
NDVI anomaly (%) | Above 0 | 0 to −10 | −10 to −25 | −25 to −50 | Below −50 |
Correlation Coefficient (+/−) | Interpretation |
---|---|
0.00–0.10 | Negligible correlation |
0.10–0.39 | Weak correlation |
0.40–0.69 | Moderate correlation |
0.70–0.89 | Strong correlation |
0.90–1.00 | Very strong correlation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benhizia, R.; Phinzi, K.; Hateffard, F.; Aib, H.; Szabó, G. Drought Monitoring Using Moderate Resolution Imaging Spectroradiometer-Derived NDVI Anomalies in Northern Algeria from 2011 to 2022. Environments 2024, 11, 95. https://doi.org/10.3390/environments11050095
Benhizia R, Phinzi K, Hateffard F, Aib H, Szabó G. Drought Monitoring Using Moderate Resolution Imaging Spectroradiometer-Derived NDVI Anomalies in Northern Algeria from 2011 to 2022. Environments. 2024; 11(5):95. https://doi.org/10.3390/environments11050095
Chicago/Turabian StyleBenhizia, Ramzi, Kwanele Phinzi, Fatemeh Hateffard, Haithem Aib, and György Szabó. 2024. "Drought Monitoring Using Moderate Resolution Imaging Spectroradiometer-Derived NDVI Anomalies in Northern Algeria from 2011 to 2022" Environments 11, no. 5: 95. https://doi.org/10.3390/environments11050095
APA StyleBenhizia, R., Phinzi, K., Hateffard, F., Aib, H., & Szabó, G. (2024). Drought Monitoring Using Moderate Resolution Imaging Spectroradiometer-Derived NDVI Anomalies in Northern Algeria from 2011 to 2022. Environments, 11(5), 95. https://doi.org/10.3390/environments11050095