Investigating Consumer Preferences for Production Process Labeling Using Visual Attention Data
Abstract
:1. Introduction
2. Review of Related Literature and Hypothesis
3. Research Methodology
3.1. Experiment Design
3.2. Data Collection and Sample Description
3.3. Model
4. Results
4.1. Visual Attention Summary
4.2. Econometric Model Estimates
4.3. Evidence for Attribute Focus
4.4. Gaze Cascade Effects
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A. Tables and Figures
Perceived Knowledge about Neonicotinoids | Perceived Knowledge about Pollinator Attractive Plants | Real Knowledge about Pollinator Attractive Plants | Pollinator Conservation Activities | |
---|---|---|---|---|
Perceived knowledge about neonicotinoids | 1.000 | |||
Perceived knowledge about pollinator attractive plants | 0.433 | 1.000 | ||
Real knowledge about pollinator attractive plants | 0.141 | 0.121 | 1.000 | |
Pollinator conservation activities | 0.269 | 0.437 | 0.252 | 1.000 |
No. of Obs. | Age (Mean) | No. of Obs. | Gender (Mean) | |
---|---|---|---|---|
Perceived knowledge about neonicotinoids | ||||
Not knowledgeable (0) | 42 | 50.24 | 44 | 0.16 |
Knowledgeable (1) | 8 | 66.63 | 8 | 0.13 |
Difference(0–1) | −16.39 t = −2.89 (p-value = 0.01) | 0.03 t = −0.24 (p-value = 0.81) | ||
Revealed knowledge about pollinator attractive plants | ||||
Not knowledgeable (0) | 29 | 51.72 | 31 | 0.16 |
Knowledgeable (1) | 20 | 56 | 20 | 0.1 |
Difference(0–1) | −4.28 t = −0.96 (p-value = 0.34) | 0.06 t = −0.61 (p-value = 0.54) | ||
Pollinator conservation activity | ||||
Not involved (0) | 10 | 50.3 | 10 | 0.2 |
Involved (1) | 40 | 53.5 | 42 | 0.14 |
Difference(0–1) | −3.2 t = −0.057 (p-value = 0.57) | 0.06 t = −0.44 (p-value = 0.66) |
Annual | Total Fixation Duration (TFD) | Time to First Fixation (TFF) | |||
Mean | Std. Dev. | Mean | Std. Dev. | %a | |
a1: Neonic free text | 1.07 | 1.19 | 5.30 | 7.61 | 60.4 |
a2: Protected by neonics | 1.59 | 1.28 | 1.85 | 1.55 | 71.7 |
a3: Neonic free text | 0.76 | 0.81 | 3.07 | 5.15 | 66.0 |
a4: Protected by neonics | 0.68 | 0.67 | 2.26 | 2.62 | 60.4 |
a5: Neonic free text | 0.59 | 0.54 | 3.50 | 4.20 | 52.8 |
a6: Treated with neonics | 0.45 | 0.48 | 3.08 | 3.22 | 62.3 |
a7: Treated with neonics | 0.43 | 0.35 | 2.06 | 2.03 | 49.1 |
a8: Neonic free logo | 0.83 | 0.75 | 3.39 | 8.37 | 64.2 |
a9: Neonic free logo | 0.29 | 0.24 | 1.85 | 1.81 | 37.7 |
a10: Treated with neonics | 0.45 | 0.33 | 2.43 | 2.08 | 37.7 |
a11: Neonic free logo | 0.28 | 0.23 | 3.15 | 3.97 | 34.0 |
a12: Treated with neonics | 0.53 | 0.36 | 1.66 | 1.50 | 45.3 |
a13: Neonic free text | 0.66 | 0.88 | 2.30 | 2.63 | 47.2 |
a14: Protected by neonics | 1.05 | 0.83 | 1.76 | 2.16 | 49.1 |
Perennial | Total Fixation Duration (TFD) | Time to First Fixation (TFF) | |||
Mean | Std. Dev. | Mean | Std. Dev. | %a | |
p1: Neonic free logo | 0.70 | 0.70 | 7.83 | 13.14 | 49.1 |
p2: Treated with neonics | 0.58 | 0.54 | 3.70 | 3.32 | 50.9 |
p3: Neonic free text | 0.44 | 0.39 | 1.81 | 1.23 | 54.7 |
p4: Protected by neonics | 1.13 | 1.07 | 2.05 | 3.40 | 58.5 |
P5: Protected by neonics | 0.67 | 0.54 | 2.24 | 2.70 | 54.7 |
p6: Neonic free text | 0.75 | 1.00 | 1.55 | 1.37 | 58.5 |
p7: Neonic free logo | 0.66 | 0.77 | 3.76 | 3.48 | 43.4 |
p8: Protected by neonics | 0.79 | 0.67 | 2.67 | 3.15 | 49.1 |
p9: Neonic free text | 0.60 | 0.61 | 1.83 | 2.95 | 39.6 |
p10: Neonic free logo | 0.33 | 0.23 | 2.99 | 2.97 | 30.2 |
p11: Treated with neonics | 0.55 | 0.52 | 2.56 | 4.21 | 50.9 |
p12: Neonic free text | 0.45 | 0.44 | 2.88 | 4.90 | 34.0 |
p13: Treated with neonics | 0.41 | 0.38 | 2.00 | 2.40 | 39.6 |
p14: Treated with neonics | 0.47 | 0.67 | 2.72 | 4.60 | 54.7 |
Variables | Coefficientse | S.E. | Marginal Effectsf | S.E. | ||
---|---|---|---|---|---|---|
Plant attributes | ||||||
Neonicotinoid-free text(binary)a | 0.320 | ** | 0.140 | 0.288 | ** | 0.126 |
Neonicotinoid-free logo (binary)a | 0.595 | *** | 0.144 | 0.534 | *** | 0.130 |
Neonicotinoid-treated (binary)a | 0.111 | 0.148 | 0.099 | 0.133 | ||
Biodegradable pot | 0.217 | ** | 0.085 | 0.195 | ** | 0.077 |
Plant dummyb | ||||||
Marigold | −0.375 | *** | 0.123 | −0.313 | *** | 0.104 |
Pentas | −0.078 | 0.145 | −0.067 | 0.124 | ||
Dianthus | 0.944 | *** | 0.152 | 0.858 | *** | 0.138 |
Chrysanthemum | 1.375 | *** | 0.173 | 1.270 | *** | 0.159 |
Salvia | 0.798 | *** | 0.210 | 0.721 | *** | 0.190 |
Individual heterogeneityc | ||||||
Knowledge about neonicotinoids (binary) | −0.784 | 0.715 | −0.704 | 0.641 | ||
Knowledge about p-attractive plants (binary) | 0.157 | 0.504 | 0.141 | 0.453 | ||
Pollinator conservation (binary) | −0.349 | 0.610 | −0.314 | 0.548 | ||
Interaction Termsd | ||||||
Neonicotinoid-free label * R_TFD_neonic | −0.181 | 0.365 | −0.163 | 0.328 | ||
Neonicotinoid-free logo * R_TFD _neonic | −0.114 | 0.429 | −0.103 | 0.386 | ||
Neonicotinoid-treated * R_TFD_neonic | −1.029 | *** | 0.368 | −0.924 | *** | 0.331 |
Biodegradable pot * R_TFD _pot | 0.319 | 0.272 | 0.287 | 0.244 | ||
Plant * R_TFD _plant | −0.061 | 0.057 | −0.055 | 0.051 | ||
Knowledge about neonics * R_TFD_neonic | 0.125 | 0.535 | 0.112 | 0.480 | ||
Knowledge about p-attractive plants * R_TFD _neonic | −0.348 | 0.387 | −0.312 | 0.348 | ||
Pollinator conservation *R_TFD _neonic | 0.955 | *** | 0.339 | 0.858 | *** | 0.305 |
Knowledge about neonics * R_TFD_plant | 0.224 | 0.482 | 0.201 | 0.433 | ||
Knowledge about p-attractive plants * R_TFD_plant | 0.388 | 0.335 | 0.348 | 0.301 | ||
Pollinator conservation * R_TFD_plant | 0.291 | 0.309 | 0.261 | 0.277 | ||
Constant | 1.040 | 1.431 | - | - | ||
1.330 | 0.150 | - | - | |||
1.072 | 0.026 | - | - | |||
0.606 | 0.055 | - | - | |||
No. of observations | 1201 | |||||
Log likelihood | −1553.16 |
References
- Ryan, M.; Bate, A. Testing the assumptions of rationality, continuity and symmetry when applying discrete choice experiments in health care. Appl. Econ. Lett. 2001, 8, 59–63. [Google Scholar] [CrossRef]
- Campbell, D.; Hutchinson, W.G.; Scarpa, R. Incorporating discontinuous preferences into the analysis of discrete choice experiments. Environ. Resour. Econ. 2008, 41, 401–417. [Google Scholar] [CrossRef]
- Campbell, D.; Hensher, D.A.; Scarpa, R. Non-attendance to attributes in environmental choice analysis: A latent class specification. J. Environ. Plan. Manag. 2011, 1, 1–16. [Google Scholar] [CrossRef]
- Caputo, V.; Nayga, R.M.; Scarpa, R. Food miles or carbon emissions? Exploring labelling preference for food transport footprint with a stated choice study. Aust. J. Agric. Res. Econ. 2013, 57, 465–482. [Google Scholar] [CrossRef] [Green Version]
- Caputo, V.; Van Loo, E.J.; Scarpa, R.; Nayga, R.M., Jr.; Verbeke, W. Comparing serial, and choice task stated and inferred attribute non-attendance methods in food choice experiments. J. Agric. Econ. 2018, 69, 35–57. [Google Scholar] [CrossRef]
- Carlsson, F.; Kataria, M.; Lampi, E. Dealing with ignored attributes in choice experiments on valuation of Sweden’s environmental quality objectives. Environ. Resour. Econ. 2010, 47, 65–89. [Google Scholar] [CrossRef]
- Hensher, D.A.; Rose, J.; Greene, W.H. The implications on willingness to pay of respondents ignoring specific attributes. Transportation 2005, 32, 203–222. [Google Scholar] [CrossRef] [Green Version]
- Hensher, D.A.; Rose, J.M.; Greene, W.H. Inferring attribute non-attendance from stated choice data: Implications for willingness to pay estimates and a warning for stated choice experiment design. Transportation 2012, 39, 235–245. [Google Scholar] [CrossRef]
- Hensher, D.A.; Collins, A.T.; Greene, W.H. Accounting for attribute non-attendance and common-metric aggregation in a probabilistic decision process mixed multinomial logit model: A warning on potential confounding. Transportation 2013, 40, 1003–1020. [Google Scholar] [CrossRef]
- Hess, S.; Hensher, D.A. Using conditioning on observed choices to retrieve individual-specific attribute processing strategies. Transp. Res. Part B Methodol. 2010, 44, 781–790. [Google Scholar] [CrossRef] [Green Version]
- Hole, A.R. A discrete choice model with endogenous attribute attendance. Econ. Lett. 2011, 110, 203–205. [Google Scholar] [CrossRef] [Green Version]
- Kragt, M.E. Stated and inferred attribute attendance models: A comparison with environmental choice experiments. J. Agric. Econ. 2013, 64, 719–736. [Google Scholar] [CrossRef]
- Lancsar, E.; Louviere, J. Deleting ‘irrational’ responses from discrete choice experiments: A case of investigating or imposing preferences? Health Econ. 2006, 15, 797–811. [Google Scholar] [CrossRef] [PubMed]
- Scarpa, R.; Campbell, D.; Hutchinson, W.G. Benefit estimates for landscape improvements: Sequential Bayesian design and respondents’ rationality in a choice experiment. Land Econ. 2007, 83, 617–634. [Google Scholar] [CrossRef]
- Scarpa, R.; Gilbride, T.J.; Campbell, D.; Hensher, D.A. Modelling attribute non-attendance in choice experiments for rural landscape valuation. Eur. Rev. Agric. Econ. 2009, 36, 151–174. [Google Scholar] [CrossRef]
- Scarpa, R.; Thiene, M.; Hensher, D.A. Monitoring choice task attribute attendance in nonmarket valuation of multiple park management services: Does it matter? Land Econ. 2010, 86, 817–839. [Google Scholar] [CrossRef]
- Scarpa, R.; Zanoli, R.; Bruschi, V.; Naspetti, S. Inferred and stated attribute non-attendance in food choice experiments. Am. J. Agric. Econ. 2013, 95, 165–180. [Google Scholar] [CrossRef]
- Van Loo, E.J.; Caputo, V.; Nayga, R.M., Jr.; Seo, H.-S.; Zhang, B.; Verbeke, W. Using eye tracking to account for attribute non-attendance in choice experiments. Eur. Rev. Agric. Econ. 2018, 45, 333–365. [Google Scholar] [CrossRef]
- Van Loo, E.J.; Nayga, R.M.; Campbell, D.; Seo, H.-S.; Verbeke, W. Sustainability labels on coffee: Consumer preferences, willingness-to-pay and visual attention to attributes. Ecol. Econ. 2015, 118, 215–225. [Google Scholar] [CrossRef]
- Atalay, A.S.; Bodur, H.O.; Rasolofoarison, D. Shining in the center: Central gaze cascade effect on product choice. J. Consum. Res. 2012, 39, 848–866. [Google Scholar] [CrossRef]
- Changizi, M.A.; Shimojo, S. A functional explanation for the effects of visual exposure on preference. Perception 2008, 37, 1510–1519. [Google Scholar] [CrossRef] [PubMed]
- Shimojo, S.; Simion, C.; Shimojo, E.; Scheier, C. Gaze bias both reflects and influences preference. Nat. Neurosci. 2003, 6, 1317–1322. [Google Scholar] [CrossRef] [PubMed]
- Simion, C.; Shimojo, S. Early interactions between orienting, visual sampling, and decision making in facial preference. Vis. Res. 2006, 46, 3331–3335. [Google Scholar] [CrossRef] [PubMed]
- Orquin, J.L.; Mueller Loose, S. Attention and choice: A review on eye movements in decision making. Acta Psychol. 2013, 144, 190–206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hess, S.; Rose, J.M.; Polak, J. Non-trading, lexicographic and inconsistent behaviour in stated choice data. Transp. Res. Part D Transp. Environ. 2010, 15, 405–417. [Google Scholar] [CrossRef] [Green Version]
- Wedel, M.; Pieters, R. A review of eye-tracking research in marketing. Rev. Mark. Res. 2008, 4, 123–147. [Google Scholar]
- Graham, D.J.; Orquin, J.L.; Visschers, V.H.M. Eye tracking and nutrition label use: A review of the literature and recommendations for label enhancement. Food Policy 2012, 37, 378–382. [Google Scholar] [CrossRef]
- Armel, K.G.; Beaumel, A.; Rangel, A. Biasing simple choices by manipulating relative visual attention. Judgm. Decis. Mak. 2008, 3, 396–403. [Google Scholar]
- Chen, Y.; Caputo, V.; Nayga, R.M.; Scarpa, R.; Fazli, S. How visual attention affects choice outcomes: An eye tracking study. In Proceedings of the 3rd International Winter Conference on Brain-Computer Interface, Sabuk, Korea, 12–14 January 2015. [Google Scholar] [CrossRef]
- Krajbich, I.; Armel, C.; Rangel, A. Visual Fixations and the Computation and Comparison of Value in Simple Choice. Nat. Neurosci. 2010, 13, 1292–1298. [Google Scholar] [CrossRef] [PubMed]
- Maughan, L.; Gutnikov, S.; Stevens, R. Like more, look more. Look more, like more: The evidence from eye-tracking. J. Brand Manag. 2007, 14, 335–342. [Google Scholar] [CrossRef]
- Grebitus, C.; Seitz, C. Relationship between attention and choice. In Proceedings of the European Association of Agricultural Economists’ 2014 International Congress, Ljubljana, Slovenia, 26–29 August 2014. [Google Scholar]
- Khachatryan, H.; Rihn, A.; Campbell, B.; Yue, C.; Hall, C.; Behe, B. Visual attention to eco-labels predicts consumer preferences for pollinator friendly plants. Sustainability 2017, 9, 1743. [Google Scholar] [CrossRef]
- Rihn, A.L.; Yue, C. Visual attention’s influence on consumers’ willingness-to-pay for processed food products. Agribusiness 2016, 32, 314–328. [Google Scholar] [CrossRef]
- Takahashi, R.; Todo, Y.; Funaki, Y. How can we motivate consumers to purchase certified forest coffee? Evidence from a laboratory randomized experiment using eye-trackers. Ecol. Econ. 2018, 150, 107–121. [Google Scholar] [CrossRef]
- Carlson, J.P.; Vincent, L.H.; Hardesty, D.M.; Bearden, W.O. Objective and subjective knowledge relationship: A quantitative analysis of consumer research findings. J. Consum. Res. 2009, 35, 864–876. [Google Scholar] [CrossRef]
- House, L.; Lusk, J.; Jaeger, S.; Traill, W.B.; Moore, M.; Valli, C.; Morrow, B.; Yee, W.M.S. Objective and subjective knowledge: Impacts on consumer demand for genetically modified foods in the United States and the European Union. AgBioForum 2004, 7, 113–123. [Google Scholar]
- Zhang, M.; Liu, G.-L. The effects of consumer’s subjective and objective knowledge on perceptions and attitude towards genetically modified foods: Objective knowledge as a determinant. Int. J. Food Sci. Technol. 2015, 60, 1198–1205. [Google Scholar] [CrossRef]
- Fernbach, P.M.; Light, N.; Scott, S.E.; Inbar, Y.; Rozin, P. Extreme opponents of genetically modified foods know the least but think they know the most. Nat. Hum. Behav. 2019. [Google Scholar] [CrossRef] [PubMed]
- Packard, G.; Wooten, D.B. Compensatory knowledge signaling in consumer word-of-mouth. J. Consum. Psychol. 2013, 23, 434–450. [Google Scholar] [CrossRef]
- Celsi, R.L.; Olson, J.C. The role of involvement in attention and comprehension processes. J. Consum. Res. 1988, 15, 210–224. [Google Scholar] [CrossRef]
- Cranfield, J.; Henson, S.; Blandon, J. The effect of attitudinal and sociodemographic factors on the likelihood of buying locally produced food. Agribusiness 2012, 28, 205–221. [Google Scholar] [CrossRef]
- Sollberger, S.; Bernauer, T.; Ehlert, U. Predictors of visual attention to climate change images: An eye-tracking study. J. Environ. Psychol. 2017, 51, 46–56. [Google Scholar] [CrossRef] [Green Version]
- Yoo, B.; Donthu, N. Developing and validating a multidimensional consumer-based brand equity scale. J. Bus. Res. 2001, 52, 1–14. [Google Scholar] [CrossRef]
- Behe, B.K.; Campbell, B.L.; Khachatryan, H.; Hall, C.R.; Dennis, J.H.; Huddleston, P.T.; Fernandez, R.T. Incorporating eye tracking technology and conjoint analysis to better understand the green industry consumer. HortScience 2014, 49, 1550–1557. [Google Scholar] [CrossRef]
- Breeze, T.D.; Bailey, A.P.; Potts, S.G.; Balcombe, K.G. A Stated Preference Valuation of the Non-Market Benefits of Pollination Services in the UK. Ecol. Econ. 2015, 111, 76–85. [Google Scholar] [CrossRef]
- Diffendorfer, J.E.; Loomis, J.B.; Ries, L.; Oberhauser, K.; Lopez-Hoffman, L.; Semmens, D.; Semmens, B.; Butterfield, B.; Bagstad, K.; Goldstein, J.; et al. National valuation of monarch butterflies indicates an untapped potential for incentive-based conservation. Conserv. Lett. 2014, 7, 253–262. [Google Scholar] [CrossRef]
- Mwebaze, P.; Marris, G.C.; Budge, G.E.; Brown, M.; Potts, S.G.; Breeze, T.D.; Macleod, A. Quantifying the value of ecosystem services: A case study of honeybee population in the UK. In Proceedings of the 12th Annual Bioecon Conference “From the Wealth of Nations to the Wealth of Nature: Rethinking Economic Growth”, Venice, Italy, 27–28 September 2010. [Google Scholar]
- McIntyre, N.E.; Hostetler, M.E. Effects of urban land use on pollinator (Hymenoptera: Apoidea) communities in a desert metropolis. Basic Appl. Ecol. 2001, 2, 209–218. [Google Scholar] [Green Version]
- O’Hara, B. The Burbs and the Bees: Improving Native Bee Habitat in the Suburban Landscape; University of Guelph: Guelph, ON, Canada, 2010; pp. 1–134. [Google Scholar]
- Balcombe, K.G.; Fraser, I.M.; McSorly, E. Visual attention and attribute attendance in multi-attribute choice experiments. J. Appl. Econom. 2015, 30, 447–467. [Google Scholar] [CrossRef]
- Balcombe, K.; Fraser, I.; Williams, L.; McSorley, E. Examining the relationship between visual attention and stated preferences: A discrete choice experiment using eye-tracking. J. Econ. Behav. Organ. 2017, 144, 238–257. [Google Scholar] [CrossRef]
- Krucien, N.; Ryan, M.; Hermens, F. Visual attention in multi-attributes choices: What can eye-tracking tell us? J. Econ. Behav. Organ. 2017, 135, 251–267. [Google Scholar] [CrossRef]
- Spinks, J.; Mortimer, D. Lost in the crowd? Using eye-tracking to investigate the effect of complexity on attribute non-attendance in discrete choice experiments. BMC Med. Inform. Decis. Mak. 2016, 16, 14. [Google Scholar] [CrossRef]
- Shi, S.W.; Wedel, M.; Pieters, F.G.M. Information acquisition during online decision-making: A model-based exploration using eye-tracking data. Manag. Sci. 2013, 59, 1009–1026. [Google Scholar] [CrossRef]
- Willemson, M.C.; Böckenholt, U.; Johnson, E.J. Choice by value encoding and value construction: Processes of loss aversion. J. Exp. Psychol. Gen. 2011, 140, 303–324. [Google Scholar] [CrossRef] [PubMed]
- Meißner, M.; Musalem, A.; Hube, J. Eye-Tracking reveals processes that enable conjoint choices to become increasingly efficient with practice. J. Mark. Res. 2016, 53, 1–17. [Google Scholar] [CrossRef]
- Peeters, G.; Czapinski, J. Positive-negative asymmetry in evaluations: The distinction between affective and informational negativity effects. Eur. Rev. Soc. Psychol. 1990, 1, 33–60. [Google Scholar] [CrossRef]
- Baumeister, R.F.; Bratslavsky, E.; Finkenauer, C.; Vohs, K.D. Bad is stronger than good. Rev. Gen. Psychol. 2001, 5, 323–370. [Google Scholar] [CrossRef]
- Fox, J.A.; Hayes, D.J.; Shogren, J. Consumer preferences for food irradiation: How favorable and unfavorable descriptions affect preferences for irradiated pork in experimental auctions. J. Risk Uncertain. 2002, 24, 75–95. [Google Scholar] [CrossRef]
- McCluskey, J.J.; Swinnen, J.F.M. Political economy of the media and consumer perceptions of biotechnology. Am. J. Agric. Econ. 2004, 86, 1230–1237. [Google Scholar] [CrossRef]
- Siegrist, M.; Cvetkovich, G. Better negative than positive? Evidence of a bias for negative information about possible health dangers. Risk Anal. 2001, 21, 199–206. [Google Scholar] [CrossRef]
- Weinberger, M.G.; Dillon, W.R. The effects of unfavorable product rating information. Adv. Consum. Res. 1980, 7, 528–532. [Google Scholar]
- Reutskaja, E.; Nagel, R.; Camerer, C.F.; Rangel, A. Search dynamics in consumer choice under time pressure: An eye-tracking study. Am. Econ. Rev. 2011, 101, 900–926. [Google Scholar] [CrossRef]
- Fisher, G.; Rangel, A. The Multi-Attribute Attentional Drift Diffusion Model of Consumer Choice; Working Paper; California Institute of Technology: Pasadena, CA, USA, 2014. [Google Scholar]
- Gilbride, T.J.; Allenby, G.M. A choice Model with conjunctive, disjunctive, and compensatory screening rules. Mark. Sci. 2004, 23, 391–406. [Google Scholar] [CrossRef]
- Orquin, J.L.; Chrobot, N.; Grunert, K. Guiding decision makers’ eye movements with (un)predictable object locations. J. Behav. Decis. Mak. 2018, 31, 341–354. [Google Scholar] [CrossRef]
- Yue, C.; Hall, C.R.; Behe, B.K.; Campbell, B.L.; Dennis, J.H.; Lopez, R.G. Are consumers willing to pay more for biodegradable containers than for plastic ones? Evidence from hypothetical conjoint analysis and nonhypothetical experimental Auctions. J. Agric. Appl. Econ. 2010, 42, 757–772. [Google Scholar] [CrossRef]
- Yue, C.; Campbell, B.; Hall, C.; Behe, B.; Dennis, J.; Khachatryan, H. Consumer preference for sustainable attributes in plants: Evidence from experimental auctions. Agribusiness 2016, 32, 222–235. [Google Scholar] [CrossRef]
- Konovalov, A.; Krajbich, I. Gaze data reveal distinct choice processes underlying model-based and model-free reinforcement learning. Nat. Commun. 2016, 7, 12438. [Google Scholar] [CrossRef] [PubMed]
- Krajbich, I.; Smith, S.M. Modeling eye movements and response times in consumer choice. J. Agric. Food Ind. Organ. 2015, 13, 55–72. [Google Scholar] [CrossRef]
- Smith, S.M.; Krajbih, I. Gaze amplifies value in decision making. Psychol. Sci. 2018, 30, 116–128. [Google Scholar] [CrossRef] [PubMed]
- Tatler, B.W. The central fixation bias in scene viewing: Selecting an optimal viewing position independently of motor biases and image feature distributions. J. Vis. 2007, 7, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Tatler, B.W.; Baddeley, R.J.; Gilchrist, I.D. Visual correlates of fixation selection: Effects of scale and time. J. Vis. 2005, 45, 643–659. [Google Scholar] [CrossRef] [PubMed]
- Matin, E. Saccadic suppression: A review and an analysis. Psychol. Bull. 1974, 81, 899–917. [Google Scholar] [CrossRef] [PubMed]
- Ares, G.; Giménez, A.; Bruzzone, F.; Vidal, L.; Antúnez, L.; Maiche, A. Consumer visual processing of food labels: Results from an eye-tracking study. J. Sens. Stud. 2013, 28, 138–153. [Google Scholar] [CrossRef]
- Ares, G.; Mawad, F.; Giménez, A.; Maiche, A. Influence of rational and intuitive thinking styles on food choice: Preliminary evidence from an eye-tracking study with yogurt labels. Food Qual. Prefer. 2014, 31, 28–37. [Google Scholar] [CrossRef]
- National Gardening Association. The National Gardening Association’s Comprehensive Study of Consumer Gardening Practices, Trends, and Product Sales; National Gardening Association Inc.: Williston, VT, USA, 2013. [Google Scholar]
- Rihn, A.; Khachatryan, H. Does consumer awareness of neonicotinoid insecticides influence their preferences for plants? HortScience 2016, 51, 388–393. [Google Scholar] [CrossRef]
- Wollaeger, H.M.; Getter, K.L.; Behe, B.K. Consumer preferences for traditional, neonicotinoid-free, bee-friendly, or biological control pest management practices on floriculture crops. HortScience 2015, 50, 721–732. [Google Scholar] [CrossRef]
- Vickrey, W. Counter speculation, auctions, and competitive sealed tenders. J. Financ. 1961, 16, 8–37. [Google Scholar] [CrossRef]
- Milgrom, P.R.; Weber, R.J. A theory of auctions and competitive bidding. Econometrica 1982, 50, 1089–1122. [Google Scholar] [CrossRef]
- Wooldridge, J.M. Econometric Analysis of Cross Section and Panel Data; The MIT Press: Boston, MA, USA, 2002. [Google Scholar]
- Cattin, P.; Wittink, D.R. Commercial use of conjoint analysis: A survey. J. Mark. 1982, 46, 44–53. [Google Scholar] [CrossRef]
- Foulsham, T.; Underwood, G. What can saliency models predict about eye movements? Spatial and sequential aspects of fixations during encoding and recognition. J. Vis. 2008, 8, 1–17. [Google Scholar] [CrossRef]
- Itti, L.; Koch, C. A saliency-based search mechanism for overt and covert shifts of visual attention. Vis. Res. 2000, 40, 1489–1506. [Google Scholar] [CrossRef] [Green Version]
- Towal, R.B.; Mormann, M.; Koch, C. Simultaneous modeling of visual saliency and value computation improves predictions of economic choice. Proc. Natl. Acad. Sci. USA 2011, 110, 3858–3867. [Google Scholar] [CrossRef]
- Grunert, K.G.; Hieke, S.; Wills, J. Sustainability labels on food products: Consumer motivation, understanding and use. Food Policy 2014, 44, 177–189. [Google Scholar] [CrossRef] [Green Version]
Attribute | Level 1 | Level 2 | Level 3 | Level 4 |
---|---|---|---|---|
Annual Bedding Plant Type | Impatiens (other) | Marigold | Pentas | --- |
Perennial Plant Type | Chrysanthemum | Dianthus | Salvia | --- |
Neonicotinoid Label | Neonicotinoid-Free (text) | Bee Better Certified (logo) | Treated with Neonicotinoids | Protected from Problematic Pests by Neonicotinoids |
Container Type | Conventional Plastic | Bio-degradable | --- | --- |
Variable | Mean |
---|---|
Number of participants | 53 |
Male (%) | 15% |
Age (mean) | 53.1 |
Household income (mean) | $40,000–$59,000 |
Plant purchase behavior | |
Number of visits (mean) | 6.4 |
Amount spend per visit (mean) | $37.0 |
Self-reported awareness of neonicotinoids (%) | 22.6% |
Self-perceived knowledge about neonicotinoids (%) a | |
Not knowledgeable | 83.0% |
Neither knowledgeable nor not knowledgeable | 5.7% |
Knowledgeable | 11.3% |
Self-perceived knowledge about pollinator attractive plants (%) a | |
Not knowledgeable | 28.9% |
Neither knowledgeable nor not knowledgeable | 17.3% |
Knowledgeable | 53.9% |
Real knowledge about pollinator attractive plants based on quiz questions (%) b | |
0 correct | 7.7% |
1 correct | 23.1% |
2 correct | 30.8% |
3 correct | 32.7% |
4 correct | 5.8% |
Pollinator conservation activities c | |
Doing nothing | 18.9% |
1~3 conservation activities | 39.6% |
More than 3 conservation activities | 41.5% |
AOIs | |||||
---|---|---|---|---|---|
Plant Name | Neonicotinoid Label | Plant Image | Container Types | ||
No. of observations | 1484 | 1484 | 1484 | 1484 | |
First Fixation (FF) | |||||
(binary) | Mean | 0.141 (0.348) | 0.182 (0.386) | 0.363 (0.481) | 0.094 (0.292) |
Last Fixation (LF) | |||||
(binary) | Mean. | 0.155 (0.362) | 0.100 (0.300) | 0.123 (0.329) | 0.420 (0.494) |
Fixation Counts (FC) | |||||
(count) | Mean | 0.682 (1.254) | 2.055 (3.474) | 4.692 (7.062) | 1.427 (2.229) |
Max | 9 | 30 | 81 | 18 | |
Total Fixation Duration (TFD) | |||||
(seconds) | Mean | 0.111(0.238) | 0.346 (0.646) | 0.937(1.627) | 0.219 (0.417) |
Max | 3.22 | 6.1 | 18.95 | 4.28 | |
Time to First Fixation (TFF) | |||||
(seconds) | Mean | 2.809 (4.612) | 2.805 (4.614) | 2.467 (3.503) | 3.408 (4.045) |
Max | 49.74 | 60.97 | 30.91 | 42.2 |
Annual | Fixation Counts (FCs) | Perennial | Fixation Counts (FCs) | |||
---|---|---|---|---|---|---|
Mean | Std. Dev. | Mean | Std. Dev. | % a | ||
a1: Neonic free text | 3.36 | 4.60 | p1: Neonic free logo | 1.94 | 3.02 | 60.4 |
a2: Protected by neonics | 6.47 | 6.82 | p2: Treated with neonics | 1.81 | 2.89 | 71.7 |
a3: Neonic free text | 2.91 | 4.09 | p3: Neonic free text | 1.43 | 1.92 | 66.0 |
a4: Protected by neonics | 2.57 | 3.37 | p4: Protected by neonics | 4.02 | 5.55 | 60.4 |
a5: Neonic free text | 1.91 | 2.79 | P5: Protected by neonics | 2.30 | 3.08 | 52.8 |
a6: Treated with neonics | 1.87 | 2.69 | p6: Neonic free text | 2.28 | 4.03 | 62.3 |
a7: Treated with neonics | 1.40 | 2.11 | p7: Neonic free logo | 1.45 | 2.74 | 49.1 |
a8: Neonic free logo | 3.02 | 3.55 | p8: Protected by neonics | 2.45 | 3.76 | 64.2 |
a9: Neonic free logo | 0.72 | 1.18 | p9: Neonic free text | 1.45 | 2.58 | 37.7 |
a10: Treated with neonics | 1.09 | 1.78 | p10: Neonic free logo | 0.70 | 1.28 | 37.7 |
a11: Neonic free logo | 0.62 | 1.10 | p11: Treated with neonics | 1.60 | 2.72 | 34.0 |
a12: Treated with neonics | 1.57 | 2.37 | p12: Neonic free text | 0.87 | 1.66 | 45.3 |
a13: Neonic free text | 1.74 | 2.93 | p13: Treated with neonics | 1.15 | 2.09 | 47.2 |
a14: Protected by neonics | 3.25 | 4.83 | p14: Treated with neonics | 1.58 | 3.18 | 49.1 |
Variables | Coefficientse | S.E. | Marginal Effectsf | S.E. | ||
---|---|---|---|---|---|---|
Plant attributes | ||||||
Neonicotinoid-free text(binary)a | 0.331 | ** | 0.143 | 0.202 | ** | 0.093 |
Neonicotinoid-free logo (binary)a | 0.596 | *** | 0.148 | 0.387 | *** | 0.100 |
Neonicotinoid-treated (binary)a | 0.116 | 0.151 | −0.100 | 0.099 | ||
Biodegradable pot | 0.222 | *** | 0.088 | 0.258 | *** | 0.058 |
Plant dummyb | ||||||
Marigold | −0.362 | *** | 0.122 | −0.318 | *** | 0.086 |
Pentas | −0.052 | 0.145 | −0.117 | 0.095 | ||
Dianthus | 0.975 | *** | 0.150 | 0.758 | *** | 0.095 |
Chrysanthemum | 1.414 | *** | 0.170 | 1.173 | *** | 0.101 |
Salvia | 0.851 | *** | 0.206 | 0.635 | *** | 0.106 |
Individual heterogeneityc | ||||||
Knowledge about neonicotinoids (binary) | −0.743 | 0.719 | −0.522 | 0.582 | ||
Knowledge about p-attractive plants (binary) | 0.218 | 0.504 | 0.188 | 0.409 | ||
Pollinator conservation (binary) | −0.371 | 0.610 | −0.047 | 0.521 | ||
Interaction Termsd | ||||||
Neonicotinoid-free label * R_FC_neonic | −0.197 | 0.374 | −0.177 | 0.336 | ||
Neonicotinoid-free logo * R_FC_neonic | −0.060 | 0.442 | −0.054 | 0.397 | ||
Neonicotinoid-treated * R_FC_neonic | −1.015 | *** | 0.372 | −0.911 | *** | 0.335 |
Biodegradable pot * R_FC_pot | 0.257 | 0.268 | 0.231 | 0.240 | ||
Plant * R_FC_plant | −0.081 | 0.058 | −0.073 | 0.052 | ||
Knowledge about neonics *R_FC_neonic | 0.067 | 0.539 | 0.060 | 0.484 | ||
Knowledge about p-attractive plants * R_FC_neonic | −0.532 | 0.388 | −0.478 | 0.348 | ||
Pollinator conservation *R_FC_neonic | 1.047 | *** | 0.341 | 0.940 | *** | 0.307 |
Knowledge about neonics *R_FC_plant | 0.153 | 0.501 | 0.137 | 0.450 | ||
Knowledge about p-attractive plants * R_FC_plant | 0.365 | 0.338 | 0.327 | 0.303 | ||
Pollinator conservation *R_FC_plant | 0.298 | 0.314 | 0.268 | 0.282 | ||
Constant | 1.049 | 1.439 | - | - | ||
1.338 | *** | 0.151 | - | - | ||
1.070 | *** | 0.026 | - | - | ||
0.610 | 0.055 | - | - | |||
No. of observations | 1021 | |||||
Log likelihood | −1552.16 |
Variables | Coefficientse | S.E. | Marginal Effectsf | S.E. | ||
---|---|---|---|---|---|---|
Plant attributes | ||||||
Neonicotinoid-free text(binary)a | 0.248 | ** | 0.102 | 0.222 | ** | 0.091 |
Neonicotinoid-free logo (binary)a | 0.475 | *** | 0.106 | 0.426 | 0.096 | |
Neonicotinoid-treated (binary)a | −0.048 | 0.107 | −0.043 | 0.096 | ||
Biodegradable pot | 0.264 | *** | 0.068 | 0.236 | *** | 0.061 |
Plant dummyb | ||||||
Marigold | −0.436 | *** | 0.104 | −0.367 | *** | 0.089 |
Pentas | −0.156 | 0.116 | −0.134 | 0.100 | ||
Dianthus | 0.819 | *** | 0.113 | 0.745 | *** | 0.104 |
Chrysanthemum | 1.215 | *** | 0.124 | 1.123 | *** | 0.116 |
Salvia | 0.648 | *** | 0.139 | 0.585 | *** | 0.126 |
Individual heterogeneityc | ||||||
Knowledge about neonicotinoids (binary) | −0.921 | 0.643 | −0.824 | 0.573 | ||
Knowledge about p-attractive plants (binary) | 0.389 | 0.452 | 0.349 | 0.404 | ||
Pollinator conservation (binary) | −0.047 | 0.573 | −0.042 | 0.513 | ||
Interaction Termsd | ||||||
Neonicotinoid-free label * FF_neonic | 0.237 | 0.194 | 0.212 | 0.174 | ||
Neonicotinoid-free logo * FF_neonic | 0.268 | 0.237 | 0.240 | 0.212 | ||
Neonicotinoid-treated * FF_neonic | −0.465 | *** | 0.195 | −0.416 | ** | 0.175 |
Biodegradable pot * FF_Pot | −0.032 | 0.143 | −0.029 | 0.128 | ||
Plant * FF_plant | −0.013 | 0.030 | −0.012 | 0.027 | ||
Neonicotinoid-free label * LF_neonic | −0.517 | ** | 0.248 | −0.462 | ** | 0.222 |
Neonicotinoid-free logo * LF_neonic | −0.413 | 0.264 | −0.370 | 0.237 | ||
Neonicotinoid-treated * LF_neonic | −0.128 | 0.224 | −0.115 | 0.200 | ||
Biodegradable pot * LF_pot | −0.021 | 0.123 | −0.019 | 0.116 | ||
Plant *LF_plant | 0.017 | 0.029 | 0.015 | 0.026 | ||
Knowledge about neonics *FF_neonic | 0.347 | 0.239 | 0.310 | 0.214 | ||
Knowledge about p-attractive plants * FF_neonic | −0.349 | ** | 0.175 | −0.313 | ** | 0.157 |
Pollinator conservation *FF_neonic | 0.105 | 0.168 | 0.094 | 0.150 | ||
Knowledge about neonics *LF_neonic | −0.183 | 0.279 | −0.164 | 0.249 | ||
Knowledge about p-attractive plants * LF_neonic | 0.118 | 0.200 | 0.106 | 0.179 | ||
Pollinator conservation *LF_neonic | 0.429 | ** | 0.193 | 0.384 | ** | 0.173 |
Knowledge about neonics *FF_plant | 0.136 | 0.235 | 0.122 | 0.210 | ||
Knowledge about p-attractive plants * FF_plant | −0.443 | *** | 0.156 | −0.397 | *** | 0.140 |
Pollinator conservation *FF_plant | 0.179 | 0.142 | 0.160 | 0.127 | ||
Knowledge about neonics *LF_plant | 0.315 | 0.217 | 0.282 | 0.195 | ||
Knowledge about p-attractive plants * LF_plant | 0.339 | ** | 0.143 | 0.304 | ** | 0.129 |
Pollinator conservation *LV_plant | −0.169 | 0.136 | −0.151 | 0.122 | ||
Constant | 0.974 | 1.412 | - | - | ||
1.328 | *** | 0.146 | - | - | ||
1.033 | *** | 0.022 | - | - | ||
0.623 | 0.053 | - | - | |||
No. of observations | 1266 | |||||
Log likelihood | −1849.23 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, X.; Khachatryan, H.; Rihn, A.L. Investigating Consumer Preferences for Production Process Labeling Using Visual Attention Data. Behav. Sci. 2019, 9, 71. https://doi.org/10.3390/bs9070071
Wei X, Khachatryan H, Rihn AL. Investigating Consumer Preferences for Production Process Labeling Using Visual Attention Data. Behavioral Sciences. 2019; 9(7):71. https://doi.org/10.3390/bs9070071
Chicago/Turabian StyleWei, Xuan, Hayk Khachatryan, and Alicia L. Rihn. 2019. "Investigating Consumer Preferences for Production Process Labeling Using Visual Attention Data" Behavioral Sciences 9, no. 7: 71. https://doi.org/10.3390/bs9070071
APA StyleWei, X., Khachatryan, H., & Rihn, A. L. (2019). Investigating Consumer Preferences for Production Process Labeling Using Visual Attention Data. Behavioral Sciences, 9(7), 71. https://doi.org/10.3390/bs9070071