Effects of Employee–Artificial Intelligence (AI) Collaboration on Counterproductive Work Behaviors (CWBs): Leader Emotional Support as a Moderator
Abstract
:1. Introduction
2. Theoretical Framework and Hypotheses
2.1. Employee–AI Collaboration and CWB
2.2. The Mediating Role of Loneliness
2.3. The Chain Intermediary Role of Loneliness and Emotional Fatigue
2.4. The Moderating Effect of Leader Emotional Support
3. Method
3.1. Sample and Procedure
3.2. Manipulation and Measures
3.3. Results
4. Discussion
4.1. Theoretical Implications
4.2. Practical Implications
4.3. Limitations and Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aguinis, H., & Bradley, K. J. (2014). Best practice recommendations for designing and implementing experimental vignette methodology studies. Organizational Research Methods, 17(4), 351–371. [Google Scholar] [CrossRef]
- Anand, P., & Mishra, S. K. (2021). Linking core self-evaluation and emotional exhaustion with workplace loneliness: Does high LMX make the consequence worse? International Journal of Human Resource Management, 32(10), 2124–2149. [Google Scholar] [CrossRef]
- Anthony, C., Bechky, B. A., & Fayard, A.-L. (2023). “Collaborating” with AI: Taking a system view to explore the future of work. Organization Science, 34(5), 1672–1694. [Google Scholar] [CrossRef]
- Ashkanasy, N. M., & Daus, C. S. (2002). Emotion in the workplace: The new challenge for managers. Academy of Management Perspectives, 16(1), 76–86. [Google Scholar] [CrossRef]
- Bankins, S., Ocampo, A. C., Marrone, M., Restubog, S. L. D., & Woo, S. E. (2024). A multilevel review of artificial intelligence in organizations: Implications for organizational behavior research and practice. Journal of Organizational Behavior, 45(2), 159–182. [Google Scholar] [CrossRef]
- Banks, G. C., Whelpley, C. E., Oh, I.-S., & Shin, K. (2012). (How) are emotionally exhausted employees harmful? International Journal of Stress Management, 19(3), 198–216. [Google Scholar] [CrossRef]
- Barford, K. A., & Smillie, L. D. (2016). Openness and other big five traits in relation to dispositional mixed emotions. Personality and Individual Differences, 102, 118–122. [Google Scholar] [CrossRef]
- Barnes, C. M., & Van Dyne, L. (2009). ‘I’m tired’: Differential effects of physical and emotional fatigue on workload management strategies. Human Relations, 62(1), 59–92. [Google Scholar] [CrossRef]
- Benvenuti, M., Cangelosi, A., Weinberger, A., Mazzoni, E., Benassi, M., Barbaresi, M., & Orsoni, M. (2023). Artificial intelligence and human behavioral development: A perspective on new skills and competences acquisition for the educational context. Computers in Human Behavior, 148, 107903. [Google Scholar] [CrossRef]
- Bhatt, P., & Muduli, A. (2024). AI learning intention, learning engagement and behavioral outcomes: An empirical study. Journal of Management Development, 43(6), 920–938. [Google Scholar] [CrossRef]
- Bhattacharjee, A., & Sarkar, A. (2024). Abusive supervision and cyberloafing: An investigation based on Stressor-Emotion-CWB theory. Information Technology & People, 37(3), 1126–1155. [Google Scholar] [CrossRef]
- Bolton, L. R., Harvey, R. D., Grawitch, M. J., & Barber, L. K. (2012). Counterproductive work behaviours in response to emotional exhaustion: A moderated mediational approach. Stress and Health, 28(3), 222–233. [Google Scholar] [CrossRef]
- Bowling, N. A., & Gruys, M. L. (2010). Overlooked issues in the conceptualization and measurement of counterproductive work behavior. Human Resource Management Review, 20(1), 54–61. [Google Scholar] [CrossRef]
- Budhwar, P., Malik, A., De Silva, M. T. T., & Thevisuthan, P. (2022). Artificial intelligence-challenges and opportunities for international HRM: A review and research agenda. International Journal of Human Resource Management, 33(6), 1065–1097. [Google Scholar] [CrossRef]
- Buecker, S., Denissen, J. J. A., & Luhmann, M. (2021). A propensity-score matched study of changes in loneliness surrounding major life events. Journal of Personality and Social Psychology, 121(3), 669. [Google Scholar] [CrossRef]
- Cacioppo, J. T., Hawkley, L. C., Ernst, J. M., Burleson, M., Berntson, G. G., Nouriani, B., & Spiegel, D. (2006). Loneliness within a nomological net: An evolutionary perspective. Journal of Research in Personality, 40(6), 1054–1085. [Google Scholar] [CrossRef]
- Cao, L., Chen, C., Dong, X., Wang, M., & Qin, X. (2023). The dark side of AI identity: Investigating when and why AI identity entitles unethical behavior. Computers in Human Behavior, 143, 107669. [Google Scholar] [CrossRef]
- Charoensukmongkol, P., & Phungsoonthorn, T. (2020). The interaction effect of crisis communication and social support on the emotional exhaustion of university employees during the COVID-19 crisis. International Journal of Business Communication, 59(2), 269–286. [Google Scholar] [CrossRef]
- Chen, P., Xu, Y., Sparrow, P., & Cooper, C. (2021). Compulsory citizenship behaviour and work-family conflict: A moderated mediation model. Current Psychology, 42(8), 6641–6652. [Google Scholar] [CrossRef]
- Choi, Y., Yoon, D. J., Lee, J. D., & Lee, J. Y. E. (2024). Relationship conflict and counterproductive work behavior: The roles of affective well-being and emotional intelligence. Review of Managerial Science, 18(4), 1129–1148. [Google Scholar] [CrossRef]
- Chowdhury, S., Budhwar, P., Dey, P. K., Joel-Edgar, S., & Abadie, A. (2022). AI-employee collaboration and business performance: Integrating knowledge-based view, socio-technical systems and organisational socialisation framework. Journal of Business Research, 144, 31–49. [Google Scholar] [CrossRef]
- Chowdhury, S., Dey, P., Joel-Edgar, S., Bhattacharya, S., Rodriguez-Espindola, O., Abadie, A., & Truong, L. (2023). Unlocking the value of artificial intelligence in human resource management through AI capability framework. Human Resource Management Review, 33(1), 100899. [Google Scholar] [CrossRef]
- Cugno, M., Castagnoli, R., & Büchi, G. (2021). Openness to Industry 4.0 and performance: The impact of barriers and incentives. Technological Forecasting and Social Change, 168, 120756. [Google Scholar] [CrossRef]
- Cui, L., Wang, Y., Chen, W., Wen, W., & Han, M. S. (2021). Predicting determinants of consumers’ purchase motivation for electric vehicles: An application of Maslow’s hierarchy of needs model. Energy Policy, 151, 112167. [Google Scholar] [CrossRef]
- Cummings, J., & Dennis, A. R. (2018). Virtual first impressions matter. MIS Quarterly, 42(3), 697–718, A1–A9. [Google Scholar] [CrossRef]
- Dalal, R. s., Lam, H., Weiss, H. M., Welch, E. R., & Hulin, C. L. (2009). A within-person approach to work behavior and performance: Concurrent and lagged citizenship-counterproductivity associations, and dynamic relationships with affect and overall job performance. Academy of Management Journal, 52(5), 1051–1066. [Google Scholar] [CrossRef]
- Dennis, A. R., Lakhiwal, A., & Sachdeva, A. (2023). AI agents as team members: Effects on satisfaction, conflict, trustworthiness, and willingness to work with. Journal of Management Information Systems, 40(2), 307–337. [Google Scholar] [CrossRef]
- Dennis, A. R., Robert, L. P., Curtis, A. M., Kowalczyk, S. T., & Hasty, B. K. (2011). Research note—Trust is in the eye of the beholder: A vignette study of postevent behavioral controls’ effects on individual trust in virtual teams. Information Systems Research, 23(2), 546–558. [Google Scholar] [CrossRef]
- Dietvorst, B. J., Simmons, J. P., & Massey, C. (2018). Overcoming algorithm aversion: People will use imperfect algorithms if they can (even slightly) modify them. Management Science, 64(3), 1155–1170. [Google Scholar] [CrossRef]
- Doan, X. H., & Nguyen, T. P. L. (2025). Moderated mediation model of relationship between artificial intelligence awareness and counterproductive work behavior, turnover intention. Journal of Organizational Change Management, 38(2), 501–519. [Google Scholar] [CrossRef]
- Dong, X., & Geng, L. (2023). Nature deficit and mental health among adolescents: A perspectives of conservation of resources theory. Journal of Environmental Psychology, 87, 101995. [Google Scholar] [CrossRef]
- Duan, W.-Y., Wu, T.-J., Wei, A.-P., & Huang, Y.-T. (2024). Reducing the adverse effects of compulsory citizenship behaviour on employee innovative behaviour via AI usage in China. Asia Pacific Business Review, 1–21. [Google Scholar] [CrossRef]
- Einola, K., & Khoreva, V. (2023). Best friend or broken tool? Exploring the co-existence of humans and artificial intelligence in the workplace ecosystem. Human Resource Management, 62(1), 117–135. [Google Scholar] [CrossRef]
- Ernst, M., Niederer, D., Werner, A. M., Czaja, S. J., Mikton, C., Ong, A. D., Rosen, T., Brähler, E., & Beutel, M. E. (2022). Loneliness before and during the COVID-19 pandemic: A systematic review with meta-analysis. American Psychologist, 77(5), 660–677. [Google Scholar] [CrossRef] [PubMed]
- Frone, M. R., & Tidwell, M. C. O. (2015). The meaning and measurement of work fatigue: Development and evaluation of the three-dimensional work fatigue inventory (3D-WFI). Journal of Occupational Health Psychology, 20(3), 273. [Google Scholar] [CrossRef]
- Fügener, A., Grahl, J., Gupta, A., & Ketter, W. (2022). Cognitive challenges in human–artificial intelligence collaboration: Investigating the path toward productive delegation. Information Systems Research, 33(2), 678–696. [Google Scholar] [CrossRef]
- Greenberg, J., & Eskew, D. E. (1993). The role of role playing in organizational research. Journal of Management, 19(2), 221–241. [Google Scholar] [CrossRef]
- Gruys, M. L., & Sackett, P. R. (2003). Investigating the dimensionality of counterproductive work behavior. International Journal of Selection and Assessment, 11(1), 30–42. [Google Scholar] [CrossRef]
- Haesevoets, T., De Cremer, D., Dierckx, K., & Van Hiel, A. (2021). Human-machine collaboration in managerial decision making. Computers in Human Behavior, 119, 106730. [Google Scholar] [CrossRef]
- Hai, S., Long, T., Honora, A., Japutra, A., & Guo, T. (2025). The dark side of employee-generative AI collaboration in the workplace: An investigation on work alienation and employee expediency. International Journal of Information Management, 83, 102905. [Google Scholar] [CrossRef]
- Halbesleben, J. R. B. (2006). Sources of social support and burnout: A meta-analytic test of the conservation of resources model. Journal of Applied Psychology, 91(5), 1134–1145. [Google Scholar] [CrossRef] [PubMed]
- Halbesleben, J. R. B., Neveu, J.-P., Paustian-Underdahl, S. C., & Westman, M. (2014). Getting to the “COR”: Understanding the role of resources in conservation of resources theory. Journal of Management, 40(5), 1334–1364. [Google Scholar] [CrossRef]
- Halbesleben, J. R. B., & Wheeler, A. R. (2012). To invest or not? The role of coworker support and trust in daily reciprocal gain spirals of helping behavior. Journal of Management, 41(6), 1628–1650. [Google Scholar] [CrossRef]
- Hobfoll, S. E. (1989). Conservation of resources: A new attempt at conceptualizing stress. American Psychologist, 44(3), 513–524. [Google Scholar] [CrossRef]
- Hollebeek, L. D., Hammedi, W., & Sprott, D. E. (2023). Consumer engagement, stress, and conservation of resources theory: A review, conceptual development, and future research agenda. Psychology & Marketing, 40(5), 926–937. [Google Scholar] [CrossRef]
- Hu, B., Mao, Y., & Kim, K. J. (2023). How social anxiety leads to problematic use of conversational AI: The roles of loneliness, rumination, and mind perception. Computers in Human Behavior, 145, 107760. [Google Scholar] [CrossRef]
- Huang, M.-H., & Rust, R. T. (2023). The caring machine: Feeling ai for customer care. Journal of Marketing, 88(5), 1–23. [Google Scholar] [CrossRef]
- Huo, W., Li, Q., Liang, B., Wang, Y., & Li, X. (2025). When healthcare professionals use AI: Exploring work well-being through psychological needs satisfaction and job complexity. Behavioral Sciences, 15(1), 88. [Google Scholar] [CrossRef] [PubMed]
- Ito, J. K., & Brotheridge, C. M. (2003). Resources, coping strategies, and emotional exhaustion: A conservation of resources perspective. Journal of Vocational Behavior, 63(3), 490–509. [Google Scholar] [CrossRef]
- Jaremka, L. M., Andridge, R. R., Fagundes, C. P., Alfano, C. M., Povoski, S. P., Lipari, A. M., Agnese, D. M., Arnold, M. W., Farrar, W. B., Yee, L. D., Carson, W. E., III, Bekaii-Saab, T., Martin, E. W., Jr., Schmidt, C. R., & Kiecolt-Glaser, J. K. (2014). Pain, depression, and fatigue: Loneliness as a longitudinal risk factor. Health Psychology, 33(9), 948. [Google Scholar] [CrossRef]
- Jaremka, L. M., Fagundes, C. P., Glaser, R., Bennett, J. M., Malarkey, W. B., & Kiecolt-Glaser, J. K. (2013). Loneliness predicts pain, depression, and fatigue: Understanding the role of immune dysregulation. Psychoneuroendocrinology, 38(8), 1310–1317. [Google Scholar] [CrossRef] [PubMed]
- Karatepe, O. M., Kim, T. T., & Lee, G. (2019). Is political skill really an antidote in the workplace incivility-emotional exhaustion and outcome relationship in the hotel industry? Journal of Hospitality and Tourism Management, 40, 40–49. [Google Scholar] [CrossRef]
- Kinkel, S., Baumgartner, M., & Cherubini, E. (2022). Prerequisites for the adoption of AI technologies in manufacturing—Evidence from a worldwide sample of manufacturing companies. Technovation, 110, 102375. [Google Scholar] [CrossRef]
- Knani, M., Echchakoui, S., & Ladhari, R. (2022). Artificial intelligence in tourism and hospitality: Bibliometric analysis and research agenda. International Journal of Hospitality Management, 107, 103317. [Google Scholar] [CrossRef]
- Kock, N., Mayfield, M., Mayfield, J., Sexton, S., & De La Garza, L. M. (2018). Empathetic leadership: How leader emotional support and understanding influences follower performance. Journal of Leadership & Organizational Studies, 26(2), 217–236. [Google Scholar] [CrossRef]
- Kong, H., Yin, Z., Baruch, Y., & Yuan, Y. (2023). The impact of trust in AI on career sustainability: The role of employee–AI collaboration and protean career orientation. Journal of Vocational Behavior, 146, 103928. [Google Scholar] [CrossRef]
- Krischer, M. M., Penney, L. M., & Hunter, E. M. (2010). Can counterproductive work behaviors be productive? CWB as emotion-focused coping. Journal of Occupational Health Psychology, 15(2), 154. [Google Scholar] [CrossRef]
- Kurtessis, J. N., Eisenberger, R., Ford, M. T., Buffardi, L. C., Stewart, K. A., & Adis, C. S. (2015). Perceived organizational support: A meta-analytic evaluation of organizational support theory. Journal of Management, 43(6), 1854–1884. [Google Scholar] [CrossRef]
- Li, W., Qin, X., Yam, K. C., Deng, H., Chen, C., Dong, X., Jiang, L., & Tang, W. (2024). Embracing artificial intelligence (AI) with job crafting: Exploring trickle-down effect and employees’ outcomes. Tourism Management, 104, 104935. [Google Scholar] [CrossRef]
- Liang, X., Guo, G., Shu, L., Gong, Q., & Luo, P. (2022). Investigating the double-edged sword effect of AI awareness on employee’s service innovative behavior. Tourism Management, 92, 104564. [Google Scholar] [CrossRef]
- Lin, X., Wu, C.-H., Dong, Y., Chen, G. Z. X., Wei, W., & Duan, J. (2022). Psychological contract breach and destructive voice: The mediating effect of relative deprivation and the moderating effect of leader emotional support. Journal of Vocational Behavior, 135, 103720. [Google Scholar] [CrossRef]
- Liu, F., Chow, I. H., & Huang, M. (2019). Increasing compulsory citizenship behavior and workload: Does impression management matter? Frontiers in Psychology, 10, 1726. [Google Scholar] [CrossRef] [PubMed]
- Liu, X., & Yu, K. (2019). Emotional stability and citizenship fatigue: The role of emotional exhaustion and job stressors. Personality and Individual Differences, 139, 254–262. [Google Scholar] [CrossRef]
- Luhmann, M., Buecker, S., & Rüsberg, M. (2023). Loneliness across time and space. Nature Reviews Psychology, 2(1), 9–23. [Google Scholar] [CrossRef] [PubMed]
- Marcus, B., Taylor, O. A., Hastings, S. E., Sturm, A., & Weigelt, O. (2013). The structure of counterproductive work behavior: A review, a structural meta-analysis, and a primary study. Journal of Management, 42(1), 203–233. [Google Scholar] [CrossRef]
- Marriott, H. R., & Pitardi, V. (2024). One is the loneliest number… Two can be as bad as one. The influence of AI friendship apps on users’ well-being and addiction. Psychology & Marketing, 41(1), 86–101. [Google Scholar] [CrossRef]
- Marvi, R., Foroudi, P., & AmirDadbar, N. (2025). Dynamics of user engagement: AI mastery goal and the paradox mindset in AI–employee collaboration. International Journal of Information Management, 83, 102908. [Google Scholar] [CrossRef]
- Medici, G., Grote, G., Igic, I., & Hirschi, A. (2023). Technological self-efficacy and occupational mobility intentions in the face of technological advancement: A moderated mediation model. European Journal of Work and Organizational Psychology, 32(4), 538–548. [Google Scholar] [CrossRef]
- Mogaji, E., Viglia, G., Srivastava, P., & Dwivedi, Y. K. (2024). Is it the end of the technology acceptance model in the era of generative artificial intelligence? International Journal of Contemporary Hospitality Management, 36(10), 3324–3339. [Google Scholar] [CrossRef]
- Moussawi, S., Koufaris, M., & Benbunan-Fich, R. (2021). How perceptions of intelligence and anthropomorphism affect adoption of personal intelligent agents. Electronic Markets, 31(2), 343–364. [Google Scholar] [CrossRef]
- Rippé, C. B., Smith, B., & Weisfeld-Spolter, S. (2022). The connection of attachment and self-gifting for the disconnection of loneliness across cultures. International Journal of Consumer Studies, 46(4), 1451–1467. [Google Scholar] [CrossRef]
- Rodriguez, M., Bellet, B. W., & McNally, R. J. (2020). Reframing time spent alone: Reappraisal buffers the emotional effects of isolation. Cognitive Therapy and Research, 44(6), 1052–1067. [Google Scholar] [CrossRef]
- Rojas, M., Méndez, A., & Watkins-Fassler, K. (2023). The hierarchy of needs empirical examination of Maslow’s theory and lessons for development. World Development, 165, 106185. [Google Scholar] [CrossRef]
- Salas-Pilco, S. Z. (2020). The impact of AI and robotics on physical, social-emotional and intellectual learning outcomes: An integrated analytical framework. British Journal of Educational Technology, 51(5), 1808–1825. [Google Scholar] [CrossRef]
- Savela, N., Kaakinen, M., Ellonen, N., & Oksanen, A. (2021). Sharing a work team with robots: The negative effect of robot co-workers on in-group identification with the work team. Computers in Human Behavior, 115, 106585. [Google Scholar] [CrossRef]
- Seeber, I., Bittner, E., Briggs, R. O., de Vreede, T., de Vreede, G.-J., Elkins, A., Maier, R., Merz, A. B., Oeste-Reiß, S., Randrup, N., Schwabe, G., & Söllner, M. (2020). Machines as teammates: A research agenda on AI in team collaboration. Information & Management, 57(2), 103174. [Google Scholar] [CrossRef]
- Shanock, L. R., & Eisenberger, R. (2006). When supervisors feel supported: Relationships with subordinates’ perceived supervisor aupport, perceived organizational support, and performance. Journal of Applied Psychology, 91(3), 689–695. [Google Scholar] [CrossRef] [PubMed]
- Sowa, K., Przegalinska, A., & Ciechanowski, L. (2021). Cobots in knowledge work: Human-AI collaboration in managerial professions. Journal of Business Research, 125, 135–142. [Google Scholar] [CrossRef]
- Stein, J.-P., Appel, M., Jost, A., & Ohler, P. (2020). Matter over mind? How the acceptance of digital entities depends on their appearance, mental prowess, and the interaction between both. International Journal of Human-Computer Studies, 142, 102463. [Google Scholar] [CrossRef]
- Stein, M., Marlies, S., & Vincent-Höper, S. (2021). A conservation of resources view of the relationship between transformational leadership and emotional exhaustion: The role of extra effort and psychological detachment. Work & Stress, 35(3), 241–261. [Google Scholar] [CrossRef]
- Sullivan, D. M., & Bendell, B. L. (2023). Help! Lonely at work: Managerial interventions to combat employee loneliness. Business Horizons, 66(5), 655–666. [Google Scholar] [CrossRef]
- Suseno, Y., Chang, C., Hudik, M., & Fang, E. S. (2022). Beliefs, anxiety and change readiness for artificial intelligence adoption among human resource managers: The moderating role of high-performance work systems. International Journal of Human Resource Management, 33(6), 1209–1236. [Google Scholar] [CrossRef]
- Tang, P. M., Koopman, J., Mai, K. M., De Cremer, D., Zhang, J. H., Reynders, P., Ng, C. T. S., & Chen, I.-H. (2023). No person is an island: Unpacking the work and after-work consequences of interacting with artificial intelligence. Journal of Applied Psychology, 108(11), 1766–1789. [Google Scholar] [CrossRef]
- Vrontis, D., Christofi, M., Pereira, V., Tarba, S., Makrides, A., & Trichina, E. (2022). Artificial intelligence, robotics, advanced technologies and human resource management: A systematic review. International Journal of Human Resource Management, 33(6), 1237–1266. [Google Scholar] [CrossRef]
- Wang, J., van Woerkom, M., Breevaart, K., Bakker, A. B., & Xu, S. (2023). Strengths-based leadership and employee work engagement: A multi-source study. Journal of Vocational Behavior, 142, 103859. [Google Scholar] [CrossRef]
- Webb, M. (2019). The impact of artificial intelligence on the labor market. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3482150 (accessed on 28 March 2025). [CrossRef]
- Wu, T.-J., Li, J.-M., & Wu, Y. J. (2022). Employees’ job insecurity perception and unsafe behaviours in human–machine collaboration. Management Decision, 60(9), 2409–2432. [Google Scholar] [CrossRef]
- Wu, T.-J., Liang, Y., & Wang, Y. (2024). The buffering role of workplace mindfulness: How job insecurity of human-artificial intelligence collaboration impacts employees’ work-life-related outcomes. Journal of Business and Psychology, 39(6), 1395–1411. [Google Scholar] [CrossRef]
- Wu, T.-J., Zhang, R.-X., & Zhang, Z. (2025). Navigating the human-artificial intelligence collaboration landscape: Impact on quality of work life and work engagement. Journal of Hospitality and Tourism Management, 62, 276–283. [Google Scholar] [CrossRef]
- Yin, Z., Kong, H., Baruch, Y., L’Espoir Decosta, P., & Yuan, Y. (2024). Interactive effects of AI awareness and change-oriented leadership on employee-AI collaboration: The role of approach and avoidance motivation. Tourism Management, 105, 104966. [Google Scholar] [CrossRef]
- Zhang, G., Chong, L., Kotovsky, K., & Cagan, J. (2023). Trust in an AI versus a Human teammate: The effects of teammate identity and performance on Human-AI cooperation. Computers in Human Behavior, 139, 107536. [Google Scholar] [CrossRef]
- Zhang, J., Chen, Q., Lu, J., Wang, X., Liu, L., & Feng, Y. (2024). Emotional expression by artificial intelligence chatbots to improve customer satisfaction: Underlying mechanism and boundary conditions. Tourism Management, 100, 104835. [Google Scholar] [CrossRef]
- Zhang, Q., Liao, G., Ran, X., & Wang, F. (2025). The impact of ai usage on innovation behavior at work: The moderating role of openness and job complexity. Behavioral Sciences, 15(4), 491. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X., Chen, C., Li, W., Yao, Y., Cai, F., Xu, J., & Qin, X. (2025). How do coworkers interpret employee AI usage: Coworkers’ perceived morality and helping as responses to employee AI usage. Human Resource Management. ahead-of-print. [Google Scholar] [CrossRef]
Variables | M | SD | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
---|---|---|---|---|---|---|---|---|---|
1 Gender | 1.707 | 0.457 | 1 | ||||||
2 Age | 29.976 | 6.730 | 0.074 | 1 | |||||
3 Education | 4.174 | 0.711 | 0.213 ** | 0.157 * | 1 | ||||
4 Tenure (of years) | 6.249 | 5.631 | 0.015 | 0.930 ** | 0.043 | 1 | |||
5 Loneliness | 2.689 | 1.205 | −0.069 | −0.032 | −0.084 | 0.005 | 1 | ||
6 Emotional fatigue | 3.999 | 1.687 | −0.077 | −0.128 | −0.171 * | −0.057 | 0.835 ** | 1 | |
7 Counterproductive work behavior | 2.465 | 1.241 | 0.026 | −0.167 * | −0.044 | −0.132 | 0.384 ** | 0.463 ** | 1 |
Variable | Loneliness | Emotional Fatigue | CWB | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
B | SE | B | SE | B | SE | B | SE | B | SE | B | SE | |
Control | ||||||||||||
Gender | −0.045 | 0.212 | −0.034 | 0.210 | −0.018 | 0.289 | 0.011 | 0.160 | 0.076 | 0.199 | 0.071 | 0.193 |
Age | −0.207 | 0.040 | −0.207 | 0.040 | −0.444 * | 0.055 | −0.274 * | 0.030 | −0.265 | 0.038 | −0.142 | 0.037 |
Education | −0.051 | 0.142 | −0.043 | 0.140 | −0.105 | 0.193 | −0.070 | 0.107 | 0.015 | 0.133 | 0.046 | 0.130 |
Tenure (of years) | 0.200 | 0.047 | 0.206 | 0.047 | 0.364 | 0.065 | 0.195 | 0.036 | 0.116 | 0.045 | 0.028 | 0.044 |
Independent variable | ||||||||||||
E-AIC | 0.157 * | 0.186 | 0.121 | 0.257 | −0.009 | 0.143 | 0.133 | 0.179 | 0.136 | 0.173 | ||
Mediator | ||||||||||||
Loneliness | 0.822 * | 0.060 | 0.359 *** | 0.075 | −0.011 | 0.131 | ||||||
Emotional fatigue | 0.450 *** | 0.095 | ||||||||||
R2 | 0.015 | 0.039 | 0.071 | 0.720 | 0.194 | 0.250 | ||||||
ΔR2 | − | 0.024 * | − | 0.649 * | − | 0.056 ** | ||||||
F | 0.617 | 1.323 | 2.478* | 68.536 *** | 6.399 * | 7.584 *** |
Effect | BootSE | BootLLCI | BootULCI | |
---|---|---|---|---|
Indirect effect | ||||
E-AIC → Loneliness → CWB | −0.003 | 0.051 | −0.103 | 0.108 |
E-AIC → Emotional fatigue → CWB | −0.008 | 0.040 | −0.093 | 0.069 |
E-AIC → Loneliness → Emotional fatigue → CWB | 0.116 | 0.066 | 0.004 | 0.257 |
Total effects | 0.105 | 0.075 | −0.035 | 0.260 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meng, Q.; Wu, T.-J.; Duan, W.; Li, S. Effects of Employee–Artificial Intelligence (AI) Collaboration on Counterproductive Work Behaviors (CWBs): Leader Emotional Support as a Moderator. Behav. Sci. 2025, 15, 696. https://doi.org/10.3390/bs15050696
Meng Q, Wu T-J, Duan W, Li S. Effects of Employee–Artificial Intelligence (AI) Collaboration on Counterproductive Work Behaviors (CWBs): Leader Emotional Support as a Moderator. Behavioral Sciences. 2025; 15(5):696. https://doi.org/10.3390/bs15050696
Chicago/Turabian StyleMeng, Qingqi, Tung-Ju Wu, Wenyan Duan, and Shijia Li. 2025. "Effects of Employee–Artificial Intelligence (AI) Collaboration on Counterproductive Work Behaviors (CWBs): Leader Emotional Support as a Moderator" Behavioral Sciences 15, no. 5: 696. https://doi.org/10.3390/bs15050696
APA StyleMeng, Q., Wu, T.-J., Duan, W., & Li, S. (2025). Effects of Employee–Artificial Intelligence (AI) Collaboration on Counterproductive Work Behaviors (CWBs): Leader Emotional Support as a Moderator. Behavioral Sciences, 15(5), 696. https://doi.org/10.3390/bs15050696