The Influence of the Information Richness of Interfaces on Consumers’ Purchase Intention: The Sequential Mediating Effects of Cognitive Load, Mental Imagery, and Flow Experience
Abstract
:1. Introduction
2. Literature Review and Research Model
2.1. The Effect of Information Richness on Purchase Intention
2.2. Information Richness, Mental Imagery, and Cognitive Load
2.3. The Effect of Product Type on Purchase Intention
3. Materials and Methods
3.1. Participants
3.2. Experimental Design
3.2.1. Experimental Equipment and Stimulation Material
3.2.2. Experimental Procedures
3.3. Measurement Methods
Reliability and Validity Tests
4. Results
4.1. Behavioral Data Analysis
4.2. Eye-Tracking Data Analysis
4.3. Model Analysis
4.3.1. Mediation Effect Analysis
4.3.2. Moderated Mediation Analysis
5. Discussion
6. Conclusions
6.1. Theoretical Innovations
6.2. Management Insights
6.3. Shortcomings and Future Research Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abuhamdeh, S. (2020). Investigating the “flow” experience: Key conceptual and operational issues. Frontiers in Psychology, 11, 158. [Google Scholar] [CrossRef] [PubMed]
- Adaval, R., Isbell, L. M., & Wyer, R. S. (2007). The impact of pictures on narrative-and list-based impression formation: A process interference model. Journal of Experimental Social Psychology, 43(3), 352–364. [Google Scholar] [CrossRef]
- Adaval, R., Saluja, G., & Jiang, Y. (2019). Seeing and thinking in pictures: A review of visual information processing. Consumer Psychology Review, 2(1), 50–69. [Google Scholar] [CrossRef]
- Babin, L. A., & Burns, A. C. (1998). A modified scale for the measurement of communication-evoked mental imagery. Psychology & Marketing, 15(3), 261–278. [Google Scholar] [CrossRef]
- Bao, Z., & Zhu, Y. (2023). Understanding customers’ stickiness of live streaming commerce platforms: An empirical study based on modified e-commerce system success model. Asia Pacific Journal of Marketing and Logistics, 35(3), 3. [Google Scholar] [CrossRef]
- Barta, S., Gurrea, R., & Flavián, C. (2023). Using augmented reality to reduce cognitive dissonance and increase purchase intention. Computers in Human Behavior, 140, 107564. [Google Scholar] [CrossRef]
- Brannon Barhorst, J., McLean, G., Shah, E., & Mack, R. (2021). Blending the real world and the virtual world: Exploring the role of flow in augmented reality experiences. Journal of Business Research, 122, 423–436. [Google Scholar] [CrossRef]
- Chang, H., Zhang, L., & Xie, G.-X. (2015). Message framing in green advertising: The effect of construal level and consumer environmental concern. International Journal of Advertising, 34(1), 1. [Google Scholar] [CrossRef]
- Chen, C.-C., & Lin, Y.-C. (2018). What drives live-stream usage intention? The perspectives of flow, entertainment, social interaction, and endorsement. Telematics and Informatics, 35(1), 293–303. [Google Scholar] [CrossRef]
- Chen, H.-C., Wang, C.-C., Hung, J. C., & Hsueh, C.-Y. (2022). Employing eye tracking to study visual attention to live streaming: A case study of facebook live. Sustainability, 14(12), 7494. [Google Scholar] [CrossRef]
- Cho, J., Vo, T. H. G., Le, K. H., & Luong, D. B. (2023). How to influence consumer behaviour: A perspective from E-commerce in Vietnam context. International Journal of Electronic Commerce Studies, 14(4), 4. [Google Scholar] [CrossRef]
- Cseh, G. M., Phillips, L. H., & Pearson, D. G. (2015). Flow, affect and visual creativity. Cognition and Emotion, 29(2), 281–291. [Google Scholar] [CrossRef] [PubMed]
- Csikszentmihalyi, M. (2020). Finding flow. The psychology of engagement with everyday life. Hachette. [Google Scholar]
- Enders, L. R., Smith, R. J., Gordon, S. M., Ries, A. J., & Touryan, J. (2021). Gaze behavior during navigation and visual search of an open-world virtual environment. Frontiers in Psychology, 12, 681042. [Google Scholar] [CrossRef]
- Eroglu, S. A., Machleit, K. A., & Davis, L. M. (2001). Atmospheric qualities of online retailing A conceptual model and implications. Journal of Business Research, 54(2), 177–184. [Google Scholar] [CrossRef]
- Faudzi, M. A., Cob, Z. C., Ghazali, M., Omar, R., & Sharudin, S. A. (2024). User interface design in mobile learning applications: Developing and evaluating a questionnaire for measuring learners’ extraneous cognitive load. Heliyon, 10(18), e37494. [Google Scholar] [CrossRef]
- Fei, M., Tan, H., Peng, X., Wang, Q., & Wang, L. (2021). Promoting or attenuating? An eye-tracking study on the role of social cues in e-commerce livestreaming. Decision Support Systems, 142, 113466. [Google Scholar] [CrossRef]
- Gavilan, D., Fernández-Lores, S., & Martinez-Navarro, G. (2020). Vividness of news push notifications and users’ response. Technological Forecasting and Social Change, 161, 120281. [Google Scholar] [CrossRef]
- Ghose, A., Goldfarb, A., & Han, S. P. (2013). How is the mobile internet different? Search costs and local activities. Information Systems Research, 24(3), 3. [Google Scholar] [CrossRef]
- Groß, M. (2015). Mobile shopping: A classification framework and literature review. International Journal of Retail & Distribution Management, 43(3), 3. [Google Scholar] [CrossRef]
- Guan, Z., Hou, F., Li, B., Phang, C. W., & Chong, A. Y. (2022). What influences the purchase of virtual gifts in live streaming in China? A cultural context-sensitive model. Information Systems Journal, 32(3), 653–689. [Google Scholar] [CrossRef]
- Guo, Y. M., & Poole, M. S. (2009). Antecedents of flow in online shopping: A test of alternative models. Information Systems Journal, 19(4), 369–390. [Google Scholar] [CrossRef]
- Ha, Y., & Lennon, S. J. (2010). Effects of site design on consumer emotions: Role of product involvement. Journal of Research in Interactive Marketing, 4(2), 80–96. [Google Scholar] [CrossRef]
- Hadinejad, A., Le, D., Ma, J., & Scott, N. (2020). Measurement of visual attention to advertising using eye-tracking techniques. In M. Rainoldi, & M. Jooss (Eds.), Eye tracking in tourism (pp. 101–111). Springer International Publishing. [Google Scholar] [CrossRef]
- Harris, D. J., Vine, S. J., & Wilson, M. R. (2017). Flow and quiet eye: The role of attentional control in flow experience. Cognitive Processing, 18(3), 343–347. [Google Scholar] [CrossRef] [PubMed]
- Hausman, A. V., & Siekpe, J. S. (2009). The effect of web interface features on consumer online purchase intentions. Journal of Business Research, 62(1), 5–13. [Google Scholar] [CrossRef]
- Hayes, A. F. (2013). Introduction to mediation, moderation, and conditional process analysis: A regression-based approach. Guilford Press. [Google Scholar]
- Holmes, E. A., Geddes, J. R., Colom, F., & Goodwin, G. M. (2008). Mental imagery as an emotional amplifier: Application to bipolar disorder. Behaviour Research and Therapy, 46(12), 12. [Google Scholar] [CrossRef] [PubMed]
- Hsu, C.-L., Wu, C.-C., & Chen, M.-C. (2013). An empirical analysis of the antecedents of e-satisfaction and e-loyalty: Focusing on the role of flow and its antecedents. Information Systems and E-Business Management, 11(2), 287–311. [Google Scholar] [CrossRef]
- Hu, M., Zhang, M., & Wang, Y. (2017). Why do audiences choose to keep watching on live video streaming platforms? An explanation of dual identification framework. Computers in Human Behavior, 75, 594–606. [Google Scholar] [CrossRef]
- Ildirar, S., Levin, D. T., Schwan, S., & Smith, T. J. (2018). Audio facilitates the perception of cinematic continuity by first-time viewers. Perception, 47(3), 276–295. [Google Scholar] [CrossRef]
- Jia, Y., Huang, Y., Wyer, R. S., & Shen, H. (2017). Physical proximity increases persuasive effectiveness through visual imagery. Journal of Consumer Psychology, 27(4), 435–447. [Google Scholar] [CrossRef]
- Jia, Y., Ouyang, J., & Guo, Q. (2021). When rich pictorial information backfires: The interactive effects of pictures and psychological distance on evaluations of tourism products. Tourism Management, 85, 104315. [Google Scholar] [CrossRef]
- Kabadayi, S., & Gupta, R. (2005). Website loyalty: An empirical investigation of its antecedents. International Journal of Internet Marketing and Advertising, 2(4), 321. [Google Scholar] [CrossRef]
- Kang, K., Lu, J., Guo, L., & Li, W. (2021). The dynamic effect of interactivity on customer engagement behavior through tie strength: Evidence from live streaming commerce platforms. International Journal of Information Management, 56, 102251. [Google Scholar] [CrossRef]
- Keller, J., Bless, H., Blomann, F., & Kleinböhl, D. (2011). Physiological aspects of flow experiences: Skills-demand-compatibility effects on heart rate variability and salivary cortisol. Journal of Experimental Social Psychology, 47(4), 849–852. [Google Scholar] [CrossRef]
- Kim, W. (2019). Mining affective experience for a kansei design study on a recliner. Applied Ergonomics, 74, 145–153. [Google Scholar] [CrossRef]
- Klaib, A. F., Alsrehin, N. O., Melhem, W. Y., Bashtawi, H. O., & Magableh, A. A. (2021). Eye tracking algorithms, techniques, tools, and applications with an emphasis on machine learning and internet of things technologies. Expert Systems with Applications, 166, 114037. [Google Scholar] [CrossRef]
- Klein, K., & Melnyk, V. (2016). Speaking to the mind or the heart: Effects of matching hedonic versus utilitarian arguments and products. Marketing Letters, 27(1), 131–142. [Google Scholar] [CrossRef]
- Kng, K.-L., & Chang, S.-C. (2022). The effect of interface design and perceived risk of customers’ satisfaction and loyalty on online booking application. Biomedical Journal of Scientific & Technical Research, 46(2), 37246–37255. [Google Scholar] [CrossRef]
- Koufaris, M. (2002). Applying the technology acceptance model and flow theory to online consumer behavior. Information Systems Research, 13(2), 205–223. [Google Scholar] [CrossRef]
- Landers, V. M., Beatty, S. E., Wang, S., & Mothersbaugh, D. L. (2015). The effect of online versus offline retailer-brand image incongruity on the flow experience. Journal of Marketing Theory and Practice, 23(4), 370–387. [Google Scholar] [CrossRef]
- Leppink, J., Paas, F., Van der Vleuten, C. P. M., Van Gog, T., & Van Merriënboer, J. J. G. (2013). Development of an instrument for measuring different types of cognitive load. Behavior Research Methods, 45(4), 1058–1072. [Google Scholar] [CrossRef]
- Li, D., & Browne, G. J. (2006). The role of need for cognition and mood in online flow experience. Journal of Computer Information Systems, 46(3), 11–17. [Google Scholar]
- Li, L., Feng, Y., & Zhao, A. (2023). An interaction–immersion model in live streaming commerce: The moderating role of streamer attractiveness. Journal of Marketing Analytics, 12, 701–716. [Google Scholar] [CrossRef]
- Li, M., Wang, Q., & Cao, Y. (2022). Understanding consumer online impulse buying in live streaming e-commerce: A stimulus-organism-response framework. International Journal of Environmental Research and Public Health, 19(7), 4378. [Google Scholar] [CrossRef] [PubMed]
- Li, Y., & Peng, Y. (2021). What drives gift-giving intention in live streaming? The perspectives of emotional attachment and flow experience. International Journal of Human–Computer Interaction, 37(14), 1317–1329. [Google Scholar] [CrossRef]
- Liao, C., To, P.-L., Wong, Y.-C., Palvia, P., & Kakhki, M. D. (2016). The impact of presentation mode and product type on online impulse buying decisions. Journal of Electronic Commerce Research, 17(2), 2. [Google Scholar]
- Liu, H., Chu, H., Huang, Q., & Chen, X. (2016). Enhancing the flow experience of consumers in China through interpersonal interaction in social commerce. Computers in Human Behavior, 58, 306–314. [Google Scholar] [CrossRef]
- Liu, L., Li, T., Zhang, D., & Jin, H. (2025). The Influence of social support on the job involvement of newly hired physical education teachers: A study based on SOR and COR Theories. Behavioral Sciences, 15(3), 271. [Google Scholar] [CrossRef]
- Mehrabian, A., & Russell, J. A. (1974). An approach to environmental psychology (pp. xii, 266). The MIT Press. [Google Scholar]
- Mohan, D., Angus, D. C., Ricketts, D., Farris, C., Fischhoff, B., Rosengart, M. R., Yealy, D. M., & Barnato, A. E. (2014). Assessing the validity of using serious game technology to analyze physician decision making. PLoS ONE, 9(8), e105445. [Google Scholar] [CrossRef]
- Mohanty, A., & Sussman, T. J. (2013). Top-down modulation of attention by emotion. Frontiers in Human Neuroscience, 7, 102. [Google Scholar] [CrossRef]
- Nelson, P. (1974). Advertising as information. Journal of Political Economy, 82(4), 729–754. [Google Scholar] [CrossRef]
- Ni, S., & Ueichi, H. (2024). Factors influencing behavioral intentions in livestream shopping: A cross-cultural study. Journal of Retailing and Consumer Services, 76, 103596. [Google Scholar] [CrossRef]
- Novak, T. P., Hoffman, D. L., & Duhachek, A. (2003). The influence of goal-directed and experiential activities on online flow experiences. Journal of Consumer Psychology, 13(1/2), 3–16. [Google Scholar] [CrossRef]
- Ouwehand, K., van der Kroef, A., Wong, J., & Paas, F. (2021). Measuring cognitive load: Are there more valid alternatives to likert rating scales? Frontiers in Education, 6, 702616. [Google Scholar] [CrossRef]
- Paivio, A. (1990). Neuropsychological evidence. In A. Paivio (Ed.), Mental representations: A dual coding approach. Oxford University Press. [Google Scholar] [CrossRef]
- Patel, V., Das, K., Chatterjee, R., & Shukla, Y. (2020). Does the interface quality of mobile shopping apps affect purchase intention? An empirical study. Australasian Marketing Journal, 28(4), 300–309. [Google Scholar] [CrossRef]
- Perakakis, E., Ghinea, G., & Thanou, E. (2015, June 25–27). Are websites optimized for mobile devices and Smart TVs? 2015 8th International Conference on Human System Interaction (HSI) (pp. 47–53), Warsaw, Poland. [Google Scholar] [CrossRef]
- Petter, S., Straub, D., & Rai, A. (2007). Specifying formative constructs in information systems research. MIS Quarterly, 31(4), 623. [Google Scholar] [CrossRef]
- Pictet, A., & Holmes, E. (2013). The powerful impact of mental imagery in changing emotion (pp. 187–194). Psychology Press. [Google Scholar]
- Quin, F., Weyns, D., Galster, M., & Silva, C. C. (2023). A/B testing: A systematic literature review. arXiv, arXiv:2308.04929. [Google Scholar] [CrossRef]
- Rosch, J. L., & Vogel-Walcutt, J. J. (2013). A review of eye-tracking applications as tools for training. Cognition, Technology & Work, 15(3), 313–327. [Google Scholar] [CrossRef]
- Sas, C., & O’Hare, G. M. P. (2003). Presence equation: An investigation into cognitive factors underlying presence. Presence: Teleoperators and Virtual Environments, 12(5), 523–537. [Google Scholar] [CrossRef]
- Schmeck, A., Opfermann, M., Van Gog, T., Paas, F., & Leutner, D. (2015). Measuring cognitive load with subjective rating scales during problem solving: Differences between immediate and delayed ratings. Instructional Science, 43(1), 93–114. [Google Scholar] [CrossRef]
- Schouten, J. W., McAlexander, J. H., & Koenig, H. F. (2007). Transcendent customer experience and brand community. Journal of the Academy of Marketing Science, 35(3), 357–368. [Google Scholar] [CrossRef]
- Sheng, G., Xia, Q., Yue, B., & Li, Y. (2021). A study on green advertising effectiveness in the perspective of image proximity. Frontiers in Psychology, 12, 568189. [Google Scholar] [CrossRef]
- Siekpe, J. S. (2005). An examination of the multidimensionality of flow construct in a computer-mediated environment. Journal of Electronic Commerce Research, 6, 31–43. [Google Scholar]
- Sohn, S., Seegebarth, B., & Moritz, M. (2017). The impact of perceived visual complexity of mobile online shops on user’s satisfaction: Perceived visual complexity of mobile online stores. Psychology & Marketing, 34(2), 2. [Google Scholar] [CrossRef]
- Sun, Y., Shao, X., Li, X., Guo, Y., & Nie, K. (2019). How live streaming influences purchase intentions in social commerce: An IT affordance perspective. Electronic Commerce Research and Applications, 37, 100886. [Google Scholar] [CrossRef]
- Tsai, H.-T., & Pai, P. (2012). Positive and negative aspects of online community cultivation: Implications for online stores’ relationship management. Information & Management, 49(2), 111–117. [Google Scholar] [CrossRef]
- van der Heijden, H., Verhagen, T., & Creemers, M. (2003). Understanding online purchase intentions: Contributions from technology and trust perspectives. European Journal of Information Systems, 12(1), 41–48. [Google Scholar] [CrossRef]
- van Noort, G., Voorveld, H. A. M., & van Reijmersdal, E. A. (2012). Interactivity in brand web sites: Cognitive, affective, and behavioral responses explained by consumers’ online flow experience. Journal of Interactive Marketing, 26(4), 4. [Google Scholar] [CrossRef]
- Voss, K. E., Spangenberg, E. R., & Grohmann, B. (2003). Measuring the hedonic and utilitarian dimensions of consumer attitude. Journal of Marketing Research, 40(3), 310–320. [Google Scholar] [CrossRef]
- Walter, K., & Bex, P. (2022). Low-level factors increase gaze-guidance under cognitive load: A comparison of image-salience and semantic-salience models. PLoS ONE, 17(11), e0277691. [Google Scholar] [CrossRef]
- Wang, L., & Wang, S. (2020). The Influence of flow experience on online consumers’ information searching behavior: An empirical study of chinese college students. Data and Information Management, 4(4), 4. [Google Scholar] [CrossRef]
- Wang, L. C., Baker, J., Wagner, J. A., & Wakefield, K. (2007). Can a retail web site be social? Journal of Marketing, 71(3), 143–157. [Google Scholar] [CrossRef]
- Waterlander, W. E., Jiang, Y., Steenhuis, I. H. M., & Mhurchu, C. N. (2015). Using a 3D virtual supermarket to measure food purchase behavior: A validation study. Journal of Medical Internet Research, 17(4), e3774. [Google Scholar] [CrossRef]
- Wongkitrungrueng, A., & Assarut, N. (2020). The role of live streaming in building consumer trust and engagement with social commerce sellers. Journal of Business Research, 117, 543–556. [Google Scholar] [CrossRef]
- Wu, C.-S., Cheng, F.-F., & Yen, D. C. (2008). The atmospheric factors of online storefront environment design: An empirical experiment in Taiwan. Information & Management, 45(7), 493–498. [Google Scholar] [CrossRef]
- Xiang, L., Zheng, X., Lee, M. K. O., & Zhao, D. (2016). Exploring consumers’ impulse buying behavior on social commerce platform: The role of parasocial interaction. International Journal of Information Management, 36(3), 333–347. [Google Scholar] [CrossRef]
- Yan, D., Sengupta, J., & Hong, J. (2016). Why does psychological distance influence construal level? The role of processing mode. Journal of Consumer Research, 43(4), 598–613. [Google Scholar] [CrossRef]
- Zhang, H., Lu, Y., Gupta, S., & Zhao, L. (2014). What motivates customers to participate in social commerce? The impact of technological environments and virtual customer experiences. Information & Management, 51(8), 8. [Google Scholar] [CrossRef]
- Zhou, T., Li, H., & Liu, Y. (2010). The effect of flow experience on mobile SNS users’ loyalty. Industrial Management & Data Systems, 110(6), 930–946. [Google Scholar] [CrossRef]
- Zimmerman, D. (2003). A warning about the large-sample wilcoxon-mann-whitney test. Understanding Statistics, 2, 267–280. [Google Scholar] [CrossRef]
Product Type | Information Richness | Cognitive Load | Mental Imagery | Flow | Purchase Intention | ||||
---|---|---|---|---|---|---|---|---|---|
M | SD | M | SD | M | SD | M | SD | ||
Experience Product | Text | 3.55 | 1.31 | 4.07 | 1.22 | 3.18 | 1.23 | 2.85 | 1.45 |
Picture | 3.09 | 1.16 | 4.31 | 1.17 | 3.74 | 1.11 | 3.46 | 1.57 | |
Graphic–text combination | 3.11 | 1.4 | 4.57 | 1.27 | 4.1 | 1.21 | 3.93 | 1.91 | |
Functional Products | Text | 3.07 | 1.26 | 3.8 | 1.19 | 3.18 | 1.21 | 2.74 | 1.47 |
Picture | 3.14 | 1.11 | 4.14 | 1.19 | 3.48 | 1.71 | 3.23 | 1.11 | |
Graphic–text combination | 3.07 | 1.28 | 4.41 | 1.32 | 3.85 | 1.17 | 3.82 | 1.75 |
Product Type | Patch Design | Fixation Count | First Fixation Count | Dwell Time | Max Fix Pupil Size |
---|---|---|---|---|---|
Experience the product | Text | 63.43 (43.70) | 3217.54 (9486.00) | 38,985.74 (29,493.97) | 1315.67 (536.12) |
Picture | 56.61 (34.73) | 3059.09 (9852.51) | 37,341.27 (28,709.41) | 1316.49 (497.22) | |
Graphic–text combination | 65.07 (40.88) | 7019.13 (19,696.37) | 37,939.21 (27,942.02) | 1297.71 (513.70) | |
Search product | Text | 59.07 (45.41) | 3517.82 (11,494.47) | 28,898.37 (18,699.69) | 1438.20 (465.04) |
Picture | 47.77 (29.80) | 2851.89 (15,001.64) | 25,673.56 (17,646.88) | 1339.73 (428.01) | |
Graphic–text combination | 59.09 (42.99) | 2749.58 (7857.85) | 30,291.57 (19,766.75) | 1383.81 (439.79) |
Hypothetical Path | Non-Standardized Coefficients | p | R2 | ||
---|---|---|---|---|---|
Corf. | Standard Error | β | |||
H1: IR → PI | 0.419 | 0.173 | 0.812 | <0.001 | 0.567 |
H2a: IR → CL | −0.23 | 0.273 | −0.15 | 0.01 | 0.338 |
H2b: IR → MI | 0.23 | 0.09 | 0.15 | 0.07 | 0.505 |
H3a: CL → MI | −0.28 | 0.07 | −0.17 | 0.001 | |
H2c: IR → FLOW | 0.11 | 0.05 | 0.08 | 0.032 | 0.758 |
H3b: CL → FLOW | −0.08 | 0.17 | −0.09 | 0.019 | |
H4: MI → FLOW | 0.67 | 0.21 | 0.64 | <0.001 | |
H5a: CL → PI | 0.43 | 0.12 | 0.18 | <0.001 | 0.553 |
H5b: MI → PI | 0.59 | 0.19 | 0.41 | <0.001 | |
H5c: FLOW → PI | 0.43 | 0.13 | 0.22 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, J.; Zhao, Y.; Zhang, W.; Lu, K.; Feng, X.; Xia, T. The Influence of the Information Richness of Interfaces on Consumers’ Purchase Intention: The Sequential Mediating Effects of Cognitive Load, Mental Imagery, and Flow Experience. Behav. Sci. 2025, 15, 673. https://doi.org/10.3390/bs15050673
Guo J, Zhao Y, Zhang W, Lu K, Feng X, Xia T. The Influence of the Information Richness of Interfaces on Consumers’ Purchase Intention: The Sequential Mediating Effects of Cognitive Load, Mental Imagery, and Flow Experience. Behavioral Sciences. 2025; 15(5):673. https://doi.org/10.3390/bs15050673
Chicago/Turabian StyleGuo, Jiayue, Yuemeng Zhao, Wenqian Zhang, Ke Lu, Xiaochen Feng, and Tiansheng Xia. 2025. "The Influence of the Information Richness of Interfaces on Consumers’ Purchase Intention: The Sequential Mediating Effects of Cognitive Load, Mental Imagery, and Flow Experience" Behavioral Sciences 15, no. 5: 673. https://doi.org/10.3390/bs15050673
APA StyleGuo, J., Zhao, Y., Zhang, W., Lu, K., Feng, X., & Xia, T. (2025). The Influence of the Information Richness of Interfaces on Consumers’ Purchase Intention: The Sequential Mediating Effects of Cognitive Load, Mental Imagery, and Flow Experience. Behavioral Sciences, 15(5), 673. https://doi.org/10.3390/bs15050673