Understanding the Purchase Decisions of Silver Consumers in Short-Form Video Platforms from the Perspective of Existence, Relatedness, and Growth Needs
Abstract
:1. Introduction
2. Theory Background and Hypothesis Development
2.1. SFV-Driven E-Commerce
2.2. The ERG Needs of Silver Consumers
2.3. The Sociotechnical Characteristics of SFV Platforms
2.3.1. Information Diversity
2.3.2. Social Interaction
2.3.3. Ease of Use
2.3.4. Recommendation Affordance
2.4. Purchasing Intentions of Silver Consumers
2.4.1. The Influence of Social Belonging
2.4.2. The Influence of Perceived Trust
2.4.3. The Influence of Product Relevance
3. Survey Design
3.1. Pre-Survey
3.2. Data Collection
4. Analysis and Results
4.1. Reliability and Validity Analysis
4.2. Structural Model
4.3. Results
5. Discussion and Conclusions
5.1. Results Discussion
5.2. Theoretical Contributions
5.3. Managerial Implications
5.4. Conclusions
6. Limitations and Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Construct | Item | Reference |
---|---|---|
Information Diversity (ID) | ID1. I watch video presentations as well as buyer reviews and pictures ID2. I can get information on SFV platforms that I cannot get on other platforms. ID3. I think video presentations provide a more comprehensive view of the products. ID4. I don’t just watch videos on SFV platforms; I also watch live streams and other content. | [75] |
Social Interaction (SI) | SI1. I like to forward SFVs to family and friends. SI2. This platform allows me to form friendly relationships with other users. SI3. Sellers on the platform respond to my questions in a timely manner. SI4. I will often give reviews of items on SFV platforms. | [76] |
Ease of Use (EU) | EU1. I think SFV platform has easy access to product information and I can easily find the desired products. EU2. I think the simplicity of the SFV platform will make product information more accessible. EU3. I think it’s easier to shop on SFV platforms. EU4. I think watching SFVs is more efficient than viewing images. | [77] |
Recommendation Affordance (RA) | RA1. SFV platforms can provide personalized contents or products for my personal needs. RA2. SFV platforms can focus on my needs for products or services. RA3. The contents or products recommended by the SFV platform are very appealing to me RA4. SFV platforms can provide me with the kind of videos that I might like. | [48,78] |
Social Belonging (SB) | SB1. I think I am a bit similar to other consumers of the SFV platform in some ways. SB2. I have an inexplicable affinity with people who shop on the same SFV platforms. SB3. After interacting with other users, I would like to purchase a product/service from this platform. SB4. If there is a product I would like to purchase, I would like to communicate with other users on this platform. | [79] |
Perceived Trust (PT) | PT1. I am sure the SFV platforms won’t let unscrupulous merchants get past the vetting process. PT2. I believe the SFV platform will recommend us good products. PT3. I believe that the SFV platform will not post false information to deceive consumers. PT4. I believe that the information I get on SFV platforms is true. | [55,80] |
Product Relevance (PR) | PR1. The advertised products might be of value to me. PR2. The advertised products are relevant to my needs. PR3. The advertised product is the one I am looking for. PR4. The advertised videos spoke to my concerns. | [58] |
References
- Gelper, S.; van der Lans, R.; van Bruggen, G. Competition for attention in online social networks: Implications for seeding strategies. Manag. Sci. 2021, 67, 1026–1047. [Google Scholar] [CrossRef]
- Ge, J.; Sui, Y.; Zhou, X.; Li, G. Effect of short video ads on sales through social media: The role of advertisement content generators. Int. J. Advert. 2021, 40, 870–896. [Google Scholar] [CrossRef]
- Jung, K.; Kang, M.Y. Understanding credit card usage behavior of elderly korean consumers for sustainable growth: Implications for Korean credit card companies. Sustainability 2021, 13, 3817. [Google Scholar] [CrossRef]
- Vassilakopoulou, P.; Hustad, E. Bridging digital divides: A literature review and research agenda for information systems research. Inf. Syst. Front. 2023, 25, 955–969. [Google Scholar] [CrossRef]
- Niehaves, B.; Plattfaut, R. Internet adoption by the elderly: Employing IS technology acceptance theories for understanding the age-related digital divide. Eur. J. Inf. Syst. 2014, 23, 708–726. [Google Scholar] [CrossRef]
- Jingga, F.; Wiryawan, R.R.; Rahmanita, M.; Adani, F. User Behavior Analysis of Short-form Video Prolonging Usage towards Purchase Intention on social media using SEM Method. In Proceedings of the 27th International Conference on Information Technology (IT), Zabljak, Montenegro, 15–18 February 2023; pp. 1–5. [Google Scholar]
- Yang, Q.; Lee, Y.C. What drives the digital customer experience and customer loyalty in mobile short-form video shopping? Evidence from douyin (TikTok). Sustainability 2022, 14, 10890. [Google Scholar] [CrossRef]
- Xiao, L.; Li, X.; Zhang, Y. Exploring the factors influencing consumer engagement behavior regarding short-form video advertising: A big data perspective. J. Retail. Consum. Serv. 2023, 70, 103170. [Google Scholar] [CrossRef]
- Wang, S.; Paulo Esperança, J.; Wu, Q. Effects of live streaming proneness, engagement and intelligent recommendation on users’ purchase intention in short video community: Take TikTok (DouYin) online courses as an example. Int. J. Hum. Comput. Interact. 2023, 39, 3071–3083. [Google Scholar] [CrossRef]
- Berg, H.; Liljedal, K.T. Elderly consumers in marketing research: A systematic literature review and directions for future research. Int. J. Consum. Stud. 2022, 46, 1640–1664. [Google Scholar] [CrossRef]
- Zhang, B.; Ying, L.; Khan, M.A.; Ali, M.; Barykin, S.; Jahanzeb, A. Sustainable digital marketing: Factors of adoption of m-technologies by older adults in the Chinese market. Sustainability 2023, 15, 1972. [Google Scholar] [CrossRef]
- Guido, G.; Pichierri, M.; Rizzo, C.; Chieffi, V.; Moschis, G. Information processing by elderly consumers: A five-decade review. J. Serv. Mark. 2021, 35, 14–28. [Google Scholar] [CrossRef]
- Alderfer, C.P. An empirical test of a new theory of human needs. Organ. Behav. Hum. Perform. 1969, 4, 142–175. [Google Scholar] [CrossRef]
- Yin, J.; Huang, Y.; Ma, Z. Explore the Feeling of Presence and Purchase Intention in Livestream Shopping: A Flow-Based Model. J. Theor. Appl. Electron. Commer. Res. 2023, 18, 237–256. [Google Scholar] [CrossRef]
- Haavisto, M.; Jaakkola, T.; Lepola, J. Video outperforms illustrated text: Do old explanations for the modality effect apply in a learner-paced fifth-grade classroom context? Comput. Educ. 2023, 199, 104775. [Google Scholar] [CrossRef]
- Kim, J.; He, N.; Miles, I. Live Commerce Platforms: A New Paradigm for E-Commerce Platform Economy. J. Theor. Appl. Electron. Commer. Res. 2023, 18, 959–975. [Google Scholar] [CrossRef]
- Li, X.; Grahl, J.; Hinz, O. How do recommender systems lead to consumer purchases? A causal mediation analysis of a field experiment. Inf. Syst. Res. 2022, 33, 620–637. [Google Scholar] [CrossRef]
- Biancone, P.; Secinaro, S.; Marseglia, R.; Calandra, D. E-health for the future. Managerial perspectives using a multiple case study approach. Technovation 2021, 120, 102406. [Google Scholar] [CrossRef]
- Park, S. Multifaceted trust in tourism service robots. Ann. Tour. Res. 2020, 81, 102888. [Google Scholar] [CrossRef]
- Thangavel, G.; Memedi, M.; Hedström, K. Customized information and communication technology for reducing social isolation and loneliness among older adults: Scoping review. JMIR Mental Health 2022, 9, e34221. [Google Scholar] [CrossRef]
- Altinay, L.; Song, H.; Madanoglu, M.; Wang, X.L. The influence of customer-to-customer interactions on elderly consumers’ satisfaction and social well-being. Int. J. Hosp. Manag. 2019, 78, 223–233. [Google Scholar] [CrossRef]
- Chaturvedi, R.; Verma, S.; Das, R.; Dwivedi, Y.K. Social companionship with artificial intelligence: Recent trends and future avenues. Technol. Forecast. Soc. Change 2023, 193, 122634. [Google Scholar] [CrossRef]
- Rippé, C.B.; Smith, B.; Dubinsky, A.J. Lonely consumers and their friend the retail salesperson. J. Bus. Res. 2018, 92, 131–141. [Google Scholar] [CrossRef]
- Erjavec, J.; Manfreda, A. Online shopping adoption during COVID-19 and social isolation: Extending the UTAUT model with herd behavior. J. Retail. Consum. Serv. 2022, 65, 102867. [Google Scholar] [CrossRef]
- Swimberghe, K.; Darrat, M.A.; Beal, B.D.; Astakhova, M. Examining a psychological sense of brand community in elderly consumers. J. Bus. Res. 2018, 82, 171–178. [Google Scholar] [CrossRef]
- Shin, D.; Park, Y.J. Role of fairness, accountability, and transparency in algorithmic affordance. Comput. Hum. Behav. 2019, 98, 277–284. [Google Scholar] [CrossRef]
- Lu, X.; He, S.; Lian, S.; Ba, S.; Wu, J. Is user-generated content always helpful? The effects of online forum browsing on consumers’ travel purchase decisions. Decis. Support Syst. 2020, 137, 113368. [Google Scholar] [CrossRef]
- Cai, X.; Cebollada, J.; Cortinas, M. Impact of seller- and buyer-created content on product sales in the electronic commerce platform: The role of informativeness, readability, multimedia richness, and extreme valence. J. Retail. Consum. Serv. 2023, 70, 103141. [Google Scholar] [CrossRef]
- Lee, M.T.; Theokary, C. The superstar social media influencer: Exploiting linguistic style and emotional contagion over content? J. Bus. Res. 2021, 132, 860–871. [Google Scholar] [CrossRef]
- Guan, Y.; Lu, B.; Yan, W.; Chen, G. Show me your face: Investigating the effect of facial features in review images on review helpfulness. Electron. Commer. Res. 2023, 1–23. [Google Scholar]
- Audrezet, A.; De Kerviler, G.; Moulard, J.G. Authenticity under threat: When social media influencers need to go beyond self-presentation. J. Bus. Res. 2020, 117, 557–569. [Google Scholar] [CrossRef]
- Houston, M.J.; Rothschild, M.L. Conceptual and methodological perspectives on involvement. In Research Frontiers in Marketing: Dialogues and Direction; Jain, S., Ed.; American Marketing Association: Chicago, IL, USA, 1978; pp. 184–187. [Google Scholar]
- Heath, R. Low involvement processing—A new model of brands and advertising. Int. J. Advert. 2000, 19, 287–298. [Google Scholar] [CrossRef]
- Li, L.Q.; Gao, J.; Shi, Z.; Song, W. The influence of self-construal on frequency of user activities and advertising involvement in Msg-SN. Behav. Inf. Technol. 2022, 41, 934–945. [Google Scholar] [CrossRef]
- Chen, C.D.; Zhao, Q.; Wang, J.L. How livestreaming increases product sales: Role of trust transfer and elaboration likelihood model. Behav. Inf. Technol. 2022, 41, 558–573. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, Y.; Wang, Y.; Zhao, L. How to retain customers: Understanding the role of trust in live streaming commerce with a socio-technical perspective. Comput. Hum. Behav. 2022, 127, 107052. [Google Scholar] [CrossRef]
- Fletcher, K.A.; Gbadamosi, A. Examining social media live stream’s influence on the consumer decision-making: A thematic analysis. Electron. Commer. Res. 2022, 1–31. [Google Scholar] [CrossRef]
- Shao, Z.; Chen, K. Understanding individuals’ engagement and continuance intention of MOOCs: The effect of interactivity and the role of gender. Internet Res. 2021, 31, 1262–1289. [Google Scholar] [CrossRef]
- Maloney, P. Online networks and emotional energy: How pro-anorexic websites use interaction ritual chains to (re) form identity. Inf. Commun. Soc. 2013, 16, 105–124. [Google Scholar] [CrossRef]
- Hill, T.; Canniford, R.; Eckhardt, G.M. The roar of the crowd: How interaction ritual chains create social atmospheres. J. Mark. 2022, 86, 121–139. [Google Scholar] [CrossRef]
- Guan, Z.; Hou, F.; Li, B.; Phang, C.W.; Chong, A.Y.L. What influences the purchase of virtual gifts in live streaming in China? Cult. Context-Sensitive Model. Inf. Syst. J. 2022, 32, 653–689. [Google Scholar]
- Shulga, L.V.; Busser, J.A.; Bai, B.; Kim, H. Branding Co-Creation with Consumer-Generated Advertising: Effect on Creators and Observers. J. Advert. 2023, 52, 5–23. [Google Scholar] [CrossRef]
- Pal, A.; Herath, T.; De, R.; Rao, H.R. Is the convenience worth the risk? An investigation of mobile payment usage. Inf. Syst. Front. 2021, 23, 941–961. [Google Scholar] [CrossRef]
- Oyman, M.; Bal, D.; Ozer, S. Extending the technology acceptance model to explain how perceived augmented reality affects consumers’ perceptions. Comput. Hum. Behav. 2022, 128, 107127. [Google Scholar] [CrossRef]
- Zaichkowsky, J.L. Measuring the Involvement Construct. J. Consum. Res. 1985, 12, 341. [Google Scholar] [CrossRef]
- Norman, D.A. The Psychology of Everyday Things; Basic Books: New York, NY, USA, 1988. [Google Scholar]
- Schrock, A.R. Communicative affordances of mobile media: Portability, availability, locatability, and multimediality. Int. J. Commun. 2015, 9, 18. [Google Scholar]
- Song, S.; Zhao, Y.C.; Yao, X.; Ba, Z.; Zhu, Q. Short video apps as a health information source: An investigation of affordances, user experience and users’ intention to continue the use of TikTok. Internet Res. 2021, 31, 2120–2142. [Google Scholar] [CrossRef]
- Liu, P.; Li, M.; Dai, D.; Guo, L. The effects of social commerce environmental characteristics on customers’ purchase intentions: The chain mediating effect of customer-to-customer interaction and customer-perceived value. Electron. Commer. Res. Appl. 2021, 48, 101073. [Google Scholar] [CrossRef]
- Sarason, S.B. The psychological sense of community: Prospects for a community psychology. Am. J. Psychiatry 1974, 132, 306–307. [Google Scholar]
- Molinillo, S.; Anaya-Sánchez, R.; Liébana-Cabanillas, F. Analyzing the effect of social support and community factors on customer engagement and its impact on loyalty behaviors toward social commerce websites. Comput. Hum. Behav. 2020, 108, 105980. [Google Scholar] [CrossRef]
- Gu, Z.; Li, X. Social sharing, public perception, and brand competition in a horizontally differentiated market. Inf. Syst. Res. 2022, 34, 553–569. [Google Scholar] [CrossRef]
- Nian, T.; Hu, Y.; Chen, C. Examining the impact of television-program-induced emotions on online word-of-mouth toward television advertising. Inf. Syst. Res. 2021, 32, 605–632. [Google Scholar] [CrossRef]
- Kondo, J.; Li, D.; Papanikolaou, D. Trust, collaboration, and economic growth. Manag. Sci. 2021, 67, 1825–1850. [Google Scholar] [CrossRef]
- Tuncer, I. The relationship between IT affordance, flow experience, trust, and social commerce intention: An exploration using the SOR paradigm. Technol. Soc. 2021, 65, 101567. [Google Scholar] [CrossRef]
- Meng, F.; Guo, X.; Peng, Z.; Ye, Q.; Lai, K.H. The relationship between IT affordance, flow experience, trust, and social commerce intention: An exploration using the SOR paradigm. Technol. Anxieties. Inf. Technol. People 2022, 35, 259–280. [Google Scholar] [CrossRef]
- Rogers, T.B.; Kuiper, N.A.; Kirker, W.S. Self-reference and the encoding of personal information. J. Personal. Soc. Psychol. 1977, 35, 677. [Google Scholar] [CrossRef]
- Jung, A.R. The influence of perceived ad relevance on social media advertising: An empirical examination of a mediating role of privacy concern. Comput. Hum. Behav. 2017, 70, 303–309. [Google Scholar] [CrossRef]
- Li, X.; Wang, C.; Zhang, Y. The dilemma of social commerce: Why customers avoid peer-generated advertisements in mobile social networks. Internet Res. 2020, 30, 1059–1080. [Google Scholar] [CrossRef]
- Celsi, R.L.; Olson, J.C. The role of involvement in attention and comprehension processes. J. Consum. Res. 1988, 152, 210–224. [Google Scholar] [CrossRef]
- Churchill, G.A.; Iacobucci, D. Marketing Research: Methodological Foundations; Dryden Press: New York, NY, USA, 2006; Volume 199. [Google Scholar]
- Ursachi, G.; Horodnic, I.A.; Zait, A. How reliable are measurement scales? External factors with indirect influence on reliability estimators. Procedia Econ. Financ. 2015, 20, 679–686. [Google Scholar] [CrossRef]
- Shrestha, N. Factor analysis as a tool for survey analysis. Am. J. Appl. Math. Stat. 2021, 9, 4–11. [Google Scholar] [CrossRef]
- Farrell, A.M.; Rudd, J.M. Factor analysis and discriminant validity: A brief review of some practical issues. In Proceedings of the Australia and New Zealand Marketing Academy Conference, Melbourne, Australia, 30 November–2 December 2009. [Google Scholar]
- Xu, B.; Zhang, J.; Hou, J.; Ma, M.; Gong, Z.; Tang, S. Nurses’ attitudes and knowledge of peripherally inserted central catheter maintenance in primary hospitals in China: A cross-sectional survey. Risk Manag. Healthc. Policy 2020, 13, 903–913. [Google Scholar] [CrossRef]
- Yin, X.; Li, J.; Si, H.; Wu, P. Attention marketing in fragmented entertainment: How advertising embedding influences purchase decision in short-form video apps. J. Retail. Consum. Serv. 2024, 76, 103572. [Google Scholar] [CrossRef]
- Xu, H.; Dinev, T.; Smith, J.; Hart, P. Information privacy concerns: Linking individual perceptions with institutional privacy assurances. J. Assoc. Inf. Syst. 2011, 12, 1. [Google Scholar] [CrossRef]
- Chin, W.W.; Marcolin, B.L.; Newsted, P.R. A partial least squares latent variable modeling approach for measuring interaction effects: Results from a Monte Carlo simulation study and an electronic-mail emotion/adoption study. Inf. Syst. Res. 2003, 14, 189–217. [Google Scholar] [CrossRef]
- Gong, X.; Cheung, C.M.; Zhang, K.Z.; Chen, C.; Lee, M.K. A dual-identity perspective of obsessive online social gaming. J. Assoc. Inf. Syst. 2021, 22, 1245–1284. [Google Scholar] [CrossRef]
- Straub, D.; Boudreau, M.C.; Gefen, D. Validation guidelines for IS positivist research. Commun. Assoc. Inf. Syst. 2004, 13, 24. [Google Scholar] [CrossRef]
- Henseler, J.; Ringle, C.M.; Sarstedt, M. A new criterion for assessing discriminant validity in variance-based structural equation modeling. J. Acad. Mark. Sci. 2015, 43, 115–135. [Google Scholar] [CrossRef]
- Voorhees, C.M.; Brady, M.K.; Calantone, R.; Ramirez, E. Discriminant validity testing in marketing: An analysis, causes for concern, and proposed remedies. J. Acad. Mark. Sci. 2016, 44, 119–134. [Google Scholar] [CrossRef]
- Fornell, C.; Bookstein, F.L. Two Structural Equation Models: Lisrel and Pls Applied to Consumer Exit-Voice Theory. J. Mark. Res. 1982, 19, 440–452. [Google Scholar] [CrossRef]
- Hair, J.F.; Ringle, C.M.; Sarstedt, M. PLS-SEM: Indeed a silver bullet. J. Mark. Theory Pract. 2011, 19, 139–152. [Google Scholar] [CrossRef]
- Liang, T.P.; Jiang, J.; Klein, G.S.; Liu, J.Y.C. Software quality as influenced by informational diversity, task conflict, and learning in project teams. IEEE Trans. Eng. Manag. 2009, 57, 477–487. [Google Scholar] [CrossRef]
- Animesh, A.; Pinsonneault, A.; Yang, S.B.; Oh, W. An odyssey into virtual worlds: Exploring the impacts of technological and spatial environments on intention to purchase virtual products. MIS Q. 2011, 35, 789–810. [Google Scholar] [CrossRef]
- Filieri, R.; Acikgoz, F.; Ndou, V.; Dwivedi, Y. Is TripAdvisor still relevant? The influence of review credibility, review usefulness, and ease of use on consumers’ continuance intention. Int. J. Contemp. Hosp. Manag. 2021, 33, 199–223. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, Y.; Liu, S. Exploring short-form video application addiction: Socio-technical and attachment perspectives. Telemat. Inform. 2019, 42, 101243. [Google Scholar] [CrossRef]
- Hong, I.B.; Cha, H.S. The mediating role of consumer trust in an online merchant in predicting purchase intention. Int. J. Inf. Manag. 2013, 33, 927–939. [Google Scholar] [CrossRef]
- Gefen, D.; Karahanna, E.; Straub, D.W. Trust and TAM in online shopping: An integrated model. MIS Q. 2003, 27, 51–90. [Google Scholar] [CrossRef]
Demographics | Frequency | Percentage | |
---|---|---|---|
Gender | Male | 97 | 34.15% |
Female | 187 | 65.85% | |
Age | 50–55 | 150 | 52.82% |
56–60 | 98 | 34.51% | |
61–65 | 22 | 7.75% | |
66 or older | 14 | 4.93% | |
Frequency of SFV platforms using (minutes per day) | <30 | 113 | 39.79% |
30–60 | 101 | 35.56% | |
>60 | 70 | 24.65% | |
Frequency of SFV shopping | Never | 70 | 24.65% |
Occasionally | 142 | 50.00% | |
Often | 72 | 25.35% | |
Short video platforms used (multiple choice) | Douyin | 183 | 64.44% |
Kuaishou | 144 | 50.70% | |
WeChat Video | 139 | 48.94% | |
Xigua Video | 74 | 26.06% | |
Xiaohongshu | 28 | 9.86% | |
Others | 19 | 6.69% |
Construct | CA | C.R. | AVE | ID | SI | EU | RA | SB | PT | PR | PI |
---|---|---|---|---|---|---|---|---|---|---|---|
ID | 0.841 | 0.894 | 0.678 | 0.804 | |||||||
SI | 0.861 | 0.905 | 0.706 | 0.319 | 0.840 | ||||||
EU | 0.824 | 0.879 | 0.646 | 0.345 | 0.392 | 0.823 | |||||
RA | 0.853 | 0.901 | 0.694 | 0.368 | 0.344 | 0.384 | 0.833 | ||||
SB | 0.860 | 0.905 | 0.704 | 0.299 | 0.519 | 0.431 | 0.459 | 0.839 | |||
PT | 0.871 | 0.912 | 0.721 | 0.413 | 0.391 | 0.367 | 0.438 | 0.531 | 0.849 | ||
PR | 0.901 | 0.931 | 0.772 | 0.488 | 0.459 | 0.534 | 0.448 | 0.469 | 0.512 | 0.878 | |
PI | 0.859 | 0.904 | 0.703 | 0.495 | 0.502 | 0.481 | 0.534 | 0.511 | 0.532 | 0.602 | 0.838 |
Construct | Indicator | ID | SI | EU | RA | SB | PT | PR | PI |
---|---|---|---|---|---|---|---|---|---|
ID | ID1 | 0.724 | 0.109 | 0.174 | 0.244 | 0.073 | 0.200 | 0.236 | 0.288 |
ID2 | 0.803 | 0.342 | 0.336 | 0.295 | 0.266 | 0.306 | 0.376 | 0.337 | |
ID3 | 0.876 | 0.314 | 0.318 | 0.366 | 0.314 | 0.420 | 0.490 | 0.504 | |
ID4 | 0.805 | 0.187 | 0.237 | 0.252 | 0.220 | 0.332 | 0.389 | 0.405 | |
SI | SI1 | 0.285 | 0.842 | 0.302 | 0.302 | 0.424 | 0.350 | 0.361 | 0.398 |
SI2 | 0.294 | 0.864 | 0.386 | 0.280 | 0.487 | 0.337 | 0.464 | 0.437 | |
SI3 | 0.252 | 0.814 | 0.312 | 0.314 | 0.425 | 0.352 | 0.340 | 0.456 | |
SI4 | 0.234 | 0.838 | 0.311 | 0.258 | 0.398 | 0.265 | 0.370 | 0.391 | |
EU | EU1 | 0.272 | 0.303 | 0.820 | 0.324 | 0.400 | 0.274 | 0.402 | 0.412 |
EU2 | 0.358 | 0.391 | 0.845 | 0.267 | 0.371 | 0.294 | 0.550 | 0.430 | |
EU3 | 0.298 | 0.348 | 0.857 | 0.361 | 0.375 | 0.348 | 0.477 | 0.393 | |
EU4 | 0.205 | 0.243 | 0.769 | 0.307 | 0.273 | 0.283 | 0.318 | 0.353 | |
RA | RA1 | 0.317 | 0.219 | 0.270 | 0.789 | 0.290 | 0.333 | 0.316 | 0.460 |
RA2 | 0.318 | 0.380 | 0.340 | 0.832 | 0.438 | 0.418 | 0.423 | 0.478 | |
RA3 | 0.357 | 0.267 | 0.341 | 0.849 | 0.409 | 0.363 | 0.367 | 0.429 | |
RA4 | 0.233 | 0.258 | 0.321 | 0.860 | 0.374 | 0.335 | 0.375 | 0.408 | |
SB | SB1 | 0.247 | 0.452 | 0.421 | 0.401 | 0.838 | 0.435 | 0.446 | 0.457 |
SB2 | 0.268 | 0.448 | 0.389 | 0.378 | 0.867 | 0.430 | 0.416 | 0.410 | |
SB3 | 0.287 | 0.496 | 0.373 | 0.465 | 0.874 | 0.523 | 0.420 | 0.464 | |
SB4 | 0.191 | 0.320 | 0.241 | 0.269 | 0.772 | 0.380 | 0.268 | 0.373 | |
PT | PT1 | 0.348 | 0.321 | 0.358 | 0.372 | 0.477 | 0.842 | 0.461 | 0.463 |
PT2 | 0.365 | 0.367 | 0.321 | 0.382 | 0.390 | 0.842 | 0.425 | 0.427 | |
PT3 | 0.377 | 0.367 | 0.293 | 0.382 | 0.507 | 0.863 | 0.419 | 0.452 | |
PT4 | 0.309 | 0.268 | 0.271 | 0.350 | 0.426 | 0.849 | 0.435 | 0.465 | |
PR | PR1 | 0.428 | 0.395 | 0.434 | 0.385 | 0.418 | 0.468 | 0.871 | 0.540 |
PR2 | 0.443 | 0.459 | 0.520 | 0.435 | 0.434 | 0.438 | 0.896 | 0.556 | |
PR3 | 0.478 | 0.402 | 0.473 | 0.373 | 0.411 | 0.480 | 0.869 | 0.500 | |
PR4 | 0.367 | 0.352 | 0.445 | 0.379 | 0.384 | 0.417 | 0.878 | 0.518 | |
PI | PI1 | 0.423 | 0.405 | 0.401 | 0.420 | 0.412 | 0.425 | 0.472 | 0.842 |
PI2 | 0.382 | 0.431 | 0.373 | 0.469 | 0.407 | 0.452 | 0.468 | 0.815 | |
PI3 | 0.476 | 0.452 | 0.448 | 0.452 | 0.478 | 0.500 | 0.593 | 0.883 | |
PI4 | 0.371 | 0.392 | 0.385 | 0.453 | 0.410 | 0.398 | 0.474 | 0.813 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | |
---|---|---|---|---|---|---|---|
(1) ID | |||||||
(2) SI | 0.348 | ||||||
(3) EU | 0.395 | 0.456 | |||||
(4) RA | 0.426 | 0.393 | 0.449 | ||||
(5) SB | 0.318 | 0.592 | 0.499 | 0.520 | |||
(6) PT | 0.458 | 0.447 | 0.425 | 0.504 | 0.608 | ||
(7) PR | 0.535 | 0.517 | 0.608 | 0.505 | 0.524 | 0.579 | |
(8) PI | 0.560 | 0.581 | 0.565 | 0.623 | 0.589 | 0.612 | 0.679 |
Hypothesis | T Statistics | p-Value | Hypothesis Testing | |
---|---|---|---|---|
H1a: ID → SB | 0.149 ** | 2.690 | 0.007 | Supported |
H1b: ID → PT | 0.220 *** | 3.668 | 0.000 | Supported |
H2a: SI → SB | 0.471 *** | 8.323 | 0.000 | Supported |
H2b: SI → PT | 0.188 ** | 2.741 | 0.006 | Supported |
H3: EU → PT | 0.123 | 1.942 | 0.052 | Not supported |
H4a: RA → PT | 0.245 *** | 4.000 | 0.000 | Supported |
H4b: RA → PR | 0.448 *** | 7.631 | 0.000 | Supported |
H5: SB → PI | 0.211 *** | 3.292 | 0.001 | Supported |
H6: PT → PI | 0.220 *** | 3.476 | 0.001 | Supported |
H7: PR → PI | 0.391 *** | 6.076 | 0.000 | Supported |
Path | Original Sample | Sample Mean | Standard Deviation | T Statistics | VAF |
---|---|---|---|---|---|
SI → PT → PI | 0.043 | 0.043 | 0.021 | 2.085 * | 31.4% |
RA → PR → PI | 0.172 | 0.174 | 0.042 | 4.093 *** | 75.4% |
RA → PT → PI | 0.056 | 0.057 | 0.022 | 2.516 * | 24.6% |
ID → PT → PI | 0.051 | 0.052 | 0.021 | 2.448 * | 63.8% |
ID → SB → PI | 0.03 | 0.032 | 0.016 | 1.869 * | 37.5% |
SI → SB → PI | 0.094 | 0.095 | 0.033 | 2.864 *** | 68.6% |
EU → PT → PI | 0.028 | 0.029 | 0.017 | 1.656 | / |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, X.; Li, Y.; Gao, R.; Li, J.; Wang, H. Understanding the Purchase Decisions of Silver Consumers in Short-Form Video Platforms from the Perspective of Existence, Relatedness, and Growth Needs. Behav. Sci. 2023, 13, 1011. https://doi.org/10.3390/bs13121011
Yin X, Li Y, Gao R, Li J, Wang H. Understanding the Purchase Decisions of Silver Consumers in Short-Form Video Platforms from the Perspective of Existence, Relatedness, and Growth Needs. Behavioral Sciences. 2023; 13(12):1011. https://doi.org/10.3390/bs13121011
Chicago/Turabian StyleYin, Xicheng, Yicheng Li, Rui Gao, Jieqiong Li, and Hongwei Wang. 2023. "Understanding the Purchase Decisions of Silver Consumers in Short-Form Video Platforms from the Perspective of Existence, Relatedness, and Growth Needs" Behavioral Sciences 13, no. 12: 1011. https://doi.org/10.3390/bs13121011
APA StyleYin, X., Li, Y., Gao, R., Li, J., & Wang, H. (2023). Understanding the Purchase Decisions of Silver Consumers in Short-Form Video Platforms from the Perspective of Existence, Relatedness, and Growth Needs. Behavioral Sciences, 13(12), 1011. https://doi.org/10.3390/bs13121011