Gadolinium as an Emerging Microcontaminant in Water Resources: Threats and Opportunities
Abstract
:1. Introduction
2. Gd Discovery, Its Properties, Global Production, and Use
3. Natural Gd
4. Anthropogenic Gd (Gdanth)
4.1. Gd-CAs in MRI
4.2. Gd Determination in the Aqueous Environment
4.3. Speciation of Gd-CAs
4.4. Fractionation of Gdanth
4.5. Gdanth in the Influent and Effluent of Wastewater Treatment Plants
4.6. Gdanth in Surface Water
4.7. Gdanth and Surface Water—Groundwater Interaction
4.8. Human Health Risks of Gdanth
4.9. Ecological Health Risks of Gdanth
4.9.1. Organisms
4.9.2. Plants
5. Knowledge Gaps and Future Research Directions
5.1. Interventions to Prevent/Mitigate Environmental Pollution
- Little is known about the chemical behavior (degradation and transformation products) of Gd-CAs during the water treatment processes. A wide range of potential ecological and human health risks can be avoided by allocating more financial resources to investigate and upgrade current inefficient wastewater treatment technologies and water purification techniques.
5.2. Detecting Gdanth as a Microcontaminant in Aqueous Samples and Collecting a Reliable Dataset
- With the ongoing controversy over securing LA resources and future affordable LA supplies, the environmental aspects are no longer a priority for the industrialized nations. Currently, no extensive LA dataset exists to serve as a background level for monitoring studies, which might be due to a lack of knowledge about their human health risks and ecotoxicology [130]. The dataset should be completed with temporal and spatial data about the distribution of a range of Gd species in the hydrologic cycle in order to empower decision makers to protect the environment.
- Considering the diversity of preconcentration procedures and the lack of a certified scheme for the recently marketed Gd-CAs, proposing a harmonized method to determine anthropogenic Gd seems necessary. A method accepted by a large group of scientists can facilitate the comparison of data reported from different parts of the world.
- Since various MRI Gd chelates account for the Gdanth, the capability of the existing preconcentration procedures to efficiently extract Gd complexes that will be marketed in the future should be verified to prevent underestimation of the anomalous anthropogenic Gd in aqueous samples.
5.3. Hydrological Studies and Monitoring Other Microcontaminants in Water Resources
- Those living in small cities may undergo MRI tests in medical centers of neighboring metropolises and excrete the injected Gd-CAs when they get back home. It shows the possibility of investigating either water pollution or surface water—groundwater interactions in cities without MRI centers.
- When the anomalous Gd content can be traced back to WWTPs, it is expected that other emerging microcontaminants, including pharmaceuticals and personal care products (PPCPs), that cannot be completely removed during water treatment also occur in water [214]. Using statistical and machine learning techniques, it would be possible to identify a relationship between different microcontaminants and predict the presence of other chemical constituents without expensive chemical analysis.
5.4. Ecological and Human Health Risks of Gdanth
- Given the complexity of aquatic environments comprised of different biological systems (e.g., plants, algae, zooplankton, and fish) that differently interact with Gd chelates, there is a risk that Gd-CAs can enter the food chain of higher organisms and human beings. Thus, Gd bioavailability, long-term bioaccumulation of Gd-CAs in the biosphere, their stability in the environment or in biological systems, and the toxicological impacts of Gd complexes are urgent issues that need to be addressed. The uptake of Gd chelates and their bioaccumulation in different parts of plants cultivated in farms and irrigated with polluted water deserve more attention as well. The abovementioned studies might also help to find hyper-accumulator species for Gdanth.
- Environmentally relevant concentrations of Gd-containing MRI contrast agents should be considered for further ecotoxicological investigations. In addition, the mixture effect of anthropogenic Gd and other organic and inorganic stressors on ecotoxicity warrants further research. Thus, the results can be reliably extrapolated to complex environmental systems where Gdanth simultaneously exists with numerous chemical compounds.
- In comparison with speciation analysis, the determination of total LA contents to calculate anomalous positive Gd has been more common. Since the stability of Gd-CAs varies substantially and biological Gd retention is remarkably dependent on Gd species, it makes sense to consider various Gd-CAs to interpret their fate in the environment and assess their health risk comprehensively.
- The conventional methodologies (e.g., ICP-OES and ICP-MS) that have been often hyphenated to separation systems, such as HPLC, to quantify the total Gd content or Gd species in different biological tissues provide no spatial resolved information and therefore the precise Gd bioaccumulation remains unknown. The application of recent analytical techniques (including LA-ICP-MS) to create images of the elemental distribution at the cellular range in organisms and plants (bio-imaging) will be advantageous.
- Prevailing winds and ocean currents may transport Gd-containing WWTP effluents towards shores during the high season [1,215]. Given that river water and seawater might be used for drinking purposes or recreational activities, local residents (especially fishermen) and tourists are exposed to anthropogenic Gd through dermal and ingestion pathways. Hence, evaluations of the health risk through chronic and acute exposure scenarios for children and adults would be beneficial.
- Irrespective of renal insufficiency or damaged BBB, Gd retention was observed in the human body after the administration of paramagnetic Gd chelates. Therefore, the investigation of Gd deposition in the human body and the corresponding health problems ought to be stressed.
6. Conclusions
Author Contributions
Funding
Acknowledgements
Conflicts of Interest
References
- Pedreira, R.M.; Pahnke, K.; Böning, P.; Hatje, V. Tracking hospital effluent-derived gadolinium in Atlantic coastal waters off Brazil. Water Res. 2018, 145, 62–72. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, M.G.; Bariel, D.G. Tracing treated wastewater in an inland catchment using anthropogenic gadolinium. Chemosphere 2010, 80, 794–799. [Google Scholar] [CrossRef] [PubMed]
- Möller, P.; Paces, T.; Dulski, P.; Morteani, G. Anthropogenic Gd in surface water, drainage system, and the water supply of the city of Prague, Czech Republic. Environ. Sci. Technol. 2002, 36, 2387–2394. [Google Scholar] [CrossRef] [PubMed]
- Fuganti, A.; Möller, P.; Morteani, G.; Dulski, P. Gadolinio ed altre terre rare usabili come traccianti per stabilire l’eta il movimento ed i rischi delle acque sotterranee: Esempio dell’area di Trento. Geol. Tec. Ambien 1996, 4, 13–18. [Google Scholar]
- Möller, P.; Morteani, G.; Dulski, P. Anomalous gadolinium, cerium, and yttrium contents in the adige and isarco river waters and in the water of their tributaries (Provinces Trento and Bolzano/Bozen, NE Italy). Acta Hydrochim. Hydrobiol. 2003, 31, 225–239. [Google Scholar] [CrossRef]
- Elbaz-Poulichet, F.; Seidel, J.L.; Othoniel, C. Occurrence of an anthropogenic gadolinium anomaly in river and coastal waters of Southern France. Water Res. 2002, 36, 1102–1105. [Google Scholar] [CrossRef]
- Bau, M.; Dulski, P. Anthropogenic origin of positive gadolinium anomalies in river waters. Earth Planet. Sci. Lett. 1996, 143, 245–255. [Google Scholar] [CrossRef]
- Hennebrüder, K.; Wennrich, R.; Mattusch, J.; Stärk, H.-J.; Engewald, W. Determination of gadolinium in river water by SPE preconcentration and ICP-MS. Talanta 2004, 63, 309–316. [Google Scholar] [CrossRef] [PubMed]
- Kulaksız, S.; Bau, M. Rare earth elements in the Rhine River, Germany: First case of anthropogenic lanthanum as a dissolved microcontaminant in the hydrosphere. Environ. Int. 2011, 37, 973–979. [Google Scholar] [CrossRef] [PubMed]
- Kulaksız, S.; Bau, M. Anthropogenic gadolinium as a microcontaminant in tap water used as drinking water in urban areas and megacities. Appl. Geochem. 2011, 26, 1877–1885. [Google Scholar] [CrossRef]
- Nozaki, Y.; Lerche, D.; Alibo, D.S.; Tsutsumi, M. Dissolved indium and rare earth elements in three Japanese rivers and Tokyo Bay: Evidence for anthropogenic Gd and In. Geochim. Cosmochim. Acta 2000, 64, 3975–3982. [Google Scholar] [CrossRef]
- Zhu, Y.; Hoshino, M.; Yamada, H.; Itoh, A.; Haraguchi, H. Gadolinium anomaly in the distributions of rare earth elements observed for coastal seawater and river waters around Nagoya City. Bull. Chem. Soc. Jpn. 2004, 77, 1835–1842. [Google Scholar] [CrossRef]
- Song, H.; Shin, W.-J.; Ryu, J.-S.; Shin, H.S.; Chung, H.; Lee, K.-S. Anthropogenic rare earth elements and their spatial distributions in the Han River, South Korea. Chemosphere 2017, 172, 155–165. [Google Scholar] [CrossRef] [PubMed]
- Nozaki, Y.; Lerche, D.; Alibo, D.S.; Snidvongs, A. The estuarine geochemistry of rare earth elements and indium in the Chao Phraya River, Thailand. Geochim. Cosmochim. Acta 2000, 64, 3983–3994. [Google Scholar] [CrossRef]
- Kulaksız, S.; Bau, M. Contrasting behaviour of anthropogenic gadolinium and natural rare earth elements in estuaries and the gadolinium input into the North Sea. Earth Planet. Sci. Lett. 2007, 260, 361–371. [Google Scholar] [CrossRef]
- Lawrence, M.G.; Ort, C.; Keller, J. Detection of anthropogenic gadolinium in treated wastewater in South East Queensland, Australia. Water Res. 2009, 43, 3534–3540. [Google Scholar] [CrossRef]
- de Campos, F.F.; Enzweiler, J. Anthropogenic gadolinium anomalies and rare earth elements in the water of Atibaia River and Anhumas Creek, Southeast Brazil. Environ. Monit. Assess. 2016, 188, 281. [Google Scholar] [CrossRef]
- Bau, M.; Knappe, A.; Dulski, P. Anthropogenic gadolinium as a micropollutant in river waters in Pennsylvania and in Lake Erie, northeastern United States. Chemie der erde-Geochemistry 2006, 66, 143–152. [Google Scholar] [CrossRef]
- Smith, C.; Liu, X.-M. Spatial and temporal distribution of rare earth elements in the Neuse River, North Carolina. Chem. Geol. 2018, 488, 34–43. [Google Scholar] [CrossRef]
- Hatje, V.; Bruland, K.W.; Flegal, A.R. Increases in anthropogenic gadolinium anomalies and rare earth element concentrations in San Francisco Bay over a 20 year record. Environ. Sci. Technol. 2016, 50, 4159–4168. [Google Scholar] [CrossRef]
- Johannesson, K.H.; Palmore, C.D.; Fackrell, J.; Prouty, N.G.; Swarzenski, P.W.; Chevis, D.A.; Telfeyan, K.; White, C.D.; Burdige, D.J. Rare earth element behavior during groundwater–seawater mixing along the Kona Coast of Hawaii. Geochim. Cosmochim. Acta 2017, 198, 229–258. [Google Scholar] [CrossRef]
- Schwarzenbach, R.P.; Escher, B.I.; Fenner, K.; Hofstetter, T.B.; Johnson, C.A.; Von Gunten, U.; Wehrli, B. The challenge of micropollutants in aquatic systems. Science 2006, 313, 1072–1077. [Google Scholar] [CrossRef] [PubMed]
- Ternes, T.; Joss, A. Human Pharmaceuticals, Hormones and Fragrances; IWA Publishing: London, UK, 2007. [Google Scholar]
- Kulaksız, S.; Bau, M. Anthropogenic dissolved and colloid/nanoparticle-bound samarium, lanthanum and gadolinium in the Rhine River and the impending destruction of the natural rare earth element distribution in rivers. Earth Planet. Sci. Lett. 2013, 362, 43–50. [Google Scholar] [CrossRef]
- Gwenzi, W.; Mangori, L.; Danha, C.; Chaukura, N.; Dunjana, N.; Sanganyado, E. Sources, behaviour, and environmental and human health risks of high-technology rare earth elements as emerging contaminants. Sci. Total Environ. 2018, 636, 299–313. [Google Scholar] [CrossRef] [PubMed]
- Merian, E.; Anke, M.; Ihnat, M.; Stoeppler, M. Elements and Their Compounds in the Environment: Occurrence, Analysis and Biological Relevance; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2004. [Google Scholar]
- Kabata-Pendias, A. Trace Elements in Soils and Plants; CRC press: Florida, FL, USA, 2010. [Google Scholar]
- Kabata-Pendias, A.; Mukherjee, A.B. Trace Elements from Soil to Human; Springer Science & Business Media: Berlin, Germany, 2007. [Google Scholar]
- Sonich-Mullin, C. Rare Earth Elements: A Review of Production, Processing, Recycling, and Associated Environmental Issues; EPA/600/R-12/572; Office of Research and Development: Washington, DC, USA, 2013; 135p.
- Migaszewski, Z.M.; Gałuszka, A. The characteristics, occurrence, and geochemical behavior of rare earth elements in the environment: A review. Crit. Rev. Environ. Sci. Technol. 2015, 45, 429–471. [Google Scholar] [CrossRef]
- Ramos, S.J.; Dinali, G.S.; Oliveira, C.; Martins, G.C.; Moreira, C.G.; Siqueira, J.O.; Guilherme, L.R. Rare earth elements in the soil environment. Curr. Pollut. Rep. 2016, 2, 28–50. [Google Scholar] [CrossRef]
- Sholkovitz, E.R. The aquatic chemistry of rare earth elements in rivers and estuaries. Aquat. Geochem. 1995, 1, 1–34. [Google Scholar] [CrossRef]
- Turetta, C.; Barbaro, E.; Capodaglio, G.; Barbante, C. Dissolved rare earth elements in the central-western sector of the Ross Sea, Southern Ocean: Geochemical tracing of seawater masses. Chemosphere 2017, 183, 444–453. [Google Scholar] [CrossRef]
- Petrosino, P.; Sadeghi, M.; Albanese, S.; Andersson, M.; Lima, A.; De Vivo, B. REE contents in solid sample media and stream water from different geological contexts: Comparison between Italy and Sweden. J. Geochem. Explor. 2013, 133, 176–201. [Google Scholar] [CrossRef]
- Li, X.-F.; Chen, Z.-B.; Chen, Z.-Q. Distribution and fractionation of rare earth elements in soil–water system and human blood and hair from a mining area in southwest Fujian Province, China. Environ. Earth Sci. 2014, 72, 3599–3608. [Google Scholar] [CrossRef]
- Byrne, R.H.; Li, B. Comparative complexation behavior of the rare earths. Geochim. Cosmochim. Acta 1995, 59, 4575–4589. [Google Scholar] [CrossRef]
- Enghag, P. Encyclopedia of the Elements: Technical Data-History-Processing-Applications; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2008. [Google Scholar]
- U.S. Geological Survey. Metal Prices in the United States through 2010: U.S. Geological Survey Scientific Investigations Report 2012-5188; U.S. Geological Survey: Reston, Virginia, USA, 2013; p. 204.
- Hedrick, J.B. Rare earths. In Minerals Year Book—2000; U. S. Geological Survey: Washington, DC, USA, 2000; pp. 62.1–62.10. [Google Scholar]
- Alonso, E.; Sherman, A.M.; Wallington, T.J.; Everson, M.P.; Field, F.R.; Roth, R.; Kirchain, R.E. Evaluating rare earth element availability: A case with revolutionary demand from clean technologies. Environ. Sci. Technol. 2012, 46, 3406–3414. [Google Scholar] [CrossRef] [PubMed]
- Du, X.; Graedel, T. Uncovering the global life cycles of the rare earth elements. Sci. Rep. 2011, 1, 145. [Google Scholar] [CrossRef] [PubMed]
- Massari, S.; Ruberti, M. Rare earth elements as critical raw materials: Focus on international markets and future strategies. Resourc. Policy 2013, 38, 36–43. [Google Scholar] [CrossRef]
- U.S. Geological Survey. Rare Earth Statistics, in Kelly, T.D., and Matos, G.R., comps., Historical Statistics for Mineral and Material Commodities in the United States: U.S. Geological Survey Data Series 140; US Geological Survey: Reston, Virginia, USA, 2014. Available online: http://minerals.usgs.gov/minerals/pubs/historical-statistics/ (accessed on 7 December 2018).
- Ahonen, S.; Arvanitidis, N.; Auer, A.; Baillet, E.; Bellato, N.; Binnemans, K.; Blengini, G.A.; Bonato, D.; Brouwer, E.; Brower, S. Strengthening The European Rare Earths Supply-Chain Challenges And Policy Options a Report by the European Rare Earths Competency Network (Erecon); Technical Report; European Commission: Maastricht, The Netherlands, 2015. [Google Scholar]
- Newton, D.E.; Edgar, K.J. Chemical Elements; UXL (A Part of Gale, Cengage Learning): Michigan, MI, USA, 2010. [Google Scholar]
- Bahl, C.R.H.; Nielsen, K.K. The effect of demagnetization on the magnetocaloric properties of gadolinium. J. Appl. Phys. 2009, 105, 013916. [Google Scholar] [CrossRef] [Green Version]
- Humphries, M. Rare Earth Elements: The Global Supply Chain; Congressional Research Service: Washington, DC, USA, 2013. [Google Scholar]
- Krishnamurthy, N.; Gupta, C.K. Extractive Metallurgy of Rare Earths; CRC Press: Florida, FL, USA, 2015. [Google Scholar]
- Aime, S.; Cabella, C.; Colombatto, S.; Geninatti Crich, S.; Gianolio, E.; Maggioni, F. Insights into the use of paramagnetic Gd (III) complexes in MR-molecular imaging investigations. J. Magn. Reson. Imaging Off. J. Int. Soc. Magn. Resonan. Med. 2002, 16, 394–406. [Google Scholar] [CrossRef] [PubMed]
- Babar, S.; Saifuddin, A. MRI of the post-discectomy lumbar spine. Clin. Radiol. 2002, 57, 969–981. [Google Scholar] [CrossRef]
- Bencardino, J.T.; Palmer, W.E. Imaging of hip disorders in athletes. Radiol. Clin. N. Am. 2002, 40, 267–287, vi-vii. [Google Scholar] [CrossRef]
- Rajagopalan, S.; Prince, M. Magnetic resonance angiographic techniques for the diagnosis of arterial disease. Cardiol. Clin. 2002, 20, 501–512. [Google Scholar] [CrossRef]
- Choudhury, L.; Mahrholdt, H.; Wagner, A.; Choi, K.M.; Elliott, M.D.; Klocke, F.J.; Bonow, R.O.; Judd, R.M.; Kim, R.J. Myocardial scarring in asymptomatic or mildly symptomatic patients with hypertrophic cardiomyopathy. J. Am. College Cardiol. 2002, 40, 2156–2164. [Google Scholar] [CrossRef]
- Conaghan, P.G.; O’connor, P.; McGonagle, D.; Astin, P.; Wakefield, R.J.; Gibbon, W.W.; Quinn, M.; Karim, Z.; Green, M.J.; Proudman, S. Elucidation of the relationship between synovitis and bone damage: A randomized magnetic resonance imaging study of individual joints in patients with early rheumatoid arthritis. Arthritis Rheum. 2003, 48, 64–71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Degani, H.; Chetrit-Dadiani, M.; Bogin, L.; Furman-Haran, E. Magnetic resonance imaging of tumor vasculature. Thromb. Haemost. 2003, 89, 25–33. [Google Scholar] [PubMed]
- Stwertka, A. A Guide to the Elements; Oxford University Press: New York, NY, USA, 2002. [Google Scholar]
- Taylor, K.C. Automobile catalytic converters. In Catalysis; Springer: Berlin/Heidelberg, Germany, 1984; pp. 119–170. [Google Scholar]
- Hurst, C. China’s Rare Earth Elements Industry: What Can the West Learn? Institute for the Analysis of Global Security: Washington, DC, USA, 2010. [Google Scholar]
- Reimann, C.; De Caritat, P. Chemical Elements in the Environment: Factsheets for the Geochemist and Environmental Scientist; Springer-Verlag: Berlin/Heidelberg, Germany, 1998. [Google Scholar]
- Korzh, V.D. Geochemistry of Elemental Composition of the Hydrosphere; Nauka: Moscow, Russia, 1991. (In Russian) [Google Scholar]
- Bibak, A.; Stümp, S.; Knudsen, L.; Gundersen, V. Concentrations of 63 elements in cabbage and sprouts in Denmark. Commun. Soil Sci. Plant Anal. 1999, 30, 2409–2418. [Google Scholar] [CrossRef]
- Eriksson, J. Concentrations of 61 Trace Elements in Sewage Sludge, Farmyard Manure, Mineral Fertiliser, Precipitation and in Oil and Crops; Swedish Environmental Protection Agency: Stockholm, Sweden, 2001; Volume 5159. [Google Scholar]
- Byrne, R.; Sholkovitz, E. Marine chemistry and geochemistry of the lanthanides. In Handbook on the Physics and Chemistry of Rare Earths; North-Holland: Amsterdam, Netherlands, 1996; Volume 23, pp. 497–593. [Google Scholar]
- Yan, Z.; Liu, G.; Sun, R.; Tang, Q.; Wu, D.; Wu, B.; Zhou, C. Geochemistry of rare earth elements in groundwater from the Taiyuan Formation limestone aquifer in the Wolonghu Coal Mine, Anhui province, China. J. Geochem. Explor. 2013, 135, 54–62. [Google Scholar] [CrossRef]
- Lawrence, M.G.; Greig, A.; Collerson, K.D.; Kamber, B.S. Direct quantification of rare earth element concentrations in natural waters by ICP-MS. Appl. Geochem. 2006, 21, 839–848. [Google Scholar] [CrossRef]
- Braun, J.-J.; Pagel, M.; Muller, J.-P.; Bilong, P.; Michard, A.; Guillet, B. Cerium anomalies in lateritic profiles. Geochim. Cosmochim. Acta 1990, 54, 781–795. [Google Scholar] [CrossRef]
- Sholkovitz, E.R.; Landing, W.M.; Lewis, B.L. Ocean particle chemistry: The fractionation of rare earth elements between suspended particles and seawater. Geochim. Cosmochim. Acta 1994, 58, 1567–1579. [Google Scholar] [CrossRef]
- Leleyter, L.; Probst, J.-L.; Depetris, P.; Haida, S.; Mortatti, J.; Rouault, R.; Samuel, J. Distribution des terres rares dans les sédiments fluviaux: Fractionnement entre les phases labiles et résiduelles. In Comptes rendus de l’Académie des sciences. Série 2. Sciences de la terre et des planètes; 1999; Volume 329, pp. 45–52. [Google Scholar]
- Cidu, R.; Biddau, R. Transport of trace elements under different seasonal conditions: Effects on the quality of river water in a Mediterranean area. Appl. Geochem. 2007, 22, 2777–2794. [Google Scholar] [CrossRef]
- Aubert, D.; Stille, P.; Probst, A. REE fractionation during granite weathering and removal by waters and suspended loads: Sr and Nd isotopic evidence. Geochim. Cosmochim. Acta 2001, 65, 387–406. [Google Scholar] [CrossRef] [Green Version]
- Leybourne, M.I.; Johannesson, K.H. Rare earth elements (REE) and yttrium in stream waters, stream sediments, and Fe–Mn oxyhydroxides: Fractionation, speciation, and controls over REE+ Y patterns in the surface environment. Geochim. Cosmochim. Acta 2008, 72, 5962–5983. [Google Scholar] [CrossRef]
- Stallard, R.; Edmond, J. Geochemistry of the Amazon: 2. The influence of geology and weathering environment on the dissolved load. J. Geophys. Res. Oceans 1983, 88, 9671–9688. [Google Scholar] [CrossRef]
- Meybeck, M. Global chemical weathering of surficial rocks estimated from river dissolved loads. Am. J. Sci. 1987, 287, 401–428. [Google Scholar] [CrossRef]
- Tosiani, T.; Loubet, M.; Viers, J.; Valladon, M.; Tapia, J.; Marrero, S.; Yanes, C.; Ramirez, A.; Dupre, B. Major and trace elements in river-borne materials from the Cuyuni basin (southern Venezuela): Evidence for organo-colloidal control on the dissolved load and element redistribution between the suspended and dissolved load. Chem. Geol. 2004, 211, 305–334. [Google Scholar] [CrossRef]
- Möller, P.; Knappe, A.; Dulski, P. Seasonal variations of rare earths and yttrium distribution in the lowland Havel River, Germany, by agricultural fertilization and effluents of sewage treatment plants. Appl. Geochem. 2014, 41, 62–72. [Google Scholar] [CrossRef]
- Haley, B.A.; Frank, M.; Hathorne, E.; Pisias, N. Biogeochemical implications from dissolved rare earth element and Nd isotope distributions in the Gulf of Alaska. Geochim. Cosmochim. Acta 2014, 126, 455–474. [Google Scholar] [CrossRef]
- Fisher, A.; Kara, D. Determination of rare earth elements in natural water samples—A review of sample separation, preconcentration and direct methodologies. Anal. Chim. Acta 2016, 935, 1–29. [Google Scholar] [CrossRef] [PubMed]
- Gaillardet, J.; Viers, J.; Dupré, B. Trace elements in river waters. Treatise Geochem. 2003, 5, 605. [Google Scholar]
- Alibo, D.S.; Nozaki, Y. Rare earth elements in seawater: Particle association, shale-normalization, and Ce oxidation. Geochim. Cosmochim. Acta 1999, 63, 363–372. [Google Scholar] [CrossRef]
- Lawrence, M.G.; Kamber, B.S. The behaviour of the rare earth elements during estuarine mixing—Revisited. Mar. Chem. 2006, 100, 147–161. [Google Scholar] [CrossRef]
- McLennan, S.M. Rare earth elements in sedimentary rocks; influence of provenance and sedimentary processes. Rev. Mineral. Geochem. 1989, 21, 169–200. [Google Scholar]
- Taylor, S.R.; McClennan, S.M. The Continental Crust: Its Composition and Evolution; Blackwell: Boston, MA, USA, 1985. [Google Scholar]
- Rudnick, R.L.; Gao, S. Composition of the continental crust. Treatise Geochem. 2003, 3, 659. [Google Scholar]
- Sholkovitz, E.R. Rare earth elements in the sediments of the North Atlantic Ocean, Amazon Delta, and East China Sea; reinterpretation of terrigenous input patterns to the oceans. Am. J. Sci. 1988, 288, 236–281. [Google Scholar] [CrossRef]
- Johannesson, K.H.; Stetzenbach, K.J.; Hodge, V.F.; Kreamer, D.K.; Zhou, X. Delineation of Ground-Water Flow Systems in the Southern Great Basin Using Aqueous Rare Earth Element Distributions. Groundwater 1997, 35, 807–819. [Google Scholar] [CrossRef]
- Cidu, R.; Antisari, L.V.; Biddau, R.; Buscaroli, A.; Carbone, S.; Da Pelo, S.; Dinelli, E.; Vianello, G.; Zannoni, D. Dynamics of rare earth elements in water–soil systems: The case study of the Pineta San Vitale (Ravenna, Italy). Geoderma 2013, 193, 52–67. [Google Scholar] [CrossRef]
- Kamber, B.S.; Greig, A.; Collerson, K.D. A new estimate for the composition of weathered young upper continental crust from alluvial sediments, Queensland, Australia. Geochim. Cosmochim. Acta 2005, 69, 1041–1058. [Google Scholar] [CrossRef]
- Lawrence, M.G.; Jupiter, S.D.; Kamber, B.S. Aquatic geochemistry of the rare earth elements and yttrium in the Pioneer River catchment, Australia. Mar. Freshw. Res. 2006, 57, 725–736. [Google Scholar] [CrossRef]
- Haraguchi, H.; Itoh, A.; Kimata, C.; Miwa, H. Speciation of yttrium and lanthanides in natural water by inductively coupled plasma mass spectrometry after preconcentration by ultrafiltration and with a chelating resin. Analyst 1998, 123, 773–778. [Google Scholar] [CrossRef]
- Itoh, A.; Nagasawa, T.; Zhu, Y.; Lee, K.-H.; FUJIMORI, E.; HARAGUCHI, H. Distributions of major-to-ultratrace elements among the particulate and dissolved fractions in natural water as studied by ICP-AES and ICP-MS after sequential fractionation. Anal. Sci. 2004, 20, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Masuda, A.; Ikeuchi, Y. Lanthanide tetrad effect observed in marine environment. Geochem. J. 1979, 13, 19–22. [Google Scholar] [CrossRef]
- Nozaki, Y.; Zhang, J. The rare earth elements and yttrium in the coastal/offshore mixing zone of Tokyo Bay waters and the Kuroshio. In Biogeochemical Processes and Ocean Flux in the Western Pacific; Terra Scientific Publishing Company: Tokyo, Japan, 1995; pp. 171–184. [Google Scholar]
- Thomsen, H.S. Are the increasing amounts of gadolinium in surface and tap water dangerous? Acta Radiol. 2017, 58, 259–263. [Google Scholar] [CrossRef]
- Holzbecher, E.; Knappe, A.; Pekdeger, A. Identification of degradation characteristics–exemplified by Gd–DTPA in a large experimental column. Environ. Model. Assess. 2005, 10, 1–8. [Google Scholar] [CrossRef]
- USEPA. Risk Assessment Guidance for Superfund. Volume I: Human Health Evaluation Manual (Part A); EPA/540/1-89/002; U.S. Environmental Protection Agency: Washington, DC, USA, 1989.
- Kanal, E. Gadolinium based contrast agents (GBCA): Safety overview after 3 decades of clinical experience. Magn. Reson. Imaging 2016, 34, 1341–1345. [Google Scholar] [CrossRef] [PubMed]
- Clases, D.; Sperling, M.; Karst, U. Analysis of metal-based contrast agents in medicine and the environment. TrAC Trends Anal. Chem. 2018, 104, 135–147. [Google Scholar] [CrossRef]
- Weinmann, H.-J.; Brasch, R.C.; Press, W.-R.; Wesbey, G.E. Characteristics of gadolinium-DTPA complex: A potential NMR contrast agent. Am. J. Roentgenol. 1984, 142, 619–624. [Google Scholar] [CrossRef]
- Alexander, V. Design and synthesis of macrocyclic ligands and their complexes of lanthanides and actinides. Chem. Rev. 1995, 95, 273–342. [Google Scholar] [CrossRef]
- Runge, V.M. Commentary on T1-weighted hypersignal in the deep cerebellar nuclei after repeated administrations of gadolinium-based contrast agents in healthy rats: Difference between linear and macrocyclic agents. Investig. Radiol. 2015, 50, 481–482. [Google Scholar] [CrossRef] [PubMed]
- Idée, J.M.; Port, M.; Raynal, I.; Schaefer, M.; Le Greneur, S.; Corot, C. Clinical and biological consequences of transmetallation induced by contrast agents for magnetic resonance imaging: A review. Fundam. Clin. Pharmacol. 2006, 20, 563–576. [Google Scholar] [CrossRef] [PubMed]
- Port, M.; Idée, J.-M.; Medina, C.; Robic, C.; Sabatou, M.; Corot, C. Efficiency, thermodynamic and kinetic stability of marketed gadolinium chelates and their possible clinical consequences: A critical review. Biometals 2008, 21, 469–490. [Google Scholar] [CrossRef]
- Fraum, T.J.; Ludwig, D.R.; Bashir, M.R.; Fowler, K.J. Gadolinium-based contrast agents: A comprehensive risk assessment. J. Magn. Reson. Imaging 2017, 46, 338–353. [Google Scholar] [CrossRef]
- Hao, D.; Ai, T.; Goerner, F.; Hu, X.; Runge, V.M.; Tweedle, M. MRI contrast agents: Basic chemistry and safety. J. Magn. Reson. Imaging 2012, 36, 1060–1071. [Google Scholar] [CrossRef]
- Uggeri, F.; Aime, S.; Anelli, P.L.; Botta, M.; Brocchetta, M.; de Haeen, C.; Ermondi, G.; Grandi, M.; Paoli, P. Novel contrast agents for magnetic resonance imaging. Synthesis and characterization of the ligand BOPTA and its Ln (III) complexes (Ln = Gd, La, Lu). X-ray structure of disodium (TPS-9-145337286-CS)-[4-carboxy-5, 8, 11-tris (carboxymethyl)-1-phenyl-2-oxa-5, 8, 11-triazatridecan-13-oato (5-)] gadolinate (2-) in a mixture with its enantiomer. Inorg. Chem. 1995, 34, 633–643. [Google Scholar]
- Caravan, P.; Ellison, J.J.; McMurry, T.J.; Lauffer, R.B. Gadolinium (III) chelates as MRI contrast agents: Structure, dynamics, and applications. Chem. Rev. 1999, 99, 2293–2352. [Google Scholar] [CrossRef] [PubMed]
- Brücher, E.; Sherry, A. Stability and toxicity of contrast agents. In The Chemistry of Contrast Agents in Medical Magnetic Resonance Imaging; John Wiley & Sons: West Sussex, UK, 2001; Volume 2. [Google Scholar]
- Caravan, P.; Comuzzi, C.; Crooks, W.; McMurry, T.; Choppin, G.; Woulfe, S. Thermodynamic stability and kinetic inertness of MS-325, a new blood pool agent for magnetic resonance imaging. Inorg. Chem. 2001, 40, 2170–2176. [Google Scholar] [CrossRef] [PubMed]
- Bellin, M.; Vasile, M.; Morel-Precetti, S. Currently used non-specific extracellular MR contrast media. Eur. Radiol. 2003, 13, 2688–2698. [Google Scholar] [CrossRef] [PubMed]
- Moreau, J.; Guillon, E.; Pierrard, J.C.; Rimbault, J.; Port, M.; Aplincourt, M. Complexing Mechanism of the Lanthanide Cations Eu3+, Gd3+, and Tb3+ with 1, 4, 7, 10-Tetrakis (carboxymethyl)-1, 4, 7, 10-tetraazacyclododecane (dota)—Characterization of Three Successive Complexing Phases: Study of the Thermodynamic and Structural Properties of the Complexes by Potentiometry, Luminescence Spectroscopy, and EXAFS. Chem. Eur. J. 2004, 10, 5218–5232. [Google Scholar] [PubMed]
- Malayeri, A.A.; Brooks, K.; Bryant, L.H.; Evers, R.; Kumar, P.; Reich, D.S.; Bluemke, D.A. NIH perspective on reports of gadolinium deposition in the brain. J. A. College Radiol. JACR 2016, 13, 237–241. [Google Scholar] [CrossRef] [PubMed]
- American College of Radiology-American Society of Neuroradiology. ACR-ASNR Position Statement on the Use of Gadolinium Contrast Agents. Available online: https://www.asnr.org/wpcontent/uploads/2017/03/ACR_ASNR_Position_Statement_on_the_Use_of_Gadolinium_Contrast_Agents.pdf (accessed on 14 August 2017).
- European Society of Urogenital Radiology. Available online: http://esur-cm.org/index.php/en/a-general-adverse-reactions-2 (accessed on 14 February 2019).
- Yang, X.-C.; Sachs, F. Block of stretch-activated ion channels in Xenopus oocytes by gadolinium and calcium ions. Science 1989, 243, 1068–1071. [Google Scholar] [CrossRef] [PubMed]
- Telgmann, L.; Sperling, M.; Karst, U. Determination of gadolinium-based MRI contrast agents in biological and environmental samples: A review. Anal. Chim. Acta 2013, 764, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Bau, M.; Dulski, P.; Moller, P. Yttrium and holmium in South Pacific seawater: Vertical distribution and possible fractionation mechanisms. Oceanogr. Lit. Rev. 1995, 11, 955. [Google Scholar]
- Behrens, M.K.; Muratli, J.; Pradoux, C.; Wu, Y.; Böning, P.; Brumsack, H.-J.; Goldstein, S.L.; Haley, B.; Jeandel, C.; Paffrath, R. Rapid and precise analysis of rare earth elements in small volumes of seawater-Method and intercomparison. Mar. Chem. 2016, 186, 110–120. [Google Scholar] [CrossRef]
- Lawrence, M.G.; Keller, J.; Poussade, Y. Removal of magnetic resonance imaging contrast agents through advanced water treatment plants. Water Sci. Technol. 2010, 61, 685–692. [Google Scholar] [CrossRef] [PubMed]
- Zuccato, E.; Calamari, D.; Natangelo, M.; Fanelli, R. Presence of therapeutic drugs in the environment. Lancet 2000, 355, 1789–1790. [Google Scholar] [CrossRef]
- Pyrzynska, K.; Kubiak, A.; Wysocka, I. Application of solid phase extraction procedures for rare earth elements determination in environmental samples. Talanta 2016, 154, 15–22. [Google Scholar] [CrossRef]
- Augusto, F.; Hantao, L.W.; Mogollón, N.G.; Braga, S.C. New materials and trends in sorbents for solid-phase extraction. TrAC Trends Anal. Chem. 2013, 43, 14–23. [Google Scholar] [CrossRef]
- Raju, C.S.K.; Lück, D.; Scharf, H.; Jakubowski, N.; Panne, U. A novel solid phase extraction method for pre-concentration of gadolinium and gadolinium based MRI contrast agents from the environment. J. Anal. Atomic Spectrom. 2010, 25, 1573–1580. [Google Scholar]
- Lawrence, M.G. Detection of anthropogenic gadolinium in the Brisbane River plume in Moreton Bay, Queensland, Australia. Mar. Pollut. Bull. 2010, 60, 1113–1116. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, M.G.; Kamber, B.S. Rare earth element concentrations in the natural water reference materials (NRCC) NASS-5, CASS-4 and SLEW-3. Geostand. Geoanal. Res. 2007, 31, 95–103. [Google Scholar] [CrossRef]
- Shabani, M.B.; Akagi, T.; Masuda, A. Preconcentration of trace rare-earth elements in seawater by complexation with bis (2-ethylhexyl) hydrogen phosphate and 2-ethylhexyl dihydrogen phosphate adsorbed on a C18 cartridge and determination by inductively coupled plasma mass spectrometry. Anal. Chem. 1992, 64, 737–743. [Google Scholar] [CrossRef]
- Sawatari, H.; Toda, T.; Saizuka, T.; Kimata, C.; Itoh, A.; Haraguchi, H. Multielement determination of rare earth elements in coastal seawater by inductively coupled plasma mass spectrometry after preconcentration using chelating resin. Bull. Chem. Soc. Jpn. 1995, 68, 3065–3070. [Google Scholar] [CrossRef]
- Hatje, V.; Bruland, K.W.; Flegal, A.R. Determination of rare earth elements after pre-concentration using NOBIAS-chelate PA-1® resin: Method development and application in the San Francisco Bay plume. Mar. Chem. 2014, 160, 34–41. [Google Scholar] [CrossRef]
- Hennebrüder, K.; Engewald, W.; Stärk, H.-J.; Wennrich, R. Enrichment of rare-earth elements (REE) and Gd-DTPA in surface water samples by means of countercurrent chromatography (CCC). Anal. Chim. Acta 2005, 542, 216–221. [Google Scholar] [CrossRef]
- Merschel, G.; Bau, M. Rare earth elements in the aragonitic shell of freshwater mussel Corbicula fluminea and the bioavailability of anthropogenic lanthanum, samarium and gadolinium in river water. Sci. Total Environ. 2015, 533, 91–101. [Google Scholar] [CrossRef] [PubMed]
- Kulaksiz, S. Rare Earth Elements as Emerging Contaminants in the Rhine River, Germany and Its Tributaries. Ph.D. Thesis, Jacobs University Bremen, Bremen, Germany, 2012. [Google Scholar]
- Meermann, B.; Sperling, M. Hyphenated techniques as tools for speciation analysis of metal-based pharmaceuticals: Developments and applications. Anal. Bioanal. Chem. 2012, 403, 1501–1522. [Google Scholar] [CrossRef] [PubMed]
- Mazzucotelli, A.; Bavastello, V.; Magi, E.; Rivaro, P.; Tomba, C. Analysis of gadolinium polyaminopolycarboxylic complexes by HPLC–ultrasonic nebulizer–ICP-AES hyphenated technique. Anal. Proc. incl. Anal. Commun. 1995, 32, 165–167. [Google Scholar] [CrossRef]
- Krüger, R.; Braun, K.; Pipkorn, R.; Lehmann, W.D. Characterization of a gadolinium-tagged modular contrast agent by element and molecular mass spectrometry. J. Anal. Atomic Spectrom. 2004, 19, 852–857. [Google Scholar] [CrossRef]
- Loreti, V.; Bettmer, J. Determination of the MRI contrast agent Gd-DTPA by SEC–ICP–MS. Anal. Bioanal. Chem. 2004, 379, 1050–1054. [Google Scholar] [CrossRef] [PubMed]
- Pfundstein, P.; Martin, C.; Schulz, W.; Ruth, K.M.; Wille, A.; Moritz, T.; Steinbach, A.; Flottmann, D. IC-ICP-MS analysis of gadolinium-based MRI contrast agents. LC GC N. Am. 2011, 29, 27–29. [Google Scholar]
- Moutiez, E.; Prognon, P.; Mahuzier, G.; Bourrinet, P.; Zehaf, S.; Dencausse, A. Time-resolved Luminescence as a Novel Detection Mode for the Simultaneous High-performance Liquid Chromatographic Determination of Gadolinium–DOTA and Gd 3+. Analyst 1997, 122, 1347–1352. [Google Scholar] [CrossRef]
- Hagan, J.J.; Taylor, S.C.; Tweedle, M.F. Fluorescence detection of gadolinium chelates separated by reversed-phase high-performance liquid chromatography. Anal. Chem. 1988, 60, 514–516. [Google Scholar] [CrossRef]
- Künnemeyer, J.; Terborg, L.; Nowak, S.; Scheffer, A.; Telgmann, L.; Tokmak, F.; Günsel, A.; Wiesmüller, G.; Reichelt, S.; Karst, U. Speciation analysis of gadolinium-based MRI contrast agents in blood plasma by hydrophilic interaction chromatography/electrospray mass spectrometry. Anal. Chem. 2008, 80, 8163–8170. [Google Scholar] [CrossRef] [PubMed]
- Künnemeyer, J.; Terborg, L.; Nowak, S.; Brauckmann, C.; Telgmann, L.; Albert, A.; Tokmak, F.; Krämer, B.K.; Günsel, A.; Wiesmüller, G.A. Quantification and excretion kinetics of a magnetic resonance imaging contrast agent by capillary electrophoresis-mass spectrometry. Electrophoresis 2009, 30, 1766–1773. [Google Scholar] [CrossRef] [PubMed]
- Kahakachchi, C.L.; Moore, D.A. Speciation of gadolinium in gadolinium-based magnetic resonance imaging agents by high performance liquid chromatography inductively coupled plasma optical emission spectrometry. J. Anal. Atomic Spectrom. 2009, 24, 1389–1396. [Google Scholar] [CrossRef]
- Kahakachchi, C.L.; Moore, D.A. Identification and characterization of gadolinium (III) complexes in biological tissue extracts. Metallomics 2010, 2, 490–497. [Google Scholar] [CrossRef]
- Künnemeyer, J.; Terborg, L.; Meermann, B.r.; Brauckmann, C.; Möller, I.; Scheffer, A.; Karst, U. Speciation analysis of gadolinium chelates in hospital effluents and wastewater treatment plant sewage by a novel HILIC/ICP-MS method. Environ. Sci. Technol. 2009, 43, 2884–2890. [Google Scholar] [CrossRef]
- Raju, C.S.K.; Cossmer, A.; Scharf, H.; Panne, U.; Lück, D. Speciation of gadolinium based MRI contrast agents in environmental water samples using hydrophilic interaction chromatography hyphenated with inductively coupled plasma mass spectrometry. J. Anal. Atomic Spectrom. 2010, 25, 55–61. [Google Scholar] [CrossRef]
- Telgmann, L.; Wehe, C.A.; Birka, M.; Künnemeyer, J.; Nowak, S.; Sperling, M.; Karst, U. Speciation and isotope dilution analysis of gadolinium-based contrast agents in wastewater. Environ. Sci. Technol. 2012, 46, 11929–11936. [Google Scholar] [CrossRef] [PubMed]
- Birka, M.; Wehe, C.A.; Telgmann, L.; Sperling, M.; Karst, U. Sensitive quantification of gadolinium-based magnetic resonance imaging contrast agents in surface waters using hydrophilic interaction liquid chromatography and inductively coupled plasma sector field mass spectrometry. J. Chromatogr. A 2013, 1308, 125–131. [Google Scholar] [CrossRef] [PubMed]
- Lindner, U.; Lingott, J.; Richter, S.; Jakubowski, N.; Panne, U. Speciation of gadolinium in surface water samples and plants by hydrophilic interaction chromatography hyphenated with inductively coupled plasma mass spectrometry. Anal. Bioanal. Chem. 2013, 405, 1865–1873. [Google Scholar] [CrossRef] [PubMed]
- Birka, M.; Wentker, K.S.; Lusmöller, E.; Arheilger, B.; Wehe, C.A.; Sperling, M.; Stadler, R.; Karst, U. Diagnosis of nephrogenic systemic fibrosis by means of elemental bioimaging and speciation analysis. Anal. Chem. 2015, 87, 3321–3328. [Google Scholar] [CrossRef] [PubMed]
- Lindner, U.; Lingott, J.; Richter, S.; Jiang, W.; Jakubowski, N.; Panne, U. Analysis of gadolinium-based contrast agents in tap water with a new hydrophilic interaction chromatography (ZIC-cHILIC) hyphenated with inductively coupled plasma mass spectrometry. Anal. Bioanal. Chem. 2015, 407, 2415–2422. [Google Scholar] [CrossRef]
- Birka, M.; Wehe, C.A.; Hachmöller, O.; Sperling, M.; Karst, U. Tracing gadolinium-based contrast agents from surface water to drinking water by means of speciation analysis. J. Chromatogr. A 2016, 1440, 105–111. [Google Scholar] [CrossRef] [PubMed]
- Wells, W.H.; Wells, V.L. The Lanthanides, Rare Earth Elements. Patty’s Toxicol. 2001, 817–840. [Google Scholar] [CrossRef]
- Elderfield, H.; Upstill-Goddard, R.; Sholkovitz, E. The rare earth elements in rivers, estuaries, and coastal seas and their significance to the composition of ocean waters. Geochim. Cosmochim. Acta 1990, 54, 971–991. [Google Scholar] [CrossRef]
- Sholkovitz, E.R. Chemical evolution of rare earth elements: Fractionation between colloidal and solution phases of filtered river water. Earth Planet. Sci. Lett. 1992, 114, 77–84. [Google Scholar] [CrossRef]
- Knappe, A.; Möller, P.; Dulski, P.; Pekdeger, A. Positive gadolinium anomaly in surface water and ground water of the urban area Berlin, Germany. Chemie der erde-Geochemistry 2005, 65, 167–189. [Google Scholar] [CrossRef]
- Kümmerer, K.; Helmers, E. Hospital effluents as a source of gadolinium in the aquatic environment. Environ. Sci. Technol. 2000, 34, 573–577. [Google Scholar] [CrossRef]
- Brünjes, R.; Bichler, A.; Hoehn, P.; Lange, F.T.; Brauch, H.-J.; Hofmann, T. Anthropogenic gadolinium as a transient tracer for investigating river bank filtration. Sci. Total Environ. 2016, 571, 1432–1440. [Google Scholar] [CrossRef]
- Verplanck, P.L.; Taylor, H.E.; Nordstrom, D.K.; Barber, L.B. Aqueous stability of gadolinium in surface waters receiving sewage treatment plant effluent, Boulder Creek, Colorado. Environ. Sci. Technol. 2005, 39, 6923–6929. [Google Scholar] [CrossRef]
- Merschel, G.; Bau, M.; Baldewein, L.; Dantas, E.L.; Walde, D.; Bühn, B. Tracing and tracking wastewater-derived substances in freshwater lakes and reservoirs: Anthropogenic gadolinium and geogenic REEs in Lake Paranoá, Brasilia. Comptes Rendus Geosci. 2015, 347, 284–293. [Google Scholar] [CrossRef]
- Kümmerer, K. Pharmaceuticals in the Environment: Sources, Fate, Effects and Risks; Springer Science & Business Media: Berlin, Germany, 2008. [Google Scholar]
- Verplanck, P.L.; Furlong, E.T.; Gray, J.L.; Phillips, P.J.; Wolf, R.E.; Esposito, K. Evaluating the behavior of gadolinium and other rare earth elements through large metropolitan sewage treatment plants. Environ. Sci. Technol. 2010, 44, 3876–3882. [Google Scholar] [CrossRef]
- OECD. Magnetic Resonance Imaging (MRI) Exams. Available online: https://doi.org/10.1787/1d89353f-en (accessed on 7 December 2018).
- Censi, P.; Zuddas, P.; Randazzo, L.; Saiano, F.; Mazzola, S.; Arico, P.; Cuttitta, A.; Punturo, R. Influence of dissolved organic matter on rare earth elements and yttrium distributions in coastal waters. Chem. Ecol. 2010, 26, 123–135. [Google Scholar] [CrossRef]
- Möller, P.; Dulski, P.; Bau, M.; Knappe, A.; Pekdeger, A.; Sommer-von Jarmersted, C. Anthropogenic gadolinium as a conservative tracer in hydrology. J. Geochem. Explor. 2000, 69, 409–414. [Google Scholar] [CrossRef]
- Rabiet, M.; Brissaud, F.; Seidel, J.; Pistre, S.; Elbaz-Poulichet, F. Positive gadolinium anomalies in wastewater treatment plant effluents and aquatic environment in the Hérault watershed (South France). Chemosphere 2009, 75, 1057–1064. [Google Scholar] [CrossRef] [PubMed]
- Bichler, A.; Muellegger, C.; Brünjes, R.; Hofmann, T. Quantification of river water infiltration in shallow aquifers using acesulfame and anthropogenic gadolinium. Hydrol. Process. 2016, 30, 1742–1756. [Google Scholar] [CrossRef]
- Sherry, A.D.; Caravan, P.; Lenkinski, R.E. Primer on gadolinium chemistry. J. Magn. Reson. Imaging Off. J. Int. Soc. Magn. Reson. Med. 2009, 30, 1240–1248. [Google Scholar] [CrossRef] [PubMed]
- Shellock, F.G.; Spinazzi, A. MRI safety update 2008: Part 1, MRI contrast agents and nephrogenic systemic fibrosis. Am. J. Roentgenol. 2008, 191, 1129–1139. [Google Scholar] [CrossRef] [PubMed]
- Mundim, J.S.; Lorena, S.d.C.; Abensur, H.; Elias, R.M.; Moysés, R.M.A.; MARTINS, M.C.; CASTRO, J.E.R. Fibrose sistêmica nefrogênica: Uma complicação grave do uso do gadolínio em pacientes com insuficiência renal. Rev. Assoc. Med. Bras. 2009, 55, 220–225. [Google Scholar] [CrossRef]
- Ergün, I.; Keven, K.; Uruc, I.; Ekmekci, Y.; Canbakan, B.; Erden, I.; Karatan, O. The safety of gadolinium in patients with stage 3 and 4 renal failure. Nephrol. Dial. Transplant. 2005, 21, 697–700. [Google Scholar] [CrossRef] [Green Version]
- Marckmann, P.; Skov, L.; Rossen, K.; Heaf, J.G.; Thomsen, H.S. Case-control study of gadodiamide-related nephrogenic systemic fibrosis. Nephrol. Dial. Transplant. 2007, 22, 3174–3178. [Google Scholar] [CrossRef] [Green Version]
- Thakral, C.; Alhariri, J.; Abraham, J.L. Long-term retention of gadolinium in tissues from nephrogenic systemic fibrosis patient after multiple gadolinium-enhanced MRI scans: Case report and implications. Contrast Media Mol. Imaging 2007, 2, 199–205. [Google Scholar] [CrossRef]
- Hasdenteufel, F.; Luyasu, S.; Renaudin, J.-M.; Paquay, J.-L.; Carbutti, G.; Beaudouin, E.; Moneret-Vautrin, D.A.; Kanny, G. Anaphylactic shock after first exposure to gadoterate meglumine: Two case reports documented by positive allergy assessment. J. Allergy Clin. Immunol. 2008, 121, 527–528. [Google Scholar] [CrossRef]
- Kay, J. Nephrogenic systemic fibrosis: A gadolinium-associated fibrosing disorder in patients with renal dysfunction. Ann. Rheum. Dis. 2008, 67, iii66–iii69. [Google Scholar] [CrossRef] [PubMed]
- White, G.W.; Gibby, W.A.; Tweedle, M.F. Comparison of Gd (DTPA-BMA)(Omniscan) versus Gd (HP-DO3A)(ProHance) relative to gadolinium retention in human bone tissue by inductively coupled plasma mass spectroscopy. Investig. Radiol. 2006, 41, 272–278. [Google Scholar] [CrossRef] [PubMed]
- Darrah, T.H.; Prutsman-Pfeiffer, J.J.; Poreda, R.J.; Campbell, M.E.; Hauschka, P.V.; Hannigan, R.E. Incorporation of excess gadolinium into human bone from medical contrast agents. Metallomics 2009, 1, 479–488. [Google Scholar] [CrossRef] [PubMed]
- Thakral, C.; Abraham, J.L. Gadolinium-induced nephrogenic systemic fibrosis is associated with insoluble Gd deposits in tissues: In vivo transmetallation confirmed by microanalysis. J. Cutan. Pathol. 2009, 36, 1244–1254. [Google Scholar] [CrossRef] [PubMed]
- US Food and Drug Administration. FDA Drug Safety Communication: FDA Evaluating the Risk of Brain Deposits with Repeated Use of Gadolinium-Based Contrast Agents for Magnetic Resonance Imaging (MRI); US Food and Drug Administration: Silver Spring, MD, USA, 2015.
- Rogosnitzky, M.; Branch, S. Gadolinium-based contrast agent toxicity: A review of known and proposed mechanisms. Biometals 2016, 29, 365–376. [Google Scholar] [CrossRef] [PubMed]
- Cowper, S.E.; Robin, H.S.; Steinberg, S.M.; Su, L.D.; Gupta, S.; LeBoit, P.E. Scleromyxoedema-like cutaneous diseases in renal-dialysis patients. Lancet 2000, 356, 1000–1001. [Google Scholar] [CrossRef]
- Swaminathan, S.; High, W.; Ranville, J.; Horn, T.; Hiatt, K.; Thomas, M.; Brown, H.; Shah, S. Cardiac and vascular metal deposition with high mortality in nephrogenic systemic fibrosis. Kidney Int. 2008, 73, 1413–1418. [Google Scholar] [CrossRef] [Green Version]
- Idee, J.-M.; Port, M.; Medina, C.; Lancelot, E.; Fayoux, E.; Ballet, S.; Corot, C. Possible involvement of gadolinium chelates in the pathophysiology of nephrogenic systemic fibrosis: A critical review. Toxicology 2008, 248, 77–88. [Google Scholar] [CrossRef]
- Larson, K.N.; Gagnon, A.L.; Darling, M.D.; Patterson, J.W.; Cropley, T.G. Nephrogenic systemic fibrosis manifesting a decade after exposure to gadolinium. JAMA Dermatol. 2015, 151, 1117–1120. [Google Scholar] [CrossRef]
- Sieber, M.A.; Lengsfeld, P.; Frenzel, T.; Golfier, S.; Schmitt-Willich, H.; Siegmund, F.; Walter, J.; Weinmann, H.-J.; Pietsch, H. Preclinical investigation to compare different gadolinium-based contrast agents regarding their propensity to release gadolinium in vivo and to trigger nephrogenic systemic fibrosis-like lesions. Eur. Radiol. 2008, 18, 2164–2173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gathings, R.M.; Reddy, R.; Santa Cruz, D.; Brodell, R.T. Gadolinium-associated plaques: A new, distinctive clinical entity. JAMA Dermatol. 2015, 151, 316–319. [Google Scholar] [CrossRef] [PubMed]
- Semelka, R.C.; Commander, C.W.; Jay, M.; Burke, L.M.; Ramalho, M. Presumed gadolinium toxicity in subjects with normal renal function: A report of 4 cases. Investig. Radiol. 2016, 51, 661–665. [Google Scholar] [CrossRef] [PubMed]
- Semelka, R.C.; Ramalho, J.; Vakharia, A.; AlObaidy, M.; Burke, L.M.; Jay, M.; Ramalho, M. Gadolinium deposition disease: Initial description of a disease that has been around for a while. Magn. Reson. Imaging 2016, 34, 1383–1390. [Google Scholar] [CrossRef] [Green Version]
- Burke, L.M.; Ramalho, M.; AlObaidy, M.; Chang, E.; Jay, M.; Semelka, R.C. Self-reported gadolinium toxicity: A survey of patients with chronic symptoms. Magn. Reson. Imaging 2016, 34, 1078–1080. [Google Scholar] [CrossRef] [PubMed]
- Roberts, D.R.; Lindhorst, S.M.; Welsh, C.T.; Maravilla, K.R.; Herring, M.N.; Braun, K.A.; Thiers, B.H.; Davis, W.C. High levels of gadolinium deposition in the skin of a patient with normal renal function. Investig. Radiol. 2016, 51, 280–289. [Google Scholar] [CrossRef] [PubMed]
- Semelka, R.C.; Ramalho, M.; AlObaidy, M.; Ramalho, J. Gadolinium in humans: A family of disorders. Am. J. Roentgenol. 2016, 207, 229–233. [Google Scholar] [CrossRef]
- Abraham, J.L.; Chandra, S.; Thakral, C.; Abraham, J.M. SIMS imaging of gadolinium isotopes in tissue from Nephrogenic Systemic Fibrosis patients: Release of free Gd from magnetic resonance imaging (MRI) contrast agents. Appl. Surf. Sci. 2008, 255, 1181–1184. [Google Scholar] [CrossRef]
- George, S.J.; Webb, S.M.; Abraham, J.L.; Cramer, S.P. Synchrotron X-ray analyses demonstrate phosphate-bound gadolinium in skin in nephrogenic systemic fibrosis. Br. J. Dermatol. 2010, 163, 1077–1081. [Google Scholar] [CrossRef] [Green Version]
- Qin, Z.; Caruso, J.A.; Lai, B.; Matusch, A.; Becker, J.S. Trace metal imaging with high spatial resolution: Applications in biomedicine. Metallomics 2011, 3, 28–37. [Google Scholar] [CrossRef] [Green Version]
- Jurowski, K.; Buszewski, B.; Piekoszewski, W. Bioanalytics in quantitive (bio) imaging/mapping of metallic elements in biological samples. Crit. Rev. Anal. Chem. 2015, 45, 334–347. [Google Scholar] [CrossRef] [PubMed]
- Fingerhut, S.; Niehoff, A.-C.; Sperling, M.; Jeibmann, A.; Paulus, W.; Niederstadt, T.; Allkemper, T.; Heindel, W.; Holling, M.; Karst, U. Spatially resolved quantification of gadolinium deposited in the brain of a patient treated with gadolinium-based contrast agents. J. Trace Elem. Med. Biol. 2018, 45, 125–130. [Google Scholar] [CrossRef] [PubMed]
- McDonald, R.J.; McDonald, J.S.; Kallmes, D.F.; Jentoft, M.E.; Murray, D.L.; Thielen, K.R.; Williamson, E.E.; Eckel, L.J. Intracranial gadolinium deposition after contrast-enhanced MR imaging. Radiology 2015, 275, 772–782. [Google Scholar] [CrossRef] [PubMed]
- Kasahara, S.; Miki, Y.; Kanagaki, M.; Yamamoto, A.; Mori, N.; Sawada, T.; Taoka, T.; Okada, T.; Togashi, K. Hyperintense dentate nucleus on unenhanced T1-weighted MR images is associated with a history of brain irradiation. Radiology 2011, 258, 222–228. [Google Scholar] [CrossRef] [PubMed]
- Xia, D.; Davis, R.L.; Crawford, J.A.; Abraham, J.L. Gadolinium released from MR contrast agents is deposited in brain tumors: In situ demonstration using scanning electron microscopy with energy dispersive X-ray spectroscopy. Acta Radiol. 2010, 51, 1126–1136. [Google Scholar] [CrossRef] [PubMed]
- Kartamihardja, A.A.P.; Nakajima, T.; Kameo, S.; Koyama, H.; Tsushima, Y. Impact of impaired renal function on gadolinium retention after administration of gadolinium-based contrast agents in a mouse model. Investig. Radiol. 2016, 51, 655–660. [Google Scholar] [CrossRef]
- Kanda, T.; Ishii, K.; Kawaguchi, H.; Kitajima, K.; Takenaka, D. High signal intensity in the dentate nucleus and globus pallidus on unenhanced T1-weighted MR images: Relationship with increasing cumulative dose of a gadolinium-based contrast material. Radiology 2013, 270, 834–841. [Google Scholar] [CrossRef]
- Kanda, T.; Fukusato, T.; Matsuda, M.; Toyoda, K.; Oba, H.; Kotoku, J.i.; Haruyama, T.; Kitajima, K.; Furui, S. Gadolinium-based contrast agent accumulates in the brain even in subjects without severe renal dysfunction: Evaluation of autopsy brain specimens with inductively coupled plasma mass spectroscopy. Radiology 2015, 276, 228–232. [Google Scholar] [CrossRef]
- Lingott, J.; Lindner, U.; Telgmann, L.; Esteban-Fernández, D.; Jakubowski, N.; Panne, U. Gadolinium-uptake by aquatic and terrestrial organisms-distribution determined by laser ablation inductively coupled plasma mass spectrometry. Environ. Sci. Process. Impacts 2016, 18, 200–207. [Google Scholar] [CrossRef]
- Martino, C.; Bonaventura, R.; Byrne, M.; Roccheri, M.; Matranga, V. Effects of exposure to gadolinium on the development of geographically and phylogenetically distant sea urchins species. Mar. Environ. Res. 2017, 128, 98–106. [Google Scholar] [CrossRef] [Green Version]
- Wáng, Y.-X.J.; Schroeder, J.; Siegmund, H.; Idée, J.-M.; Fretellier, N.; Jestin-Mayer, G.; Factor, C.; Deng, M.; Kang, W.; Morcos, S.K. Total gadolinium tissue deposition and skin structural findings following the administration of structurally different gadolinium chelates in healthy and ovariectomized female rats. Quant. Imaging in Med. Surg. 2015, 5, 534. [Google Scholar]
- Lohrke, J.; Frisk, A.-L.; Frenzel, T.; Schöckel, L.; Rosenbruch, M.; Jost, G.; Lenhard, D.C.; Sieber, M.A.; Nischwitz, V.; Küppers, A. Histology and gadolinium distribution in the rodent brain after the administration of cumulative high doses of linear and macrocyclic gadolinium-based contrast agents. Investig. Radiol. 2017, 52, 324. [Google Scholar] [CrossRef] [PubMed]
- McDonald, R.J.; McDonald, J.S.; Dai, D.; Schroeder, D.; Jentoft, M.E.; Murray, D.L.; Kadirvel, R.; Eckel, L.J.; Kallmes, D.F. Comparison of gadolinium concentrations within multiple rat organs after intravenous administration of linear versus macrocyclic gadolinium chelates. Radiology 2017, 285, 536–545. [Google Scholar] [CrossRef] [PubMed]
- Bussi, S.; Coppo, A.; Botteron, C.; Fraimbault, V.; Fanizzi, A.; De Laurentiis, E.; Colombo Serra, S.; Kirchin, M.A.; Tedoldi, F.; Maisano, F. Differences in gadolinium retention after repeated injections of macrocyclic MR contrast agents to rats. J. Magn. Reson. Imaging 2018, 47, 746–752. [Google Scholar] [CrossRef] [PubMed]
- Kanda, T.; Nakai, Y.; Oba, H.; Toyoda, K.; Kitajima, K.; Furui, S. Gadolinium deposition in the brain. Magn. Reson. Imaging 2016, 34, 1346–1350. [Google Scholar] [CrossRef] [PubMed]
- Murata, N.; Gonzalez-Cuyar, L.F.; Murata, K.; Fligner, C.; Dills, R.; Hippe, D.; Maravilla, K.R. Macrocyclic and other non–group 1 gadolinium contrast agents deposit low levels of gadolinium in brain and bone tissue: Preliminary results from 9 patients with normal renal function. Investig. Radiol. 2016, 51, 447–453. [Google Scholar] [CrossRef] [PubMed]
- Robert, P.; Violas, X.; Grand, S.; Lehericy, S.; Idée, J.-M.; Ballet, S.; Corot, C. Linear gadolinium-based contrast agents are associated with brain gadolinium retention in healthy rats. Investig. Radiol. 2016, 51, 73. [Google Scholar] [CrossRef]
- Oh, K.Y.; Roberts, V.H.; Schabel, M.C.; Grove, K.L.; Woods, M.; Frias, A.E. Gadolinium chelate contrast material in pregnancy: Fetal biodistribution in the nonhuman primate. Radiology 2015, 276, 110–118. [Google Scholar] [CrossRef]
- Zhimang, G.; Xiaorong, W.; Xueyuan, G.; Jing, C.; Liansheng, W.; Lemei, D.; Yijun, C. Effects of fulvic acid on the bioavailability of rare earth elements and GOT enzyme activity in wheat (Triticum aestivum). Chemosphere 2001, 44, 545–551. [Google Scholar] [CrossRef]
- Braun, M.; Zavanyi, G.; Laczovics, A.; Berényi, E.; Szabó, S. Can aquatic macrophytes be biofilters for gadolinium based contrasting agents? Water Res. 2018, 135, 104–111. [Google Scholar] [CrossRef]
- Yeo, A.R.; Yeo, M.E.; Flowers, T.J. The contribution of an apoplastic pathway to sodium uptake by rice roots in saline conditions. J. Exp. Bot. 1987, 38, 1141–1153. [Google Scholar] [CrossRef]
- Nowack, B.; Schulin, R.; Robinson, B.H. Critical assessment of chelant-enhanced metal phytoextraction. Environ. Sci. Technol. 2006, 40, 5225–5232. [Google Scholar] [CrossRef] [PubMed]
- Ternes, T.A. Occurrence of drugs in German sewage treatment plants and rivers1. Water Res. 1998, 32, 3245–3260. [Google Scholar] [CrossRef]
- Roth, F.; Lessa, G.; Wild, C.; Kikuchi, R.; Naumann, M. Impacts of a high-discharge submarine sewage outfall on water quality in the coastal zone of Salvador (Bahia, Brazil). Mar. Pollut. Bull. 2016, 106, 43–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Application Area | Description | Reference |
---|---|---|
Glass industry | Gd, Ce, Pr, Nd, and Er are utilized in the manufacture and polishing of glass products, including lenses. | [26] |
Electronics | (1) Gd and Eu have been used for various phosphors in computer monitors and color television tubes; (2) regarding the unique magnetic characteristics of Gd, the element is used in magneto-optic recording technology to handle computer data; (3) gadolinium yttrium garnets are used in microwave ovens to produce the microwaves; (4) at room temperature, Gd displays a strong magnetocaloric effect and can be efficiently used for either magnetic refrigeration or testing other magnetic refrigeration devices; (5) permanent magnets containing Gd, Nd, Dy, and Tb are used in numerous electrical and electronic components, and generators for wind turbines; (6) Gd-containing crystals are used in high-power pulsed lasers; and (7) Gd oxide has been used in the production of optical fibers. | [26,45,46,47,48] |
Medicine | Gd-CAs are used as paramagnetic markers and contrast agents in MRI for medical diagnoses, including vascular, myocardial, orthopedic, oncologic, inflammatory, and neurological diseases. | [49,50,51,52,53,54,55] |
The airline and shipbuilding industries | In the airline and shipbuilding industries, neutron radiography is used to search for hidden flaws and structural weakness in hulls and fuselages. In addition to the usual film required for X rays, an additional screen (a conversion screen), which is mostly made of Gd, is placed in close contact with the film. | [56] |
Car industry | Ceriumoxide and a minor fraction of Gd are generally added to three-way catalysts to promote the watergas shift reaction. | [57] |
Metallurgy | The addition of Gd to Fe and Cr alloys improves their workability and resistance to oxidation and high temperatures. | [58] |
Energy | The high melting points and high thermal neutron absorption cross-sections of Gd, Sm, Eu, and Dy are two properties that make them ideal for uses in nuclear reactor control rod applications. The rods are raised out of or lowered into the reactor, allowing for more or fewer neutrons to remain in the nuclear fission reaction. Power plant radiation leaks can also be detected by Gd, being the most efficient detector. | [26,45,58] |
Sample | Study Area | Filtration | Acidification | Instrument | Detection Limit | Gd | GdSN/Gd*SN | Reference |
---|---|---|---|---|---|---|---|---|
Tapwater | Eastern Berlin, Germany | 0.2 µm | pH = 1.8−2.0 | ICP-MS | - | 2.3–4.2 pmol/L | 0.95–1.70 1 | [10] |
Wivenhoe Dam, Australia | 0.22 µm | pH = 1.5 | ICP-MS | 480 fmol/L | 16.0 pmol/kg | 1.07 2 | [16] | |
Somerset Dam, Australia | 0.22 µm | pH = 1.5 | ICP-MS | 480 fmol/L | 64.3 pmol/kg | 1.09 2 | [16] | |
Hinze Dam, Australia | 0.22 µm | pH = 1.5 | ICP-MS | 480 fmol/L | 233.1 pmol/kg | 1.08 2 | [16] | |
North Pine Dam, Australia | 0.22 µm | pH = 1.5 | ICP-MS | 480 fmol/L | 11.1 pmol/kg | 1.07 2 | [16] | |
Mt Crosby Weir, Australia | 0.22 µm | pH = 1.5 | ICP-MS | 480 fmol/L | 21.9 pmol/kg | 1.05 2 | [16] | |
Brisbane, Australia | 0.22 µm | pH = 1.5 | ICP-MS | 480 fmol/L | 15.5 pmol/kg | 1.04 2 | [16] | |
Prague, Czech Republic | 0.2 mm | pH = 2.0 | ICP-MS | - | 2.1 nmol/m3 | 1.20 2 | [3] | |
River water | Wangsuk stream, South Korea | 0.2 µm | pH = 2.0 | Q-ICP-MS | - | 26.0 pmol/L | 1.34 3 | [13] |
Anyang stream, South Korea | 0.2 µm | pH = 2.0 | Q-ICP-MS | - | 26.0 pmol/L | 1.21 3 | [13] | |
Changneung stream, South Korea | 0.2 µm | pH = 2.0 | Q-ICP-MS | - | 35.6 pmol/L | 1.39 3 | [13] | |
Wiembach Creek, Germany | 0.2 µm | pH = 1.8–2.0 | ICP-MS | - | 1.5 ng/kg | 0.98 1 | [9] | |
Spring Creek, USA | 0.2 µm | pH = 2.0 | ICP-MS | 0.01–0.1 pg/mL | 26.3 pmol/L | 1.15 3 | [18] | |
Delaware River, USA | 0.2 µm | pH = 2.1 | ICP-MS | 0.01–0.1 pg/mL | 23.9 pmol/L | 1.47 3 | [18] | |
Ibi River, Japan | 0.45 µm | pH = 1 | ICP-MS | 0.027 ng/L | 3.5 ng/L | 1.36 3 | [12] | |
Nagara River, Japan | 0.45 µm | pH = 1 | ICP-MS | 0.027 ng/L | 3.9 ng/L | 1.41 3 | [12] | |
Kiso River, Japan | 0.45 µm | pH = 1 | ICP-MS | 0.027 ng/L | 5.3 ng/L | 1.31 3 | [12] | |
Amazon River, South America | 0.2 µm | - | ICP-MS | - | 0.0123 µg/L | 1.20 1 | [78] | |
Toshibetsu River, Japan | 0.2 µm | pH = 1.9–2.1 | ICP-MS | - | 77.4 pmol/kg | 1.20 3 | [7] | |
Västerdalälven River, Sweden | 0.2 µm | pH = 1.9–2.1 | ICP-MS | - | 265.0 pmol/kg | 1.20 3 | [7] | |
Dhünn River, Germany | 0.2 µm | pH = 1.9–2.1 | ICP-MS | - | 8.9 pmol/kg | 1.60 3 | [7] | |
Groundwater | Hind Well, Hawaii | 0.45 μm | pH < 2 | HR-ICP-MS | 0.5–6.0 pmol/kg | 41.2 pmol/kg | 1.08 3 | [21] |
Berlin, Germany | 0.2 µm | pH = 1.8–2.0 | ICP-MS | - | 8.4 pmol/L | 1.12 1 | [10] | |
Vlastejovice spring, Czech Republic | 0.2 mm | pH = 2.0 | ICP-MS | - | 19.4 nmol/m3 | 1.00 2 | [3] | |
Lake water | Lake Värmeln, Sweden | 0.2 µm | pH = 1.9–2.1 | ICP-MS | - | 232.0 pmol/kg | 1.20 3 | [7] |
Seawater | North Atlantic seawater | 0.45 µm | pH = 1.8–2.0 | ICP-MS | - | 5.4 pmol/L | 1.60 4 | [15] |
Japan Sea (Nie coast) | 0.45 µm | pH = 1 | ICP-MS | 0.027 ng/L | 1.9 ng/L | 0.96 3 | [12] | |
Western North Pacific, Japan | 0.04 µm | pH < 1.5 | ICP-MS | - | 2.1 pmol/kg | 1.05 3 | [79] |
Chemical Structure | Chemical Name (Acronym) | Trade Name | Manufacturer | Conditional Thermodynamic Stability Constant (Log Kcond at pH 7.4) | Thermodynamic Stability Constant (Log Ktherm) | Kinetic Stability T1/2 at pH = 1.0 and T = 25 °C | NFS Risk 1 | Global Administration in 2010 (million) | % of Clinics Used Each Gd-CA in 2010 | % of Clinics Used Each Gd-CA in 2016 |
---|---|---|---|---|---|---|---|---|---|---|
Linear nonionic | Gadodiamide (Gd-DTPA-BMA) | Omniscan® | GE Healthcare (Little Chalfont, UK) | 14.9 | 16.9 | <5 s | High | 49 | 10 | 0 |
Linear nonionic | Gadoversetamide (Gd-DTPA-BMEA) | OptiMARK® | Guerbet (Villepinte, France) | 15 | 16.6 | <5 s | High | 3.5 | 2 | 0 |
Linear ionic | Gadopentetate dimeglumine (Gd-DTPA) | Magnevist® | Bayer HealthCare (Berlin, Germany) | 17.7 | 22.1 | <5 s | High | 105 | 81 | 15 |
Linear ionic | Gadobenate dimeglumine (Gd-BOPTA) | MultiHance® | Bracco Diagnostics (Milan, Italy) | 18.4 | 22.6 | <5 s | Intermediate | 7.5 | 38 | 9 |
Linear ionic | Gadoxetate disodium (Gd-EOB-DTPA) | Eovist®/Primovist® | Bayer HealthCare (Berlin, Germany) | 18.7 | 23.5 | N/A 2 | Intermediate | 0.4 | - | - |
Macrocyclic nonionic | Gadoteridol (Gd-HP-DO3A) | ProHance® | Bracco Diagnostics (Milan, Italy) | 17.1 | 23.8 | 3.9 h | Low | 15 | 14 | 4 |
Macrocyclic nonionic | Gadobutrol (Gd-BT-DO3A) | Gadovist® | Bayer HealthCare (Berlin, Germany) | 14.7 | 21.8 | 43 h | Low | 6 | 39 | 42 |
Macrocyclic ionic | Gadoterate meglumine (Gd-DOTA) | Dotarem® | Guerbet (Villepinte, France) | 19.3 | 25.6 | 338 h | Low | 22.4 | N/A | 38 |
Preconcentration Technique | Solid Support | Complexing or Immobilizing Agent | Instrument | Analyte | Detection Limit (ng/L) | Preconcentration Factor | Time (min) | Samples | Reference |
---|---|---|---|---|---|---|---|---|---|
Solid phase extraction (SPE) | C18 | Bis(2-ethylhexyl) Hydrogen Phosphate (HDEHP) and 2-Ethylhexyl Dihydrogen Phosphate (H2MEHP) | ICP-MS | LAs | - | 200–1000 | 50–250 Batch method | Seawater | [125] |
Solid phase extraction (SPE) | C18 | Ethylhexylphosphates | ICP-MS | LAs | - | 13.33 | Batch method | River water | [8] |
Solid phase extraction (SPE) | Chelex-100 | - | ICP-MS | LAs | 0.0012–0.034 | 100 | 120 Batch method | Seawater | [126] |
Solid phase extraction (SPE) | Chelex-100 | - | ICP-MS | LAs | 50–560 | 20 | Not given Batch method | River water | [8] |
Solid phase extraction (SPE) | NOBIAS CHELATE PA1 | - | HR-ICP-MS | LAs | 0.01–0.82 pmol/kg | 160–200 | 150 Batch method | Seawater | [127] |
Countercurrent chromatography (CCC) | - | Di-2- ethylhexilphosporic acid (D2EHPA) | ICP-MS | LAs, Gd-DTPA | - | 40 | 25 | River water | [128] |
Liquid-liquid extraction (LLE) | - | HDEHP (phosphoric acid 2-ethylhexyl ester -mono and di ester mixture) | ICP-MS | LAs | - | 8 | 12 | Seawater | [124] |
Sample | Gd/Gd-CAs | Preconcentration/Separation | Instrument | LOD | Reference |
---|---|---|---|---|---|
Urine and hair | Gd, Gd-DTPA | SE separation: 20 mmol/L (pH = 7.4) of Tris-HCl buffer solutions was applied as eluents for separation of Gd3+ and Gd-DTPA standard solutions. | SEC-ICP-MS | 3500 ng/L Gd | [134] |
River water (Germany) | Gd, Gd–DTPA | C18-cartridges were loaded with ethylhexylphosphates and used for Gd preconcentration. | ICP-MS | 200 ng/L Gd | [8] |
Water (A bench-scale test) | Gd, Gd-DTPA, Gd-BT-DO3A | The chelates were separated using a Metrosep A Supp 3 - 250/4.6 anion separation column, while analysis of the displaced Gd3+ was carried out on a Nucleosil 5 SA-125/4.0 cation separation column using a 2-hydroxyisobutyric acid eluent. | IC-ICP-MS | - | [135] |
Blood plasma | Gd-DTPA, Gd-BOPTA, Gd-DTPA-BMA, Gd-DOTA, Gd-BT-DO3A | Separation of Gd chelates was carried out using a ZIC-HILIC column. For separations, eluent A of the mobile phase consisted of a solution of 12.5 mM ammonium formate and 12.5 mM formic acid in a mixture of 76/24 purified water/acetonitrile (pH of 3.75). Eluent B consisted of a solution of 12.5 mM ammonium formate and 12.5 mM formic acid in a mixture of 76/24 acetonitrile/water. | HILIC-ESI-MS | 100 to 1000 nmol/L Gd | [138] |
Blood serum | Gd-DTPA, Gd-BOPTA, Gd-DOTA, Gd-HP-DO3A, Gd-DTPA-BMA, Gd-DTPA-BMEA | Chromatographic separation was performed using a column suitable for the retention of hydrophilic polar compounds with isocratic elution. The mobile phase solution consisted of 10 mM ammonium acetate with 0, 0.5, 1, 2, 3 and 5% acetonitrile (pH 7.0 to 7.4). | HPLC-ICP-OES | 8000 to 35,000 ng/L Gd | [140] |
Hospital effluent, WWTP samples collected at different purification steps (Germany) | Gd-DTPA, Gd-BOPTA, Gd-DTPA-BMA, Gd-DOTA, Gd-BT-DO3A | The Gd contrast agents were separated using a zwitterionic ZIC-HILIC column. The mobile phase consisted of a solution of 12.5 mM ammonium formate and 12.5 mM formic acid in 76/24 acetonitrile/purified water (pH of 3.75). | HILIC-ICP-MS | 1.0 nmol/L Gd | [142] |
River water, lake water, WWTP influent and effluent (Germany) | Gd-DTPA, Gd-BOPTA, Gd-DTPA-BMA, Gd-DOTA, Gd-BT-DO3A | By the surface evaporation technique, water samples were concentrated to approximately 1:10 of the total volume without boiling. The Gd contrast agents were separated using a zwitterionic HILIC (ZIC-HILIC) column. The optimized mobile phase consisted of 20 mmol/L ammonium acetate in 60/40 acetonitrile/water (pH 5.8). | HILIC-ICP-MS | 22 ± 5 ng/L Gd | [143] |
Influent and effluent of a WWTP (Germany) | Gd-DTPA, Gd-BOPTA, Gd-DTPA-BMA, Gd-DOTA, Gd-BT-DO3A | ZIC-HILIC stationary phase was used for analysis of MRI contrast agents. In isocratic mode, the mobile phase consisted of a solution of 50 mM aqueous ammonium formate and acetonitrile (pH of 3.75) | HILIC-ICP-SFMS | 130 ng/L Gd | [144] |
Surface water (Germany) | Gd-DTPA, Gd-BOPTA, Gd-DOTA, Gd-BT-DO3A | Separation of the Gd complexes was carried out in isocratic mode using an Accucore HILIC column with solid core particles. The mobile phase consisted of 50 mmol/L aqueous ammonium formate set to pH 3.75 with formic acid and acetonitrile. | HILIC-ICP-SFMS | 80 to 100 pmol/L Gd | [145] |
Teltow channel (Germany) | Gd-DTPA, Gd-BOPTA, Gd-DTPA-BMA, Gd-DOTA, Gd-BT-DO3A | To preconcentrate the contrast agents, samples were evaporated with IR light by soft heating to a fraction of about 1:20. The contrast agents were separated in isocratic mode using a ZIC-HILIC column. The mobile phase consisted of 20 mmol/L ammonium acetate in 65/35 acetonitrile/water (pH 7.3). | HILIC-ICP-MS | 51 ± 11 ng/L Gd | [146] |
Tap water (Germany) | Gd-DTPA, Gd-BOPTA, Gd-DTPA-BMA, Gd-DOTA, Gd-BT-DO3A | In an isocratic mode, the Gd complexes were separated using a zwitterionic ZIC-cHILIC column. The mobile phase consisted of 10 mmol/L ammonium acetate in 69/31 acetonitrile/water (pH 5.0). | HILIC-ICP-MS | 1.4 to 3.5 ng/L Gd | [148] |
Samples from waterworks (Germany) | Gd-DTPA, Gd-DOTA, Gd-BT-DO3A | An YMC-Triart diol HILIC column was used while the mobile phase consisted of 50 mmol/L aqueous ammonium formate (pH 3.7) and acetonitrile in isocratic mode. | HILIC-ICP-MS | 8 to 14 pmol/L Gd | [149] |
Sample | Filtration | Gd-DTPA | Gd-BT-DO3A | Gd-BOPTA | Gd-DOTA | ΣGd Species | Total Gd | Instrument | LOD | Reference |
---|---|---|---|---|---|---|---|---|---|---|
Hospital effluent, Germany | 0.45 µm | - | <D.L. 1−23.1 nmol/L | - | - | <D.L.−23.1 nmol/L | 0.5–27.9 nmol/L | HILIC-ICP-MS | 1.0 nmol/L Gd | [142] |
WWTP samples collected at different purification steps, Germany | 0.45 µm | - | 2.0–7.4 nmol/L | 1.1–1.2 nmol/L | 1.8–2.1 nmol/L | 2.0–10.6 nmol/L | 1.8–13.6 nmol/L | HILIC-ICP-MS | 1.0 nmol/L Gd | [142] |
Spree River (Dämeritzsee), Germany | 0.45 µm | - | 12.0 ng/L Gd | - | - | 12.0 ng/L Gd | 15.0 ng/L Gd | HILIC-ICP-MS | 22 ± 5 ng/L Gd | [143] |
Lake Wannsee, Germany | 0.45 µm | 106.0 ng/L Gd | 184.0 ng/L Gd | 12.0 ng/L Gd | 110.0 ng/L Gd | 412.0 ng/L Gd | 436.0 ng/L Gd | HILIC-ICP-MS | 22 ± 5 ng/L Gd | [143] |
Havel River (Jungfernsee), Germany | 0.45 µm | 54.0 ng/L Gd | 89.0 ng/L Gd | - | 50.0 ng/L Gd | 194.0 ng/L Gd | 215.0 ng/L Gd | HILIC-ICP-MS | 22 ± 5 ng/L Gd | [143] |
WWTP influent, Germany | 0.45 µm | 29.0 ng/L Gd | 36.0 ng/L Gd | - | 34.0 ng/L Gd | 99.0 ng/L Gd | 122.0 ng/L Gd | HILIC-ICP-MS | 22 ± 5 ng/L Gd | [143] |
WWTP effluent, Germany | 0.45 µm | 27.0 ng/L Gd | 34.0 ng/L Gd | - | 36.0 ng/L Gd | 97.0 ng/L Gd | 118.0 ng/L Gd | HILIC-ICP-MS | 22 ± 5 ng/L Gd | [143] |
Surface water, Germany | 0.2 µm | <D.L.−2.1 nmol/L | <D.L.−3.6 nmol/L | - | <D.L.−0.8 nmol/L | <D.L.−6.4 nmol/L | 0.6–7.4 nmol/L | HILIC-ICP-SFMS | 80–100 pmol/L Gd | [145] |
WWTP effluent, Germany | 0.2 µm | 1.6 nmol/L | 2.7 nmol/L | - | 0.6 nmol/L | 4.8 nmol/L | 6.5 nmol/L | HILIC-ICP-SFMS | 80–100 pmol/L Gd | [145] |
Teltow channel, Germany | 0.2 µm | - | 18.0–471.0 ng/L Gd | - | 16.0–456.0 ng/L Gd | 34.0–926.0 ng/L Gd | 50.0–990.0 ng/L Gd | HILIC-ICP-MS | 51 ± 11 ng/L Gd | [146] |
Tap water, Germany | 0.2 µm | - | <D.L.−17.6 ng/L Gd | <D.L.−11.7 ng/L Gd | <D.L.−19.2 ng/L Gd | <D.L.−48.5 ng/L Gd | 2.0–57.0 ng/L Gd | HILIC-ICP-MS | 1.4–3.5 ng/L Gd | [148] |
Surface water, Germany | 0.2 µm | 88.0–161.0 pmol/L | <D.L.−49.0 pmol/L | - | <D.L.−85.0 pmol/L | 88.0–262.0 pmol/L | 82.0–307.0 pmol/L | HILIC-ICP-MS | 8–14 pmol/L Gd | [149] |
Drinking water, Germany | 0.2 µm | 82.0–159.0 pmol/L | <D.L. | - | <D.L.−74.0 pmol/L | 82.0–196.0 pmol/L | 100.0–298.0 pmol/L | HILIC-ICP-MS | 8–14 pmol/L Gd | [149] |
Sample | Study area | Filtration | Acidification | Instrument | Detection Limit | Gd | GdSN/Gd*SN | Reference |
---|---|---|---|---|---|---|---|---|
WWTP influent | GAW, South Korea | 0.2 µm | pH = 2.0 | Q-ICP-MS | - | 2040.0 pmol/L | 111.0 1 | [13] |
WSW, South Korea | 0.2 µm | pH = 2.0 | Q-ICP-MS | - | 126.0 pmol/L | 4.2 1 | [13] | |
TAW, South Korea | 0.2 µm | pH = 2.0 | Q-ICP-MS | - | 3724.0 pmol/L | 297.0 1 | [13] | |
JNW, South Korea | 0.2 µm | pH = 2.0 | Q-ICP-MS | - | 815.0 pmol/L | 66.1 1 | [13] | |
AYW, South Korea | 0.2 µm | pH = 2.0 | Q-ICP-MS | - | 508.0 pmol/L | 34.6 1 | [13] | |
Prague, Czech Republic | 0.2 mm | pH = 2.0 | ICP-MS | - | 437.0 nmol/m3 | 35.0 1 | [3] | |
WWTP effluent | GAW, South Korea | 0.2 µm | pH = 2.0 | Q-ICP-MS | - | 321.0 pmol/L | 81.0 1 | [13] |
WSW, South Korea | 0.2 µm | pH = 2.0 | Q-ICP-MS | - | 272.0 pmol/L | 56.7 1 | [13] | |
TAW, South Korea | 0.2 µm | pH = 2.0 | Q-ICP-MS | - | 1286.0 pmol/L | 271.0 1 | [13] | |
JNW, South Korea | 0.2 µm | pH = 2.0 | Q-ICP-MS | - | 786.0 pmol/L | 186.0 1 | [13] | |
AYW, South Korea | 0.2 µm | pH = 2.0 | Q-ICP-MS | - | 676.0 pmol/L | 147.0 1 | [13] | |
GPW, South Korea | 0.2 µm | pH = 2.0 | Q-ICP-MS | - | 760.0 pmol/L | 198.0 1 | [13] | |
São Paulo State, Brazil | 0.22 μm | pH = 1.8–2.0 | ICP-MS | 1.4 ng/kg | 86.0 ng/kg | 9.5 2 | [17] | |
Brisbane, Australia | 0.22 µm | pH = 1.5 | ICP-MS | 480 fmol/L | 119.6–1795.0 pmol/kg | 9.0–99.0 3 | [16] | |
Bremen–Seehausen, Germany | 0.45 µm | pH = 1.8–2.0 | ICP-MS | - | 1673.8 pmol/L | 169.7 4 | [15] | |
Tallahassee, USA | Total | pH < 2 | ICP-MS | - | 0.12 µg/L | 49.6 1 | [156] | |
Denver, USA | 0.45 µm | pH < 2 | ICP-MS | - | 0.14 µg/L | 20.0 1 | [156] | |
Boulder, USA | 0.45 µm | pH < 2 | ICP-MS | - | 0.068 µg/L | 62.7 1 | [156] | |
Berlin, Germany | 0.2 µm | pH = 2.0 | ICP-MS | 0.01–0.1 pg/ml | 201.0–7480.0 pmol/kg | 64–2014 1 | [153] | |
Prague, Czech Republic | 0.2 mm | pH = 2.0 | ICP-MS | - | 253.0–278.0 nmol/m3 | 55.4–61.7 3 | [3] | |
Berlin, Germany | 0.2 mm | pH = 2.0 | ICP-MS | - | 7087 pmol/kg | 1681 1 | [7] | |
River water | Neuse River, USA | 0.45 µm | - | Q-ICP-MS | - | 25.4–342.0 pg/g | 1.1–4.0 5 | [19] |
Han River, South Korea | 0.2 µm | pH = 2.0 | Q-ICP-MS | - | 45.9-209.0 pmol/L | 1.6–8.2 1 | [13] | |
Gyeungan stream, South Korea | 0.2 µm | pH = 2.0 | Q-ICP-MS | - | 141.0 pmol/L | 8.7 1 | [13] | |
Tan stream, South Korea | 0.2 µm | pH = 2.0 | Q-ICP-MS | - | 322.0 pmol/L | 3.6 1 | [13] | |
Jungnang stream, South Korea | 0.2 µm | pH = 2.0 | Q-ICP-MS | - | 308.0 pmol/L | 7.4 1 | [13] | |
Gulpo stream, South Korea | 0.2 µm | pH = 2.0 | Q-ICP-MS | - | 573.0 pmol/L | 34.8 1 | [13] | |
Anhumas Creek, Brazil | 0.22 μm | pH = 1.8–2.0 | ICP-MS | 1.4 ng/kg | 13.0–207.0 ng/kg | 1.1–86.7 2 | [17] | |
Havel River, Germany | 0.2 µm | pH = 1.8–2.0 | ICP-MS | - | 3136 pmol/L | 644.0 2 | [10] | |
Rhine River, Germany | 0.2 µm | pH = 1.8–2.0 | ICP-MS | - | 11.8–188.0 ng/kg | 4.4–110.0 2 | [9] | |
Danube River, Austria | 0.2 µm | pH = 1.8–2.0 | ICP-MS | - | 48.6 pmol/L | 2.3 2 | [10] | |
River Thames, England | 0.2 µm | pH = 1.8–2.0 | ICP-MS | - | 28 pmol/L | 2.5 2 | [10] | |
Weser River, Germany | 0.45 µm | pH = 1.8–2.0 | ICP-MS | - | 115.7 pmol/L | 5.4 4 | [15] | |
Ems River, Germany | 0.45 µm | pH = 1.8–2.0 | ICP-MS | - | 154.0 pmol/L | 3.6 4 | [15] | |
Elbe River, Germany | 0.45 µm | pH = 1.8–2.0 | ICP-MS | - | 94.8 pmol/L | 5.5 4 | [15] | |
Susquehanna River, USA | 0.2 µm | pH = 2.1 | ICP-MS | 0.01–0.1 pg/mL | 62.6 pmol/L | 2.2 1 | [18] | |
Shonai River, Japan | 0.45 µm | pH = 1 | ICP-MS | 0.027 ng/L | 8.9 ng/L | 2.1 1 | [12] | |
Tenpaku River, Japan | 0.45 µm | pH = 1 | ICP-MS | 0.027 ng/L | 14.0 ng/L | 9.4 1 | [12] | |
Tone River, Japan | 0.04 µm | pH < 1.5 | ICP-MS | - | 10.3–58.5 pmol/kg | 1.6–2.9 1 | [11] | |
Tama River, Japan | 0.04 µm | pH < 1.5 | ICP-MS | - | 25.0–155.0 pmol/kg | 2.2–3.3 1 | [11] | |
Ara River, Japan | 0.04 µm | pH < 1.5 | ICP-MS | - | 26.2–66.2 pmol/kg | 2.7–6.2 1 | [11] | |
Rokytka creek, Czech Republic | 0.2 mm | pH = 2.0 | ICP-MS | - | 35.7 nmol/m3 | 1.8 3 | [3] | |
Wupper River, Germany | 0.2 µm | pH = 1.9–2.1 | ICP-MS | - | 207.0 pmol/kg | 30.0 1 | [7] | |
Spree River, Germany | 0.2 µm | pH = 1.9–2.1 | ICP-MS | - | 43.1 pmol/kg | 12.4 1 | [7] | |
Havel River, Germany | 0.2 µm | pH = 1.9–2.1 | ICP-MS | - | 675 pmol/L | 126 2 | [7] | |
Seawater | Bahia Coast, NE Brazil | 0.2 µm | pH = 1.8 | HR ICP-MS | - | 4.5–12.0 pmol/kg | 1.0-3.4 3 | [1] |
San Francisco Bay, USA | 0.45 μm | pH = 1.8 | HR ICP-MS | 0.03 pmol/kg | 14.1–171.4 pmol/kg | 1.6–3.9 3 | [20] | |
Weser Estuary, Germany | 0.45 µm | pH = 1.8–2.0 | ICP-MS | - | 45.1–150.6 pmol/L | 3.8–7.4 4 | [15] | |
North Sea | 0.45 µm | pH = 1.8–2.0 | ICP-MS | - | 11.2–14.1 pmol/L | 1.6–2.1 4 | [15] | |
Jade Bay, North Germany | 0.45 µm | pH = 1.8–2.0 | ICP-MS | - | 17.9 pmol/L | 1.7 4 | [15] | |
Nagoya port, Japan | 0.45 µm | pH = 1 | ICP-MS | 0.027 ng/L | 2.2 ng/L | 1.6 1 | [12] | |
Tokyo Bay, Japan | 0.04 µm | pH < 1.5 | ICP-MS | - | 8.4–15.4 pmol/kg | 1.5–2.1 1 | [11] | |
Lake water | Lake Paranoá, Brazil | 0.2 µm | pH = 1.8–2.0 | ICP-MS | - | 7.9–35.2 ng/kg | 18.5–40.9 5 | [157] |
Kyjsky pond, Czech Republic | 0.2 mm | pH = 2.0 | ICP-MS | - | 27.6 nmol/m3 | 2.8 3 | [3] | |
Groundwater | Honokohau Harbor well, Hawaii | 0.45 μm | pH < 2 | HR-ICP-MS | 0.5–6 pmol/kg | 192.0 pmol/kg | 5.1 1 | [21] |
Berlin, Germany | 0.2 µm | pH = 2.0 | ICP-MS | 0.01–0.1 pg/mL | 110.0–755.0 pmol/kg | 3.6–53.0 1 | [153] | |
Tap water | Western Berlin, Germany | 0.2 µm | pH = 1.8–2.0 | ICP-MS | - | 3.5–115.0 pmol/L | 1.4–33.7 2 | [10] |
London, England | - | - | ICP-MS | - | 12.3 pmol/L | 1.5 2 | [10] | |
Berlin-Steglitz, Germany | 0.2 µm | pH = 1.9-2.1 | ICP-MS | - | 39.8 pmol/kg | 12.0 1 | [7] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ebrahimi, P.; Barbieri, M. Gadolinium as an Emerging Microcontaminant in Water Resources: Threats and Opportunities. Geosciences 2019, 9, 93. https://doi.org/10.3390/geosciences9020093
Ebrahimi P, Barbieri M. Gadolinium as an Emerging Microcontaminant in Water Resources: Threats and Opportunities. Geosciences. 2019; 9(2):93. https://doi.org/10.3390/geosciences9020093
Chicago/Turabian StyleEbrahimi, Pooria, and Maurizio Barbieri. 2019. "Gadolinium as an Emerging Microcontaminant in Water Resources: Threats and Opportunities" Geosciences 9, no. 2: 93. https://doi.org/10.3390/geosciences9020093
APA StyleEbrahimi, P., & Barbieri, M. (2019). Gadolinium as an Emerging Microcontaminant in Water Resources: Threats and Opportunities. Geosciences, 9(2), 93. https://doi.org/10.3390/geosciences9020093