Dynamics of Socioeconomic Exposure, Vulnerability and Impacts of Recent Droughts in Argentina
Abstract
:1. Introduction
2. Materials and Methods
2.1. Drought Hazard
2.2. Exposure
2.3. Vulnerability
2.4. Impact Information
3. Results and Discussion
3.1. Regional Drought Risk
3.1.1. Drought Hazard
3.1.2. Exposure
3.1.3. Vulnerability
3.1.4. Risk
3.2. Drought Events, Exposed Assets and Recorded Impacts
3.2.1. 2006–2007 Drought
3.2.2. 2008–2009 Drought
3.2.3. 2011–2012 Drought
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Event | Class | Description | Source |
---|---|---|---|
2006 | A1 | Estimated losses in the agriculture sector of around US$2 billion. A prolonged drought combined with a heat wave affected producers in Buenos Aires, Córdoba, Entre Ríos and Santa Fe. The lack of rain mainly affected maize and soybean production. | 1 |
2006 | H1 | Reduction of hydropower generation in Salto Grande and estimated losses in Buenos Aires of around AR$315 million (circa US$100 million). | 2 |
2006 | H2 | Flows reduced in the Iguazu falls from 1.5 million L to 350,000 L. Several touristic tours were cancelled, producing estimated losses of around €10 million. | 3 |
2009 | H3 A2 A3 | Water restrictions in Córdoba City and surroundings. In Chaco province the area sown with wheat was reduced from 40,000 to 10,000 hectares, while that of sunflower was reduced from 300,000 to 60,000 hectares. In Santa Fe 12,500 farmers were assisted with AR$59 million (US$15 million) and losses were estimated at AR$2 billion (US$0.5 billion) | 4–5 |
2009 | A4 L1 | The drought extends from the southern province of Río Negro through the central provinces of La Pampa and Córdoba and east and north to the provinces of Buenos Aires, Entre Ríos, Santa Fe, Corrientes, Chaco, Formosa and Santiago del Estero. Rural associations estimate that grain production will drop 39 percent and that 1.5 million head of livestock will be lost. In Chaco province agricultural output will be half of precedent year. Corn producers in Entre Ríos estimated losses of over 80 percent. The drought has caused a seven to eight million tonne drop in wheat production, from 16 million tonnes in the last harvest to around eight million with lower levels in 30 years, INTA reported. Estimated losses of at least US$7 billion. In the northern part of the province of Santa Fe alone, 300,000 head of cattle have been lost. | 6 |
2009 | H4 | Reductions in hydropower generation in the Comahue region and Salto Grande forced production of up to 70% of electricity from thermal power plants. El Chocón was reported to be producing energy under minimum flow conditions. A shutdown of the electric generation was proposed at El Chocón during selected holidays or for specific hours per day to refill the reservoir. | 7 |
2009 | H5 | Significant reduction of the level of the Paraná River near Rosario that prevented to practice any water sport and navigation. Reductions in wheat production and depletion of water reservoirs. | 8 |
2009 | H6 | Reductions in the level of the Paraná River. Due to low flows, some intercontinental cargo ships reduced their capacity by 1.500 tonnes. A cargo ship carrying 50,000 tonnes of minerals had to stay in the Port of Rosario for more than one week. | 9 |
2011 | A5 | 60% of maize production affected in the core zone and a reduction in soybean production was observed. | 10 |
2011 | A6 | Due to the severe drought, the government granted AR$3.5 million (US$0.8 million) for small farmers in Santa Fe, Buenos Aires, Córdoba and La Pampa. | 11 |
2011 | A7 | Estimations indicated a reduction in 40% maize and around 20% in soybean production. | 12 |
2011 | A8 | 80% to 90% reduction in soybean production in some areas in the northern provinces (Chaco, Santiago del Estero and Salta). | 13 |
2011 | L2 | The current drought in combination with the volcanic ashes produced by the eruption of volcano Puyehue led to the death of around 800,000 sheep in Northern Patagonia. | 14 |
2011 | H8 | Salto Grande hydropower production was reduced five times due to the low flows. Only one out of 14 turbines was operational. | 15 |
Pampas | Northeast | Northwest | Cuyo | Patagonia | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
year | B. Aires | Córdoba | Santa Fe | La Pampa | E. Ríos | Corrientes | Misiones | Formosa | Chaco | Santiago del Estero | Salta | Tucumán | Jujuy | La Rioja | Catamarca | San Juan | Mendoza | San Luis | Neuquén | Río Negro | Chubut | Sta. Cruz | T. d Fuego | Total |
00 | 0 | |||||||||||||||||||||||
01 | 1 | 1 | ||||||||||||||||||||||
02 | 0 | |||||||||||||||||||||||
03 | 3 | 2 | 2 | 1 | 8 | |||||||||||||||||||
04 | 3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 11 | ||||||||||||||
05 | 1 | 1 | 2 | 2 | 1 | 7 | ||||||||||||||||||
06 | 4 | 1 | 1 | 1 | 1 | 1 | 2 | 3 | 1 | 1 | 16 | |||||||||||||
07 | 6 | 3 | 1 | 1 | 2 | 1 | 2 | 16 | ||||||||||||||||
08 | 1 | 1 | 2 | 4 | ||||||||||||||||||||
09 | 2 | 1 | 5 | 4 | 3 | 2 | 3 | 3 | 1 | 1 | 3 | 1 | 1 | 30 | ||||||||||
10 | 3 | 3 | 3 | 3 | 1 | 1 | 1 | 1 | 1 | 2 | 1 | 1 | 2 | 23 | ||||||||||
11 | 1 | 1 | ||||||||||||||||||||||
12 | 0 | |||||||||||||||||||||||
13 | 0 | |||||||||||||||||||||||
14 | 1 | 1 | ||||||||||||||||||||||
15 | 0 |
Factors | Indicator | Scale | Correlation | Year | Source |
---|---|---|---|---|---|
Economic | Energy consumption per Capita (Million Btu per person) | Country | Negative | 2014 | U.S. EIA |
Agriculture (% of GDP) | Country | Positive | 2000–2014 | World Bank | |
GDP per capita (current US$) | Country | Negative | 2000–2014 | World Bank | |
Poverty headcount ratio at $1.25 a day (PPP) | Country | Positive | 2000–2014 | World Bank | |
Social | Rural population (% of total population) | Country | Positive | 2000–2014 | World Bank |
Literacy rate (% of people aged 15 and above) | Country | Negative | 2000–2014 | World Bank | |
Improved water source (% of rural population with access) | Country | Negative | 2000–2014 | World Bank | |
Population ages 15–64 (% of total population) | Country | Negative | 2000–2014 | World Bank | |
Government Effectiveness | Country | Negative | 2013 | WGI | |
Disaster Prevention & Preparedness (US$/Year/capita) | Country | Negative | 2014 | OECD | |
Infrastructural | Agricultural irrigated land (% of total agricultural land) | 5 arc minute | Negative | 2008 | FAO |
% of retained renewable water Hydrological | catchment | Negative | 2010 | Aqueduct | |
Road density (km of road per 100 sq. km of land area) | Vector | Negative | 2010 | gROADSv1 |
References
- Wilhite, D.A.; Glantz, M.H. Understanding: The drought phenomenon: The role of definitions. Water Int. 1985, 10, 111–120. [Google Scholar] [CrossRef]
- Knutson, C.; Hayes, M.; Phillips, T. How to Reduce Drought Risk; Western Drought Coordination Council Preparedness and Mitigation Group: Lincoln, NE, USA, 1998. [Google Scholar]
- Bachmair, S.; Svensson, C.; Prosdocimi, I.; Hannaford, J.; Stahl, K. Developing drought impact functions for drought risk management. Nat. Hazards Earth Syst. Sci. 2017, 17, 1947–1960. [Google Scholar] [CrossRef]
- Carrao, H.; Naumann, G.; Barbosa, P. Mapping global patterns of drought risk: An empirical framework based on sub-national estimates of hazard, exposure and vulnerability. Glob. Environ. Chang. 2016, 39, 108–124. [Google Scholar] [CrossRef] [Green Version]
- Naumann, G.; Spinoni, J.; Vogt, J.V.; Barbosa, P. Assessment of drought damages and their uncertainties in Europe. Environ. Res. Lett. 2015, 10, 124013. [Google Scholar] [CrossRef] [Green Version]
- Rowland, L.; da Costa, A.C.L.; Galbraith, D.R.; Oliveira, R.S.; Binks, O.J.; Oliveira, A.A.R.; Pullen, A.M.; Doughty, C.E.; Metcalfe, D.B.; Vasconcelos, S.S. Death from drought in tropical forests is triggered by hydraulics not carbon starvation. Nature 2015, 528, 119. [Google Scholar] [CrossRef] [PubMed]
- Stahl, K.; Kohn, I.; Blauhut, V.; Urquijo, J.; De Stefano, L.; Acácio, V.; Dias, S.; Stagge, J.H.; Tallaksen, L.M.; Kampragou, E. Impacts of European drought events: Insights from an international database of text-based reports. Nat. Hazards Earth Syst. Sci. 2016, 16, 801–819. [Google Scholar] [CrossRef]
- Blauhut, V.; Stahl, K.; Stagge, J.H.; Tallaksen, L.M.; Stefano, L.D.; Vogt, J. Estimating drought risk across Europe from reported drought impacts, drought indices, and vulnerability factors. Hydrol. Earth Syst. Sci. 2016, 20, 2779–2800. [Google Scholar] [CrossRef]
- Zargar, A.; Sadiq, R.; Naser, B.; Khan, F.I. A review of drought indices. Environ. Rev. 2011, 19, 333–349. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Van der Schrier, G.; Beguería, S.; Azorin-Molina, C.; Lopez-Moreno, J.-I. Contribution of precipitation and reference evapotranspiration to drought indices under different climates. J. Hydrol. 2015, 526, 42–54. [Google Scholar] [CrossRef] [Green Version]
- Svoboda, M.; LeComte, D.; Hayes, M.; Heim, R.; Gleason, K.; Angel, J.; Rippey, B.; Tinker, R.; Palecki, M.; Stooksbury, D. The drought monitor. Bull. Am. Meteorol. Soc. 2002, 83, 1181–1190. [Google Scholar] [CrossRef]
- Gall, M.; Borden, K.A.; Cutter, S.L. When do losses count? Six fallacies of natural hazards loss data. Bull. Am. Meteorol. Soc. 2009, 90, 799–810. [Google Scholar] [CrossRef]
- Forzieri, G.; Bianchi, A.; e Silva, F.B.; Marin Herrera, M.A.; Leblois, A.; Lavalle, C.; Aerts, J.C.J.H.; Feyen, L. Escalating impacts of climate extremes on critical infrastructures in Europe. Glob. Environ. Chang. 2018, 48, 97–107. [Google Scholar] [CrossRef] [PubMed]
- Wilhite, D.A.; Svoboda, M.D.; Hayes, M.J. Understanding the complex impacts of drought: A key to enhancing drought mitigation and preparedness. Water Resour. Manag. 2007, 21, 763–774. [Google Scholar] [CrossRef] [Green Version]
- INDEC. Available online: https://www.indec.gob.ar/ (accessed on 24 July 2018).
- Bettolli, M.L.; Penalba, O.C.; Vargas, W.M. Synoptic weather types in the south of South America and their relationship to daily rainfall in the core crop-producing region in Argentina. Aust. Meteorol. Oceanogr. J. 2010, 60, 37–48. [Google Scholar] [CrossRef]
- Minetti, J.L.; Vargas, W.M.; Poblete, A.G.; de la Zerda, L.R.; Acuña, L.R. Regional droughts in southern South America. Theor. Appl. Climatol. 2010, 102, 403–415. [Google Scholar] [CrossRef]
- Vargas, W.M.; Naumann, G.; Minetti, J.L. Dry spells in the River Plata Basin: An approximation of the diagnosis of droughts using daily data. Theor. Appl. Climatol. 2011, 104, 159–173. [Google Scholar] [CrossRef]
- Wu, F.; Guclu, H. Global maize trade and food security: Implications from a social network model. Risk Anal. 2013, 33, 2168–2178. [Google Scholar] [CrossRef]
- Kakwani, N.; Son, H.H. Measuring Food Insecurity: Global Estimates. In Social Welfare Functions and Development; Palgrave Macmillan: London, UK, 2016; pp. 253–294. ISBN 978-1-137-58324-6. [Google Scholar]
- World Bank. Improving the Assessment of Disaster Risks to Strengthen Financial Resilience: A Special Joint G20 Publication by the Government of Mexico and the World Bank; World Bank: Washington, DC, USA, 2012. [Google Scholar]
- Peduzzi, P.; Dao, H.; Herold, C.; Mouton, F. Assessing global exposure and vulnerability towards natural hazards: The Disaster Risk Index. Nat. Hazards Earth Syst. Sci. 2009, 9, 1149–1159. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef]
- Beguería, S.; Vicente-Serrano, S.M.; Reig, F.; Latorre, B. Standardized precipitation evapotranspiration index (SPEI) revisited: Parameter fitting, evapotranspiration models, tools, datasets and drought monitoring. Int. J. Climatol. 2014, 34, 3001–3023. [Google Scholar] [CrossRef]
- Blauhut, V.; Gudmundsson, L.; Stahl, K. Towards pan-European drought risk maps: Quantifying the link between drought indices and reported drought impacts. Environ. Res. Lett. 2015, 10, 014008. [Google Scholar] [CrossRef]
- Sepulcre-Canto, G.; Horion, S.; Singleton, A.; Carrao, H.; Vogt, J. Development of a Combined Drought Indicator to detect agricultural drought in Europe. Nat. Hazards Earth Syst. Sci. 2012, 12, 3519–3531. [Google Scholar] [CrossRef] [Green Version]
- Trambauer, P.; Maskey, S.; Werner, M.; Pappenberger, F.; Van Beek, L.P.H.; Uhlenbrook, S. Identification and simulation of space–time variability of past hydrological drought events in the Limpopo River basin, southern Africa. Hydrol. Earth Syst. Sci. 2014, 18, 2925–2942. [Google Scholar] [CrossRef] [Green Version]
- McKee, T.B.; Doesken, N.J.; Kleist, J. The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993; American Meteorological Society: Boston, MA, USA, 1993; Volume 17, pp. 179–183. [Google Scholar]
- Harris, I.; Jones, P.D.; Osborn, T.J.; Lister, D.H. Updated high-resolution grids of monthly climatic observations–the CRU TS3. 10 Dataset. Int. J. Climatol. 2014, 34, 623–642. [Google Scholar] [CrossRef]
- Lavell, A.; Oppenheimer, M.; Diop, C.; Hess, J.; Lempert, R.; Li, J.; Muir-Wood, R.; Myeong, S. Climate change: New dimensions in disaster risk, exposure, vulnerability, and resilience. In Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation; Field, C.B., V. Barros, T.F., Stocker, D., Qin, D.J., Dokken, K.L., Ebi, M.D., Mastrandrea, K.J., Mach, G.-K., Plattner, S.K., Allen, M., et al., Eds.; A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change (IPCC); Cambridge University Press: Cambridge, UK; New York, NY, USA, 2012; pp. 25–64. [Google Scholar]
- Ramankutty, N.; Evan, A.T.; Monfreda, C.; Foley, J.A. Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000. Glob. Biogeochem. Cycles 2008, 22. [Google Scholar] [CrossRef] [Green Version]
- Center for International Earth Science Information Network (CIESIN), European Commission. GHS Population Grid, derived from GPW4, Multitemporal (1975, 1990, 2000, 2015); European Commission: Brussels, Belgium, 2015. [Google Scholar]
- Robinson, T.P.; Wint, G.W.; Conchedda, G.; Van Boeckel, T.P.; Ercoli, V.; Palamara, E.; Cinardi, G.; D’Aietti, L.; Hay, S.I.; Gilbert, M. Mapping the global distribution of livestock. PLoS ONE 2014, 9, e96084. [Google Scholar] [CrossRef] [PubMed]
- United Nations International Strategy for Disaster Reduction Secretariat. Global Assessment Report on Disaster Risk Reduction; United Nations International Strategy for Disaster Reduction Secretariat: Geneva, Switzerland, 2009. [Google Scholar]
- Naumann, G.; Barbosa, P.; Garrote, L.; Iglesias, A.; Vogt, J. Exploring drought vulnerability in Africa: An indicator based analysis to be used in early warning systems. Hydrol. Earth Syst. Sci. 2014, 18, 1591–1604. [Google Scholar] [CrossRef]
- Brooks, N.; Adger, W.N.; Kelly, P.M. The determinants of vulnerability and adaptive capacity at the national level and the implications for adaptation. Glob. Environ. Chang. 2005, 15, 151–163. [Google Scholar] [CrossRef]
- Alkire, S.; Santos, M.E. Measuring acute poverty in the developing world: Robustness and scope of the multidimensional poverty index. World Dev. 2014, 59, 251–274. [Google Scholar] [CrossRef]
- Cook, W.D.; Tone, K.; Zhu, J. Data envelopment analysis: Prior to choosing a model. Omega 2014, 44, 1–4. [Google Scholar] [CrossRef]
- BORA. Available online: https://www.boletinoficial.gob.ar/ (accessed on 9 August 2018).
- Penalba, O.C.; Rivera, J.A. Precipitation response to El Niño/La Niña events in Southern South America–emphasis in regional drought occurrences. Adv. Geosci. 2016, 42, 1–14. [Google Scholar] [CrossRef]
- Barros, V.R.; Boninsegna, J.A.; Camilloni, I.A.; Chidiak, M.; Magrín, G.O.; Rusticucci, M. Climate change in Argentina: Trends, projections, impacts and adaptation. Wiley Interdiscip. Rev. Clim. Chang. 2015, 6, 151–169. [Google Scholar] [CrossRef]
- Cardona, O.-D.; van Aalst, M.K.; Birkmann, J.; Fordham, M.; McGregor, G.; Mechler, R. Determinants of Risk: Exposure and Vulnerability; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2012. [Google Scholar]
- World Bank Open Data. Available online: https://data.worldbank.org/ (accessed on 24 July 2018).
- FAOSTAT. Available online: http://www.fao.org/faostat/en/#home (accessed on 24 July 2018).
- González, L.M. Vulnerabilidad social y dinámica demográfica en Argentina, 2001–2007. Cuadernos Geográficos 2009, 45, 209–229. [Google Scholar]
- Murgida, A.M.; González, M.H.; Tiessen, H. Rainfall trends, land use change and adaptation in the Chaco salteño region of Argentina. Reg. Environ. Chang. 2014, 14, 1387–1394. [Google Scholar] [CrossRef]
- Spinoni, J.; Barbosa, P.; Cammalleri, C.; De Jager, A.; McCormick, N.; Naumann, G.; Magni, D.; Masante, D.; Mazzeschi, M. Global Collection of meteorological drought events from 1951 to 2016. 2018; in press. [Google Scholar]
- Minetti, J.L.; Naumann, G.; Vargas, W.M.; Poblete, A.G. Las sequías en el largo plazo en Argentina y sus precursores invernales. Rev. Geogr. 2008, 10, 26–37. [Google Scholar]
- Desinventar Documentation—Global Disaster Loss Collection Initiative. Available online: https://www.desinventar.net/documentation.html (accessed on 8 August 2018).
- InfoLeg. Available online: http://servicios.infoleg.gob.ar/infolegInternet/verNorma.do?id=157271 (accessed on 30 July 2018).
- Casparri, M.T.; Fusco, M.; Fronti, V.G. Ley de emergencia agropecuaria y su impacto sobre los pequeños productores. Revista de Investigación en Modelos Financieros 2014, 3, 51–67. [Google Scholar]
- BBC. Available online: http://news.bbc.co.uk/2/hi/americas/7852886.stm (accessed on 24 July 2018).
- Easdale, M.H.; Sacchero, D.; Vigna, M.; Willems, P. Assessing the magnitude of impact of volcanic ash deposits on Merino wool production and fibre traits in the context of a drought in North-west Patagonia, Argentina. Rangel. J. 2014, 36, 143–149. [Google Scholar] [CrossRef]
- UNFCCC. Views on Issues Relating to Agriculture. Submissions from Parties and Admitted Observer Organizations; UNFCCC: Bonn, Germany, 2017; p. 85. [Google Scholar]
2006–2007 | 2009–2010 | 2011–2012 | |
---|---|---|---|
Areas affected | Central and Northeast Argentina | Central Argentina | Central Argentina, Northern Patagonia |
Peak month | November | September | September |
Maximum area affected | 27% of the country | 42% of the country | 21% of the country |
Number of farming Emergencies declared due to droughts and location | 32 (in, Central, North East Argentina and Mesopotamia) | 53 (in Central, North East, North West and Patagonia) | 1 (Northwest) |
Main sectors affected | Hydropower, tourism, inland navigation, crops, cattle | Crops, cattle, groundwater, inland navigation, hydropower | Sheep, fresh water availability, hydropower |
Event | Reported Impacts | Affected Persons | Relocated | Damages in Crops [ha] | Lost Cattle |
---|---|---|---|---|---|
2005–2006 | 36 | 41,157 | 0 | 4,500,000 | 4000 |
2008–2009 | 135 | 916,500 | 200 | 1,050,100 | 21,280 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naumann, G.; Vargas, W.M.; Barbosa, P.; Blauhut, V.; Spinoni, J.; Vogt, J.V. Dynamics of Socioeconomic Exposure, Vulnerability and Impacts of Recent Droughts in Argentina. Geosciences 2019, 9, 39. https://doi.org/10.3390/geosciences9010039
Naumann G, Vargas WM, Barbosa P, Blauhut V, Spinoni J, Vogt JV. Dynamics of Socioeconomic Exposure, Vulnerability and Impacts of Recent Droughts in Argentina. Geosciences. 2019; 9(1):39. https://doi.org/10.3390/geosciences9010039
Chicago/Turabian StyleNaumann, Gustavo, Walter M. Vargas, Paulo Barbosa, Veit Blauhut, Jonathan Spinoni, and Jürgen V. Vogt. 2019. "Dynamics of Socioeconomic Exposure, Vulnerability and Impacts of Recent Droughts in Argentina" Geosciences 9, no. 1: 39. https://doi.org/10.3390/geosciences9010039
APA StyleNaumann, G., Vargas, W. M., Barbosa, P., Blauhut, V., Spinoni, J., & Vogt, J. V. (2019). Dynamics of Socioeconomic Exposure, Vulnerability and Impacts of Recent Droughts in Argentina. Geosciences, 9(1), 39. https://doi.org/10.3390/geosciences9010039