On Contraction of Three-Dimensional Multiple Shear Mechanism Model for Evaluation of Large Scale Liquefaction Using High Performance Computing
Abstract
:1. Introduction
2. Development of Non-Linear Constitutive Relation Based on Multiple Shear Mechanism
2.1. Overview of Past Studies
2.2. Concept of the Proposed Model
2.3. Verification of the Proposed Model
3. Analyses Using a High-Fidelity Analysis Model of Soil and a Structure
3.1. Problem Settings
3.2. Comparison of the Original Model with the Proposed Model
3.3. Scalability of Computing Liquefaction Processes of Soil
4. Closing Remarks
Author Contributions
Funding
Conflicts of Interest
References
- Yamashita, T.; Miyamura, T.; Akiba, H.; Kajiwara, K. Verification of finite element Elastic-plastic buckling analysis of square steel tube column using solid elements. Trans. Jpn. Soc. Comput. Eng. Sci. 2013, 1, 20130001. (In Japanese) [Google Scholar]
- Miyamura, T.; Yamashita, T.; Akiba, H.; Ohsaki, M. Dynamic FE simulation of four-story steel frame modelled by solid elements and its validation using results of full-scale shake-table test. Earthq. Eng. Struct. Dyn. 2014, 44, 1449–1469. [Google Scholar] [CrossRef]
- FrontISTR Forum. FrontISTR ver.4.5. Available online: http://www.multi.k.u-tokyo.ac.jp/FrontISTR/files/FISTRv4.5E.pdf (accessed on 14 September 2018). (In Japanese).
- Iai, S.; Matsunaga, Y.; Kameoka, T. Strain space plasticity model for cyclic mobility. Soils Found. 1990, 29, 27–56. [Google Scholar] [CrossRef]
- Towhata, I.; Ishihara, K. Modelling soil behavior under principal stress axes rotation. In Proceedings of the 5th International Conference on Numerical Methods in Geomechanics, Nagoya, Japan, 5 April 1985; pp. 523–530. [Google Scholar]
- Iai, S. Micromechanical background to a strain space multiple mechanism model for sand. Soils Found. 1993, 33, 102–117. [Google Scholar] [CrossRef]
- Iai, S.; Matsunaga, Y.; Kameoka, T. Parameter Identification for a Cyclic Mobility Model; Report of the Port and Harbour Research Institute; Port and Harbour Research Institute: Yokosuka, Japan, 1990; Volume 29, pp. 57–83. [Google Scholar]
- Iai, S. Three dimensional formulation and objectivity of a strain space multiple mechanism model for sand. Soils Found. 1993, 33, 192–199. [Google Scholar] [CrossRef]
- Iai, S.; Ozutsumi, O. Yield and cyclic behaviour of a strain space multiple mechanism model for granular materials. Int. J. Numer. Anal. Meth. Geomech. 2005, 29, 211–240. [Google Scholar] [CrossRef]
- Iai, S.; Kameoka, T. Finite element analysis of earthquake induced damage to anchored sheet pile quay walls. Soils Found. 1993, 33, 71–91. [Google Scholar] [CrossRef]
- Iai, S.; Morita, T.; Kameoka, T.; Matsunaga, Y.; Abiko, K. Response of a dense sand deposit during 1993 Kushiro-Oki earthquake. Soils Found. 1995, 35, 115–131. [Google Scholar] [CrossRef]
- Ozutsumi, O.; Sawada, S.; Iai, S.; Takeshima, Y.; Sugiyama, W.; Shimazu, T. Effective stress analyses of liquefaction-induced deformation in river dikes. Soil Dyn. Earthq. Eng. 2002, 22, 1075–1082. [Google Scholar] [CrossRef]
- Hotta, W.; Suzuki, S.; Hori, M. Contraction of multiple shear mechanism model for large scale three-dimensional finite element method analyses and verification between original and the contracted model. J. Jpn. Soc. Civ. Eng. Ser. A2. submitted on 7th September 2018. (In Japanese).
- Morita, T.; Iai, S.; Liu, H.; Ichii, K.; Sato, Y. Simplified Method to Determine Parameter of FLIP; Technical Note of the Port and Harbour Research Institute, No. 869; Port and Harbour Research Institute: Yokosuka, Japan, 1997. (In Japanese) [Google Scholar]
- Ikeda, H.; Takeda, T. A new nodal SN transport method for three-dimensional hexagonal geometry. J. Nucl. Sci. Technol. 1994, 31, 497–509. [Google Scholar] [CrossRef]
- Tokyo Electric Power Company Holdings. Available online: http://www.tepco.co.jp/about/power_station/disaster_prevention/2017/pdf/nuclear_power_170124_04.pdf (accessed on 19 October 2018). (In Japanese).
Type | Young Modulus | Poisson’s Ratio | Density |
---|---|---|---|
E (kPa) | Ν | ||
Concrete | 45,490,000 | 0.30 | 2.4 |
Reinforcement | 205,000,000 | - | - |
Type | Shear Modulus | Bulk Modulus | Reference Confining Pressure | Poisson’s Ratio | Reduction Factor of Shear and Bulk Modulus | Internal Friction Angle | Cohesion | Upper Bound for Hysteretic Damping Factor |
---|---|---|---|---|---|---|---|---|
Gma (kPa) | Kma (kPa) | σma’ (kPa) | Ν | m | Φf (degree) | c (kPa) | hmax | |
Layer of Sand | 207,000 | 540,000 | 190.0 | 0.33 | 0.5 | 45.0 | 0.0 | 0.155 |
Nishiyama Layer | 415,000 | 1,080,000 | 98.0 | 0.33 | 0.0 | - | - | 0.257 |
Type | Phase Transformation Angle | Overall Dilatancy | Initial Phase of Dilatancy | Final Phase of Dilatancy | Threshold limit of Dilatancy | Ultimate limit of Dilatancy |
---|---|---|---|---|---|---|
Φp (degree) | w1 | p1 | p2 | c1 | S1 | |
Layer of Sand | 28.0 | 2.40 | 0.50 | 0.80 | 1.92 | 0.005 |
Category | Item | Numerical Conditions |
---|---|---|
Non-linear calculation | Iterative method | Newton-Raphson method |
Convergence criterion | 1.0 × 10−8 | |
Maximum number of iterations | 100 | |
Dynamic step | 0.01 s/step | |
Total step | 1536 (15.36 s) | |
Method to solve the inverse matrix | Solver | CG method |
Precondition | Slice Successive Over Relaxation | |
Convergence criterion | 1.0 × 10−8 | |
Maximum number of iterations | 100,000 | |
The number of parallel | 2~128 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hotta, W.; Suzuki, S.; Hori, M. On Contraction of Three-Dimensional Multiple Shear Mechanism Model for Evaluation of Large Scale Liquefaction Using High Performance Computing. Geosciences 2019, 9, 38. https://doi.org/10.3390/geosciences9010038
Hotta W, Suzuki S, Hori M. On Contraction of Three-Dimensional Multiple Shear Mechanism Model for Evaluation of Large Scale Liquefaction Using High Performance Computing. Geosciences. 2019; 9(1):38. https://doi.org/10.3390/geosciences9010038
Chicago/Turabian StyleHotta, Wataru, Shunichi Suzuki, and Muneo Hori. 2019. "On Contraction of Three-Dimensional Multiple Shear Mechanism Model for Evaluation of Large Scale Liquefaction Using High Performance Computing" Geosciences 9, no. 1: 38. https://doi.org/10.3390/geosciences9010038
APA StyleHotta, W., Suzuki, S., & Hori, M. (2019). On Contraction of Three-Dimensional Multiple Shear Mechanism Model for Evaluation of Large Scale Liquefaction Using High Performance Computing. Geosciences, 9(1), 38. https://doi.org/10.3390/geosciences9010038