Forage Turnip (Brassica rapa L.) as a Dietary Supplement to Improve Meat Quality
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Location
2.2. Animals and Diets
2.3. Herbage Measurements
2.4. Animal Measurements
2.5. Carcass Measurements
2.6. Meat Quality Measurements
2.7. Fatty Acids Composition and Cholesterol Analyses
2.8. Sensory Analysis
2.9. Statistical Analysis
3. Results and Discussion
3.1. Animal Performance and Carcass Traits
3.2. Meat Quality
3.2.1. Chemical Composition
3.2.2. Mineral Composition
3.3. Sensory Evaluation of Meat Quality
3.4. Fatty Acids Composition and Cholesterol
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Schnettler, M.B.; Vidal, M.R.; Silva, F.R.; Vallejos, C.L.; Sepúlveda, B.N. Consumer Perception of Animal Welfare and Livestock Production in the Araucania Region, Chile. Chil. J. Agric. Res. 2008, 68, 80–93. [Google Scholar] [CrossRef]
- Daley, C.A.; Abbott, A.; Doyle, P.S.; Nader, G.A.; Larson, S. A Review of Fatty Acid Profiles and Antioxidant Content in Grass-Fed and Grain-Fed Beef: Discovery Service for Endeavour College of Natural Health Library. Nutr. J. 2010, 9, 10–21. [Google Scholar] [CrossRef]
- Morales, R.; Folch, C.; Iraira, S.; Teuber, N.; Realini, C.E. Nutritional Quality of Beef Produced in Chile from Different Production Systems. Chil. J. Agric. Res. 2012, 72, 80–86. [Google Scholar] [CrossRef]
- Morales, R.; Parga, J.; Subiabre, I.; Realini, C.E. Estrategias Para Novillos En Engorda a Base de Pradera o Ensilaje Más Grano y El Tiempo de Alimentación y Sus Efectos Sobre La Calidad de La Carne. Cienc. Investig. Agrar. 2015, 42, 5–18. [Google Scholar] [CrossRef]
- Subiabre, I.; Rodríguez, R.A.; Aldai, N.; Allende, R.; Morales, R. Pasture Type Effects over Beef Quality: A Comparison. Chil. J. Agric. Res. 2024, 84, 620–631. [Google Scholar] [CrossRef]
- Arias, R.A.; Soto, F.; Keim, J.P. Assessment of the Effects of Heat Stress on the Production of Dairy Cows by Using Two Comfort Thermal Indices in Southern Chile. J. Therm. Biol. 2024, 124, 103942. [Google Scholar] [CrossRef] [PubMed]
- Fariña, S.; Vigil-Moreno, O.; Candioti, F.; Villanueva, C.; Sánchez, W.; Moscoso, C.J.; Cajarville, C.; Charlón, V.; Urbina, L.; Guacapiña, A.; et al. Milk Production Systems in Latin America and the Caribbean: Biophysical, Socio-Economic, and Environmental Performance. Agric. Syst. 2024, 218, 103987. [Google Scholar] [CrossRef]
- Demanet, R.; Mora, M.L.; Herrera, M.Á.; Miranda, H.; Barea, J.M. Seasonal Variation of the Productivity and Quality of Permanent Pastures in Adisols of Temperate Regions. J. Soil Sci. Plant Nutr. 2015, 15, 111–128. [Google Scholar] [CrossRef]
- Doussoulin-Guzmán, M.A.; Pérez-Porras, F.J.; Triviño-Tarradas, P.; Ríos-Mesa, A.F.; Porras, A.G.F.; Mesas-Carrascosa, F.J. Grassland Phenology Response to Climate Conditions in Biobio, Chile from 2001 to 2020. Remote Sens. 2022, 14, 475. [Google Scholar] [CrossRef]
- Balocchi, L.O.; López, C.I.; Pfíster, B.M. Caracteristicas fisicas y germinativas de la semilla de especies pratenses nativas y naturalizadas del dominio humedo de Chile: Anthoxanthum Odoratum, Holcus Lanatus, Poa Pratensis y Lotus Uliginosas. Agro Sur 1999, 27, 11–25. [Google Scholar] [CrossRef]
- Araya-Osses, D.; Casanueva, A.; Román-Figueroa, C.; Uribe, J.M.; Paneque, M. Climate Change Projections of Temperature and Precipitation in Chile Based on Statistical Downscaling. Clim. Dyn. 2020, 54, 4309–4330. [Google Scholar] [CrossRef]
- Meza, F.J.; Silva, D. Dynamic Adaptation of Maize and Wheat Production to Climate Change. Clim. Change 2009, 94, 143–156. [Google Scholar] [CrossRef]
- Clark, D.A.; Harris, S.L.; Thom, E.R.; Waugh, C.D.; Copeman, P.J.A.; Napper, A.R. A Comparison of Barkant Turnips and Superchow Sorghum for Summer Milk Production. Proc. N. Z. Grassl. Assoc. 1997, 59, 157–162. [Google Scholar] [CrossRef]
- Aucal, S.; Balocchi, O.; Keim, J.P. Inclusión Del Nabo Forrajero (Brassica Rapa) Como Suplemento Estival En Dietas Ofrecidas a Vacas Lecheras En Predios de La Provincia de Ranco. Agro Sur 2015, 43, 9–18. [Google Scholar] [CrossRef]
- Villalobos, L.A.; Brummer, J.E. Forage Brassicas Stockpiled for Fall Grazing: Yield and Nutritive Value. Crop Forage Turfgrass Manag. 2015, 1, 1–6. [Google Scholar] [CrossRef]
- Frank, D.; Watkins, P.; Ball, A.; Krishnamurthy, R.; Piyasiri, U.; Sewell, J.; Ortuño, J.; Stark, J.; Warner, R. Impact of Brassica and Lucerne Finishing Feeds and Intramuscular Fat on Lamb Eating Quality and Flavor. A Cross-Cultural Study Using Chinese and Non-Chinese Australian Consumers. J. Agric. Food Chem. 2016, 64, 6856–6868. [Google Scholar] [CrossRef]
- Barry, T.N. The Feeding Value of Forage Brassica Plants for Grazing Ruminant Livestock. Anim. Feed. Sci. Technol. 2013, 181, 15–25. [Google Scholar] [CrossRef]
- Keim, J.P.; Castillo, M.; Balocchi, O.; Pulido, R.; Pacheco, D.; Muetzel, S. Brief Communication: Milk Production Responses and Rumen Fermentation of Dairy Cows Supplemented with Summer Brassica Crops. N. Z. J. Anim. Sci. Prod. 2018, 78, 122–124. [Google Scholar] [CrossRef]
- Seguel, G.; Keim, J.P.; Vargas-Bello-Pérez, E.; Geldsetzer-Mendoza, C.; Ibáñez, R.A.; Alvarado-Gilis, C. Effect of Forage Brassicas in Dairy Cow Diets on the Fatty Acid Profile and Sensory Characteristics of Chanco and Ricotta Cheeses. J. Dairy Sci. 2020, 103, 228–241. [Google Scholar] [CrossRef]
- De Brito, G.F.; McGrath, S.R.; Holman, B.W.B.; Friend, M.A.; Fowler, S.M.; van de Ven, R.J.; Hopkins, D.L. The Effect of Forage Type on Lamb Carcass Traits, Meat Quality and Sensory Traits. Meat Sci. 2016, 119, 95–101. [Google Scholar] [CrossRef]
- Schreurs, N.M.; Lane, G.A.; Tavendale, M.H.; Barry, T.N.; McNabb, W.C. Pastoral Flavour in Meat Products from Ruminants Fed Fresh Forages and Its Amelioration by Forage Condensed Tannins. Anim. Feed. Sci. Technol. 2008, 146, 193–221. [Google Scholar] [CrossRef]
- AFRC (Agricultural Food and Research Council). Energy and Protein Requirements of Ruminants. In An Advisory Manual Prepared by the Agricultural Food and Research Council Technical Committee on Responses to Nutrients; CAB International: Wallingford, UK, 1993; Volume 7. [Google Scholar]
- Canseco, C.; Demanet, R.; Balocchi, O.; Parga, J.; Anwandter, V.; Abarzúa, A.; Teuber, N.; Lopetegui, J. Determinación de La Disponibilidad de Materia Seca de Praderas en Pastoreo. In Manejo del Pastoreo; Teuber, N., Balocchi, O., Parga, J., Eds.; Imprenta América: Osorno, Chile, 2007; pp. 25–50. [Google Scholar]
- AOAC. Official Methods of Analysis of AOAC International, 18th ed.; AOAC: Gaithersburg, MD, USA, 2005. [Google Scholar]
- Sadzawka, A.; Grez, R.; Carrasco, M.A.; Mora, M.D.L.L. Métodos de Análisis de Tejidos Vegetales; Series Actas INIA: Santiago, Chile, 2004. [Google Scholar]
- MAFF Method 14. Carbohydrate, Solubles, in Herbage. In The Analysis of Agricultural Materials: A Manual of the Analytical Methods Used by the Agricultural Development and Advisory Service; Bailey, S., Ed.; HMSO: London, UK, 1986; pp. 43–45. [Google Scholar]
- Polkinghorne, R.; Thompson, J.M.; Watson, R.; Gee, A.; Porter, M. Evolution of the Meat Standards Australia (MSA) Beef Grading System. Aust. J. Exp. Agric. 2008, 48, 1351–1359. [Google Scholar] [CrossRef]
- Alves, S.P.; Cabrita, A.R.J.; Fonseca, A.J.M.; Bessa, R.J.B. Improved Method for Fatty Acid Analysis in Herbage Based on Direct Transesterification Followed by Solid-Phase Extraction. J. Chromatogr. A 2008, 1209, 212–219. [Google Scholar] [CrossRef] [PubMed]
- Aldai, N.; Kramer, J.K.G.; Cruz-Hernandez, C.; Santercole, V.; Delmonte, P.; Mossaba, M.M.; Dugan, M.E.R. Appropriate Extraction and Methylation Techniques for Lipid Analysis. In Fat and Fatty Acids in Poultry Nutrition and Health.; Context, P., Ed.; Context: Packington, UK, 2012; pp. 249–278. [Google Scholar]
- Kramer, J.K.G.; Hernandez, M.; Cruz-Hernandez, C.; Kraft, J.; Dugan, M.E.R. Combining Results of Two GC Separations Partly Achieves Determination of All Cis and Trans 16:1, 18:1, 18:2 and 18:3 except CLA Isomers of Milk Fat as Demonstrated Using Ag-Ion SPE Fractionation. Lipids 2008, 43, 259–273. [Google Scholar] [CrossRef]
- Delmonte, P.; Fardin Kia, A.R.; Kramer, J.K.G.; Mossoba, M.M.; Sidisky, L.; Rader, J.I. Separation Characteristics of Fatty Acid Methyl Esters Using SLB-IL111, a New Ionic Liquid Coated Capillary Gas Chromatographic Column. J. Chromatogr. A 2011, 1218, 545–554. [Google Scholar] [CrossRef]
- Belaunzaran, X.; Bravo-Lamas, L.; Kramer, J.K.G.; Morales, R.; Aldai, N. Silver Ion Solid-Phase Extraction Cartridges Employing Glass Housings Overcome the Limitations Observed in the GC Analysis of Animal Lipids with Low Trans Fatty Acid Content. Eur. J. Lipid Sci. Technol. 2017, 119, 1600124. [Google Scholar] [CrossRef]
- Naeemi, E.D.; Ahmad, N.; Al-Sharrah, T.K.; Behbahani, M. Rapid and Simple Method for Determination of Cholesterol in Processed Food. J. AOAC Int. 1995, 78, 1522–1524. [Google Scholar] [CrossRef]
- ASTM. Guidelines for the Selection and Training of Sensory Panel Members; ASTM: West Conshohocken, PA, USA, 1981. [Google Scholar]
- ISO 8586:2012(E); INTERNATIONAL STANDARD ISO Sensory Analysis — General Guidelines for the Selection, Training and Monitoring of Selected Assessors and Expert Sensory Assessors. International Organization for Standardization: Geneva, Switzerland, 2012.
- Macfie, H.J.; Bratchell, N.; Greenhoff, K.; Vallis, L.V. Designs to balance the effect of order of presentation and first-order carry-over effects in hall tests. J. Sens. Stud. 1989, 4, 129–148. [Google Scholar] [CrossRef]
- Villanueva, N.D.M.; Petenate, A.J.; Da Silva, M.A.A.P. Performance of the Hybrid Hedonic Scale as Compared to the Traditional Hedonic, Self-Adjusting and Ranking Scales. Food Qual. Prefer. 2005, 16, 691–703. [Google Scholar] [CrossRef]
- Bakker, C.E.; Hite, L.M.; Wright, C.L.; Brake, D.W.; Smart, A.J.; Blair, A.D.; Grubbs, J.K.; Underwood, K.R. Impact of Feeding Cover Crop Forage Containing Brassicas to Steers during Backgrounding on Live Animal Performance, Carcass Characteristics, and Meat Color. Transl. Anim. Sci. 2021, 5, txab124. [Google Scholar] [CrossRef]
- Sun, X.Z.; Waghorn, G.C.; Hoskin, S.O.; Harrison, S.J.; Muetzel, S.; Pacheco, D. Methane Emissions from Sheep Fed Fresh Brassicas (Brassica Spp.) Compared to Perennial Ryegrass (Lolium perenne). Anim. Feed. Sci. Technol. 2012, 176, 107–116. [Google Scholar] [CrossRef]
- Brown, M.S.; Ponce, C.H.; Pulikanti, R. Adaptation of Beef Cattle to High-Concentrate Diets: Performance and Ruminal Metabolism. J. Anim. Sci. 2006, 84 (Suppl. S13), E25–E33. [Google Scholar] [CrossRef]
- Muir, P.D.; Smith, N.B.; Wallace, G.J.; Cruickshank, G.J.; Smith, D.R. The Effect of Short-Term Grain Feeding on Liveweight Gain and Beef Quality. N. Z. J. Agric. Res. 1998, 41, 517–526. [Google Scholar] [CrossRef]
- Larraín, R.; Vargas-Bello, E. Composición de Cortes de Carne Bovina Nacional; SIDALC: Turrialb, Costa Rica, 2013; Volume 51. [Google Scholar]
- Braña, D.; Ramírez, E.; Rubio, M.; Sánchez, A.; Torrescano, G.; Arenas, M.; Partida, J.; Ponce, E.; Ríos, F. Manual de Análisis de Calidad En Muestras de Carne; Centro Nacional de Investigación Disciplinaria en Fisiología y Mejoramiento Animal: Ajuchitlán, Mexico, 2011. [Google Scholar]
- Leheska, J.M.; Thompson, L.D.; Howe, J.C.; Hentges, E.; Boyce, J.; Brooks, J.C.; Shriver, B.; Hoover, L.; Miller, M.F. Effects of Conventional and Grass-Feeding Systems on the Nutrient Composition of Beef. J. Anim. Sci. 2008, 86, 3575–3585. [Google Scholar] [CrossRef]
- Mancini, R.A.; Hunt, M.C. Current Research in Meat Color. Meat Sci. 2005, 71, 100–121. [Google Scholar] [CrossRef]
- Sangray, A.; Singh, A.P.; Singh, A.P. Phytochemical Evaluation and Investigation of Anti-Fungal Activity of Turnip Top Extracts. Indian J. Pharm. Pharmacol. 2022, 8, 248–253. [Google Scholar] [CrossRef]
- Al Rharad, A.; El Aayadi, S.; Avril, C.; Souradjou, A.; Sow, F.; Camara, Y.; Hornick, J.L.; Boukrouh, S. Meta-Analysis of Dietary Tannins in Small Ruminant Diets: Effects on Growth Performance, Serum Metabolites, Antioxidant Status, Ruminal Fermentation, Meat Quality, and Fatty Acid Profile. Animals 2025, 15, 596. [Google Scholar] [CrossRef] [PubMed]
- Duckett, S.K.; Neel, J.P.S.; Lewis, R.M.; Fontenot, J.P.; Clapham, W.M. Effects of Forage Species or Concentrate Finishing on Animal Performance, Carcass and Meat Quality. J. Anim. Sci. 2013, 91, 1454–1467. [Google Scholar] [CrossRef] [PubMed]
- Latimori, N.J.; Kloster, A.M.; García, P.T.; Carduza, F.J.; Grigioni, G.; Pensel, N.A. Diet and Genotype Effects on the Quality Index of Beef Produced in the Argentine Pampeana Region. Meat Sci. 2008, 79, 463–469. [Google Scholar] [CrossRef]
- Holman, B.W.B.; van de Ven, R.J.; Mao, Y.; Coombs, C.E.O.; Hopkins, D.L. Using Instrumental (CIE and Reflectance) Measures to Predict Consumers’ Acceptance of Beef Colour. Meat Sci. 2017, 127, 57–62. [Google Scholar] [CrossRef]
- Realini, C.E.; Duckett, S.K.; Brito, G.W.; Dalla Rizza, M.; De Mattos, D. Effect of Pasture vs. Concentrate Feeding with or without Antioxidants on Carcass Characteristics, Fatty Acid Composition, and Quality of Uruguayan Beef. Meat Sci. 2004, 66, 567–577. [Google Scholar] [CrossRef] [PubMed]
- De Brito, G.F.; Ponnampalam, E.N.; Hopkins, D.L. The Effect of Extensive Feeding Systems on Growth Rate, Carcass Traits, and Meat Quality of Finishing Lambs. Compr. Rev. Food Sci. Food Saf. 2017, 16, 23–38. [Google Scholar] [CrossRef]
- Hur, S.J.; Park, G.B.; Joo, S.T. A Comparison of the Meat Qualities from the Hanwoo (Korean Native Cattle) and Holstein Steer. Food Bioprocess Technol. 2008, 1, 196–200. [Google Scholar] [CrossRef]
- French, P.; O’Riordan, E.G.; Monahan, F.J.; Caffrey, P.J.; Mooney, M.T.; Troy, D.J.; Moloney, A.P. The Eating Quality of Meat of Steers Fed Grass and/or Concentrates. Meat Sci. 2001, 57, 379–386. [Google Scholar] [CrossRef] [PubMed]
- Lage, J.F.; Paulino, P.V.R.; Filho, S.C.V.; Souza, E.J.O.; Duarte, M.S.; Benedeti, P.D.B.; Souza, N.K.P.; Cox, R.B. Influence of Genetic Type and Level of Concentrate in the Finishing Diet on Carcass and Meat Quality Traits in Beef Heifers. Meat Sci. 2012, 90, 770–774. [Google Scholar] [CrossRef] [PubMed]
- Mamani-Linares, L.W.; Gallo, C. Composición química y calidad instrumental de carne de bovino, llama (lama glama) y caballo bajo un sistema de crianza extensiva. Rev. Investig. Vet. Peru 2012, 22, 301–311. [Google Scholar] [CrossRef]
- Scollan, N.D.; Dannenberger, D.; Nuernberg, K.; Richardson, I.; MacKintosh, S.; Hocquette, J.F.; Moloney, A.P. Enhancing the Nutritional and Health Value of Beef Lipids and Their Relationship with Meat Quality. Meat Sci. 2014, 97, 384–394. [Google Scholar] [CrossRef]
- Williams, S.R.O.; Moate, P.J.; Deighton, M.H.; Hannah, M.C.; Wales, W.J.; Jacobs, J.L. Milk Production and Composition, and Methane Emissions from Dairy Cows Fed Lucerne Hay with Forage Brassica or Chicory. Anim. Prod. Sci. 2016, 56, 304–311. [Google Scholar] [CrossRef]
- Smith, S.B.; Kawachi, H.; Choi, C.B.; Choi, C.W.; Wu, G.; Sawyer, J.E. Cellular Regulation of Bovine Intramuscular Adipose Tissue Development and Composition. J. Anim. Sci. 2009, 87, E72–E82. [Google Scholar] [CrossRef]
- Boukrouh, S.; Noutfia, A.; Moula, N.; Avril, C.; Louvieaux, J.; Hornick, J.-L.; Cabaraux, J.-F.; Chentouf, M. Growth Performance, Carcass Characteristics, Fatty Acid Profile, and Meat Quality of Male Goat Kids Supplemented by Alternative Feed Resources: Bitter Vetch and Sorghum Grains. Arch. Anim. Breed. 2024, 67, 481–492. [Google Scholar] [CrossRef]
- Pethick, D.W.; Harper, G.S.; Oddy, V.H. Growth, Development and Nutritional Manipulation of Marbling in Cattle: A Review. Aust. J. Exp. Agric. 2004, 44, 705–715. [Google Scholar] [CrossRef]
- Smith, S.B.; Crouse, J.D. Relative Contributions of Acetate, Lactate and Glucose to Lipogenesis in Bovine Intramuscular and Subcutaneous Adipose Tissue. J. Nutr. 1984, 114, 792–800. [Google Scholar] [CrossRef] [PubMed]
- Domaradzki, P.; Florek, M.; Staszowska, A.; Litwińczuk, Z. Evaluation of the Mineral Concentration in Beef from Polish Native Cattle. Biol. Trace Elem. Res. 2016, 171, 328–332. [Google Scholar] [CrossRef] [PubMed]
- Miller, R. Encyclopedia of Meat Sciences. In Encyclopedia of Meat Sciences; Dikeman, M., Devine, C., Eds.; Academic Press: London, UK, 2014; pp. 252–262. [Google Scholar]
- Realini, C.E.; Pavan, E.; Johnson, P.L.; Font-i-Furnols, M.; Jacob, N.; Agnew, M.; Craigie, C.R.; Moon, C.D. Consumer Liking of M. Longissimus Lumborum from New Zealand Pasture-Finished Lamb Is Influenced by Intramuscular Fat. Meat Sci. 2021, 173, 108380. [Google Scholar] [CrossRef]
- Savell, J.W.; Cross, H.R. The Role of Fat in the Palatability of Beef, Pork and Lamb. In Designing Foods: Animal Product Options in the Marketplace; National Academies Press: Washington, DC, USA, 1988. [Google Scholar]
- Hocquette, J.F.; Gondret, F.; Baza, E.; Mdale, F.; Jurie, C.; Pethick, D.W. Intramuscular Fat Content in Meat-Producing Animals: Development, Genetic and Nutritional Control, and Identification of Putative Markers. Animal 2010, 4, 303–319. [Google Scholar] [CrossRef]
- Holman, B.W.B.; Collins, D.; Kilgannon, A.K.; Hopkins, D.L. Using Shear Force, Sarcomere Length, Particle Size, Collagen Content, and Protein Solubility Metrics to Predict Consumer Acceptance of Aged Beef Tenderness. J. Texture Stud. 2020, 51, 559–566. [Google Scholar] [CrossRef]
- Hopkins, D.L.; Beattie, A.S.; Pirlot, K.L. Meat Quality, Carcass Fatness, and Growth of Short Scrotum Lambs Grazing Either Forage Rape or Irrigated Perennial Pasture. Aust. J. Exp. Agric. 1995, 35, 453–459. [Google Scholar] [CrossRef]
- Kurve, V.P.; Joseph, P.; Williams, J.B.; Kim, T.J.; Boland, H.; Smith, T.; Schilling, M.W. The Effect of Feeding Native Warm Season Grasses in the Stocker Phase on the Carcass Quality, Meat Quality, and Sensory Attributes of Beef Loin Steaks from Grain-Finished Steers. Meat Sci. 2016, 112, 31–38. [Google Scholar] [CrossRef]
- Taormina, V.M.; Unger, A.L.; Schiksnis, M.R.; Torres-Gonzalez, M.; Kraft, J. Branched-Chain Fatty Acids—An Underexplored Class of Dairy-Derived Fatty Acids. Nutrients 2020, 12, 2875. [Google Scholar] [CrossRef]
- Schor, A.; Cossu, M.E.; Picallo, A.; Ferrer, J.M.; Naón, J.J.G.; Colombatto, D. Nutritional and Eating Quality of Argentinean Beef: A Review. Meat Sci. 2008, 79, 408–422. [Google Scholar] [CrossRef]
- Lourenço, M.; Van Ranst, G.; Vlaeminck, B.; De Smet, S.; Fievez, V. Influence of Different Dietary Forages on the Fatty Acid Composition of Rumen Digesta as Well as Ruminant Meat and Milk. Anim. Feed. Sci. Technol. 2008, 145, 418–437. [Google Scholar] [CrossRef]
- Daza, J.; Benavides, D.; Pulido, R.; Balocchi, O.; Bertrand, A.; Keim, J. Rumen in Vitro Fermentation and in Situ Degradation Kinetics of Winter Forage Brassicas Crops. Animals 2019, 9, 904. [Google Scholar] [CrossRef]
- Enjalbert, F.; Videau, Y.; Nicot, M.C.; Troegeler-Meynadier, A. Effects of Induced Subacute Ruminal Acidosis on Milk Fat Content and Milk Fatty Acid Profile. J. Anim. Physiol. Anim. Nutr. 2008, 92, 284–291. [Google Scholar] [CrossRef]
- Wood, J.D.; Enser, M. Manipulating the fatty acid composition of meat to improve nutritional value and meat quality. In New Aspects of Meat Quality; Purslow, P.P., Ed.; Woodhead Publishing: Cambridge, UK, 2017; pp. 501–535. [Google Scholar]
- Wood, J.D.; Enser, M.; Fisher, A.V.; Nute, G.R.; Sheard, P.R.; Richardson, R.I.; Hughes, S.I.; Whittington, F.M. Fat Deposition, Fatty Acid Composition and Meat Quality: A Review. Meat Sci. 2008, 78, 343–358. [Google Scholar] [CrossRef]
- Turpeinen, A.M.; Mutanen, M.; Aro, A.; Salminen, I.; Basu, S.; Palmquist, D.L.; Griinari, J.M. Bioconversion of Vaccenic Acid to Conjugated Linoleic Acid in Humans. Am. J. Clin. Nutr. 2002, 76, 504–510. [Google Scholar] [CrossRef] [PubMed]
- Shingfield, K.J.; Reynolds, C.K.; Hervás, G.; Griinari, J.M.; Grandison, A.S.; Beever, D.E. Examination of the Persistency of Milk Fatty Acid Composition Responses to Fish Oil and Sunflower Oil in the Diet of Dairy Cows. J. Dairy Sci. 2006, 89, 714–732. [Google Scholar] [CrossRef] [PubMed]
- Aldai, N.; Dugan, M.E.R.; Kramer, J.K.G.; Mir, P.S.; McAllister, T.A. Nonionophore Antibiotics Do Not Affect the Trans-18:1 and Conjugated Linoleic Acid Composition in Beef Adipose Tissue. J. Anim. Sci. 2008, 86, 3522–3532. [Google Scholar] [CrossRef]
- Aldai, N.; de Renobales, M.; Barron, L.J.R.; Kramer, J.K.G. What Are the Trans Fatty Acids Issues in Foods after Discontinuation of Industrially Produced Trans Fats? Ruminant Products, Vegetable Oils, and Synthetic Supplements. Eur. J. Lipid Sci. Technol. 2013, 115, 1378–1401. [Google Scholar] [CrossRef]
- Aldai, N.; Dugan, M.E.R.; Kramer, J.K.G.; Martínez, A.; López-Campos, O.; Mantecón, A.R.; Osoro, K. Length of Concentrate Finishing Affects the Fatty Acid Composition of Grass-Fed and Genetically Lean Beef: An Emphasis on Trans-18:1 and Conjugated Linoleic Acid Profiles. Animal 2011, 5, 1643–1652. [Google Scholar] [CrossRef]
- Sales, F.; Bravo-Lamas, L.; Realini, C.E.; Lira, R.; Aldai, N.; Morales, R. Grain Supplementation of Calves as an Alternative Beef Production System to Pasture-Finished Steers in Chilean Patagonia: Meat Quality and Fatty Acid Composition. Transl. Anim. Sci. 2020, 4, 352–362. [Google Scholar] [CrossRef]
- Duckett, S.K.; Neel, J.P.S.; Fontenot, J.P.; Clapham, W.M. Effects of Winter Stocker Growth Rate and Finishing System on: III. Tissue Proximate, Fatty Acid, Vitamin, and Cholesterol Content. J. Anim. Sci. 2009, 87, 2961–2970. [Google Scholar] [CrossRef] [PubMed]
- Morales, R.; Subiabre, I.; Lara, J.; Larraín, R.; Sales, F. PSIX-35 Finishing feeding strategies for dairy steers based on summer turnip and their effects on beef quality produced in south Chile. J. Anim. Sci. 2018, 96 (Suppl. S3), 283–284. [Google Scholar] [CrossRef]
Control 1 | T50 1 | T70 1 | |
---|---|---|---|
Pasture | 68 | - | - |
Pasture hay | - | 35 | 26 |
Rolled corn | - | 15 | 4 |
Concentrate | 32 | - | - |
Turnips | - | 50 | 70 |
Chemical composition (%) | |||
Crude protein | 14.7 | 14.3 | 16.5 |
Metabolizable energy (Mcal kg−1) | 2.59 | 2.59 | 2.59 |
in vitro digestibility organic matter | 78.2 | 80.4 | 82.9 |
Neutral detergent fiber | 43.1 | 34.9 | 33.8 |
Acid detergent fiber | 26.2 | 25.7 | 26.7 |
Ether extract | 2.11 | 2.04 | 1.73 |
Ash | 9.60 | 11.2 | 13.8 |
Carbohydrates | 11.1 | 11.6 | 13.2 |
Σ FAMES 2 (mg100 g−1) | 142.9 | 151.6 | 167.4 |
Fatty acids individuals (mg 100 g−1) | |||
16:0 | 21.1 | 26.0 | 30.8 |
18:0 | 2.77 | 2.16 | 3.04 |
c9–18:1 | 10.8 | 15.4 | 8.19 |
18:2 n-6 | 34.3 | 40.4 | 29.6 |
18:3 n-3 | 58.6 | 44.9 | 65.2 |
Σ SFA 3 | 29.4 | 32.6 | 38.6 |
Σ MUFA 4 | 17.7 | 30.7 | 30.0 |
Σ PUFA 5 | 93.2 | 85.5 | 95.1 |
Σ PUFA n-6 | 34.4 | 40.5 | 29.7 |
Σ PUFA n-3 | 58.8 | 45.1 | 65.3 |
Unknown 6 | 2.41 | 2.66 | 3.69 |
Control 1 | T50 1/T70 1 | |
---|---|---|
Lolium perenne | 44.8 ± 20.9 | - |
Dactylis glomerata | 11.9 ± 13.4 | - |
Holcus lanatus | 3.8 ± 3.3 | - |
Trifolium repens | 6.4 ± 5.1 | - |
Turnips (Brassica rapa) | - | 97.8 ± 2.2 |
Others | 8.2 ± 16.4 | 1.1 ± 0.4 |
Dead material | 24.9 ± 9.5 | 1.1 ± 0.5 |
Control 1 | T50 1 | T70 1 | p-Value | RMSE 2 | |
---|---|---|---|---|---|
Animal performance | |||||
Initial live weight (kg) | 391.4 | 390.2 | 388.9 | 0.936 | 14.842 |
Final live weight (kg) | 449.7 a | 440.7 ab | 431.3 b | 0.037 | 14.194 |
DMI (kg DM/d) 3 | 8.69 b | 9.29 ab | 9.76 a | 0.009 | 1.953 |
ADG (kg/d) 4 | 0.972 a | 0.841 ab | 0.707 b | 0.008 | 0.138 |
Carcass traits | |||||
pH | 5.55 | 5.58 | 5.56 | 0.046 | 0.313 |
Fat thickness (cm) | 0.51 a | 0.29 b | 0.25 b | 0.184 | 0.012 |
Hot carcass weight (kg) | 228.1 | 226.2 | 221.8 | 6.621 | 0.135 |
Dressing (%) | 50.7 | 51.3 | 51.5 | 1.513 | 0.151 |
Control 1 | T50 1 | T70 1 | p-Value | RMSE 2 | |
---|---|---|---|---|---|
Meat color 3 | |||||
L* | 40.6 | 38.8 | 40.2 | 0.251 | 2.29 |
a* | 22.9 b | 25.9 a | 26.4 a | 0.001 | 1.74 |
b* | 11.8 b | 13.0 ab | 13.7 a | 0.006 | 1.07 |
Fat color 3 | |||||
L* | 67.0 a | 63.3 b | 63.5 b | 0.003 | 2.25 |
a* | 9.72 | 10.9 | 12.1 | 0.154 | 2.5 |
b* | 13.1 | 13.8 | 14 | 0.674 | 2.29 |
Shear force (N) | 22.55 a | 18.92 b | 19.02 b | 0.002 | 2.15 |
Control 1 | T50 1 | T70 1 | p-Value | RMSE 2 | |
---|---|---|---|---|---|
Chemical composition (g 100 g−1) | |||||
Dry matter | 23.0 b | 24.8 a | 24.4 a | <0.001 | 0.713 |
Crude Protein | 20.5 b | 21.6 a | 21.5 a | <0.001 | 0.519 |
Ash | 0.99 b | 1.05 a | 1.05 a | <0.001 | 0.036 |
IMF 3 | 1.12 b | 1.79 a | 1.60 ab | 0.009 | 0.421 |
Mineral composition | |||||
Macro minerals (g 100 g−1) | |||||
Phosphorus | 0.80 | 0.80 | 0.79 | 0.911 | 0.076 |
Calcium | 0.02 | 0.02 | 0.02 | 0.840 | 0.016 |
Magnesium | 0.09 | 0.09 | 0.09 | 0.692 | 0.008 |
Sodium | 0.21 b | 0.24 a | 0.24 a | 0.036 | 0.022 |
Potassium | 1.48 | 1.44 | 1.44 | 0.722 | 0.139 |
Microminerals (mg 100 g−1) | |||||
Zinc | 10.40 | 10.96 | 11.26 | 0.253 | 1.088 |
Copper | 0.754 | 0.893 | 0.844 | 0.338 | 0.197 |
Iron | 5.14 b | 6.57 a | 6.22 ab | 0.022 | 1.044 |
Manganese | 0.067 b | 0.159 a | 0.177 a | 0.005 | 0.068 |
Cholesterol (mg 100 g−1) | 23.6 b | 34.6 a | 33.6 a | 0.021 | 8.561 |
Control 1 | T50 1 | T70 1 | p-Value | RMSE 2 | |
---|---|---|---|---|---|
Raw beef samples | |||||
Meat color | 4.44 a | 4.53 a | 4.24 b | 0.025 | 0.92 |
Fat color | 3.53 | 3.52 | 3.52 | 0.997 | 1.27 |
Marbling | 2.39 b | 2.99 a | 2.65 b | <0.001 | 1.04 |
Cooked beef samples | |||||
Juiciness | 4.69 | 4.39 | 4.60 | 0.300 | 1.70 |
Tenderness | 6.56 | 6.41 | 6.52 | 0.682 | 1.60 |
Flavor | 5.48 | 5.54 | 5.33 | 0.558 | 1.65 |
Control 1 | T50 1 | T70 1 | p-Value | RMSE 2 | |
---|---|---|---|---|---|
Σ FAME 3 | 1121.0 b | 1981.8 a | 1747.5 ab | 0.011 | 563.6 |
Σ SFA 4 | 664.2 | 636.9 | 642.8 | 0.572 | 46.27 |
10:0 | 0.96 | 0.45 | 0.53 | 0.068 | 0.384 |
12:0 | 1.12 | 0.88 | 0.71 | 0.058 | 0.306 |
13:0 | 0.48 | 0.57 | 0.48 | 0.359 | 0.138 |
14:0 | 33.5 | 34.2 | 32.5 | 0.788 | 5.236 |
15:0 | 4.89 | 4.31 | 4.55 | 0.348 | 0.683 |
16:0 | 379.7 | 386.5 | 385.9 | 0.867 | 24.23 |
17:0 | 13.2 | 12.2 | 13.0 | 0.406 | 1.472 |
18:0 | 226.7 | 194.7 | 201.9 | 0.195 | 30.87 |
19:0 | 1.44 | 1.44 | 1.40 | 0.962 | 0.392 |
20:0 | 1.30 | 1.02 | 1.15 | 0.252 | 0.289 |
22:0 | 0.76 | 0.57 | 0.69 | 0.146 | 0.162 |
Σ BCFA 5 | 22.94 | 19.88 | 20.68 | 0.241 | 3.142 |
iso-14:0 | 0.60 | 0.75 | 0.64 | 0.420 | 0.211 |
iso-15:0 | 2.62 a | 1.97 ab | 1.95 b | 0.034 | 0.476 |
iso-16:0 | 2.35 | 2.50 | 2.51 | 0.799 | 0.482 |
iso-17:0/6–8t-16:1 | 5.72 a | 4.77 b | 4.96 b | 0.013 | 0.532 |
iso-18:0 | 1.74 | 1.67 | 1.67 | 0.876 | 0.280 |
anteiso-15:0 | 2.35 | 1.67 | 1.94 | 0.098 | 0.523 |
anteiso-17:0/13t o 3t-16:1 | 7.56 | 6.54 | 7.02 | 0.347 | 1.191 |
Σ MUFA 6 | 745.6 | 729.8 | 732.8 | 0.806 | 43.97 |
Σ MUFA cis | 683.8 | 672.5 | 676.0 | 0.903 | 44.28 |
c9-14:1 | 8.46 | 10.09 | 8.69 | 0.726 | 4.091 |
c7-16:1 | 3.75 | 3.36 | 3.39 | 0.369 | 0.519 |
c9-16:1 | 59.2 | 63.1 | 62.5 | 0.864 | 13.30 |
c11-16:1 | 1.69 | 2.20 | 1.83 | 0.414 | 0.713 |
c13-16:1 | 0.25 | 0.37 | 0.38 | 0.420 | 0.190 |
c9-17:1 | 10.6 | 11.1 | 12.0 | 0.178 | 1.406 |
c9-18:1 | 568.4 | 547.6 | 553.1 | 0.618 | 37.42 |
c11-18:1 | 22.3 | 25.4 | 25.3 | 0.277 | 3.721 |
c12-18:1 | 1.37 | 1.28 | 1.12 | 0.227 | 0.282 |
c13-18:1 | 4.29 | 4.84 | 4.34 | 0.664 | 1.249 |
c15-18:1 | 1.13 | 1.00 | 0.96 | 0.406 | 0.240 |
c9-19:1 | 0.24 | 0.21 | 0.28 | 0.318 | 0.090 |
c11–20:1 | 1.76 | 1.62 | 1.68 | 0.954 | 0.758 |
Σ MUFA trans | 61.8 | 57.3 | 56.9 | 0.219 | 5.368 |
t9-16:1 | 0.94 | 1.08 | 0.91 | 0.156 | 0.177 |
t10-16:1 | 0.14 | 0.22 | 0.17 | 0.367 | 0.098 |
t11/t12-16:1 | 0.92 | 1.07 | 0.86 | 0.135 | 0.210 |
t6/t8-18:1 | 1.64 a | 1.25 ab | 1.2 b | 0.042 | 0.308 |
t9-18:1 | 2.50 | 2.30 | 2.29 | 0.210 | 0.228 |
t10-18:1 | 2.81 | 2.56 | 2.49 | 0.729 | 0.762 |
t11-18:1 | 17.2 | 12.7 | 13.3 | 0.063 | 3.371 |
t12-18:1 | 2.26 | 2.05 | 1.89 | 0.264 | 0.421 |
Σ PUFA 7 | 111.7 b | 141.4 a | 134.6 a | 0.017 | 16.97 |
Σ n-6 | 68.1 b | 86.6 a | 79.4 ab | 0.035 | 11.49 |
18:2 (n-6) | 43.4 b | 55.3 a | 49.0 ab | 0.039 | 7.612 |
20:3 (n-6) | 4.52 | 5.21 | 5.20 | 0.166 | 0.699 |
20:4 (n-6) | 18.4 | 23.5 | 23.0 | 0.054 | 3.809 |
22:4 (n-6) | 1.12 | 1.60 | 1.33 | 0.077 | 0.351 |
Σ n-3 | 41.3 b | 52.7 a | 52.9 a | 0.009 | 6.780 |
18:3 (n-3) | 14.1 | 16.8 | 16.5 | 0.094 | 2.262 |
20:4 (n-3) | 2.02 | 2.05 | 2.02 | 0.981 | 0.318 |
20:5 (n-3)/24:0 | 9.67 b | 12.9 a | 13.7 a | 0.008 | 2.197 |
22:5 (n-3) | 13.7 b | 18.1 a | 18.0 a | 0.015 | 2.691 |
22:6 (n-3) | 1.56 | 2.49 | 2.40 | 0.049 | 0.678 |
Σ CLA 8 | 5.98 | 5.15 | 5.27 | 0.453 | 1.22 |
c9, t11-18:2 | 5.48 | 4.71 | 4.77 | 0.448 | 1.15 |
t11-18:1/t10-18:1 | 6.53 a | 5.04 b | 5.64 ab | 0.025 | 1.08 |
n-6:n-3 | 1.66 | 1.66 | 1.50 | 0.098 | 0.18 |
PUFA: SFA | 0.25 | 0.21 | 0.22 | 0.629 | 0.08 |
Cholesterol (mg 100 g−1) | 23.6 b | 34.6 a | 33.6 a | 0.021 | 8.561 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodríguez-Pereira, R.; Subiabre, I.; Moscoso, C.J.; Realini, C.E.; Morales, R. Forage Turnip (Brassica rapa L.) as a Dietary Supplement to Improve Meat Quality. Animals 2025, 15, 1277. https://doi.org/10.3390/ani15091277
Rodríguez-Pereira R, Subiabre I, Moscoso CJ, Realini CE, Morales R. Forage Turnip (Brassica rapa L.) as a Dietary Supplement to Improve Meat Quality. Animals. 2025; 15(9):1277. https://doi.org/10.3390/ani15091277
Chicago/Turabian StyleRodríguez-Pereira, Romina, Ignacio Subiabre, Cristian J. Moscoso, Carolina E. Realini, and Rodrigo Morales. 2025. "Forage Turnip (Brassica rapa L.) as a Dietary Supplement to Improve Meat Quality" Animals 15, no. 9: 1277. https://doi.org/10.3390/ani15091277
APA StyleRodríguez-Pereira, R., Subiabre, I., Moscoso, C. J., Realini, C. E., & Morales, R. (2025). Forage Turnip (Brassica rapa L.) as a Dietary Supplement to Improve Meat Quality. Animals, 15(9), 1277. https://doi.org/10.3390/ani15091277