Comparative Transcriptomics and Intestinal Microbiome Analysis Provide Insights into the Semi-Terrestrial Adaptation of Helice tientsinensis
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Animals
2.2. Preliminary Experiment
2.3. Formal Experiment
2.4. RNA Extraction and Transcriptome Sequencing
2.5. Enriched Pathways and Differentially Expressed Gene (DEG) Analysis
2.6. Illumina Sequencing of z DNA
2.7. qRT-PCR Validation
3. Results
3.1. Optimal Habitat and Experimental Duration for H. tientsinensis
3.2. Transcriptome Sequencing and De Novo Assembly
3.3. Functional Annotation and Classification of Unigenes
3.4. Identification and Enrichment Analysis of DEGs
3.5. Intestinal Microbial Composition and Diversity of H. tientsinensis in Different Habitats
3.6. Validation of RNA-Seq Data by qRT-PCR
4. Discussion
4.1. Cytoskeleton Protein and Motor Regulation
4.2. Water and Osmotic Pressure Regulation
4.3. Energy Metabolism
4.4. Intestinal Microbes
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Randall, D.J. The Evolution of Air Breathing in Vertebrates: Regulation and Control of Gas Transfer; Cambridge University Press: Cambridge, UK, 1981. [Google Scholar] [CrossRef]
- Hansson, B.S.; Harzsch, S.; Knaden, M.; Stensmyr, M. The neural and behavioral basis of chemical communication in terrestrial crustaceans. In Chemical Communication in Crustaceans; Breithaupt, T., Thiel, M., Eds.; Springer: New York, NY, USA, 2010; pp. 149–173. [Google Scholar] [CrossRef]
- Wolfe, J.M.; Ballou, L.; Luque, J.; Watson-Zink, V.M.; Ahyong, S.; Barido-Sottani, J.; Chu, K.H.; Crandall, K.A.; Daniels, S.R.; Felder, D.L.; et al. Convergent adaptation of true crabs (Decapoda: Brachyura) to a gradient of terrestrial environments. Syst. Biol. 2024, 73, 247–262. [Google Scholar] [CrossRef] [PubMed]
- Cannicci, S.; Fratini, S.; Meriggi, N.; Bacci, G.; Iannucci, A.; Mengoni, A.; Cavalieri, D. To the land and beyond: Crab microbiomes as a paradigm for the evolution of terrestrialization. Front. Microbiol. 2020, 11, 575372. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, J.; Wu, Q.; Xu, X.; Wang, P.; Wang, Z. Insights into the evolution of Brachyura (Crustacea: Decapoda) from mitochondrial sequences and gene order rearrangements. Int. J. Biol. Macromol. 2021, 170, 717–727. [Google Scholar] [CrossRef] [PubMed]
- Tsang, C.T.; Schubart, C.D.; Chu, K.H.; Ng, P.K.; Tsang, L.M. Molecular phylogeny of Thoracotremata crabs (Decapoda, Brachyura): Toward adopting monophyletic superfamilies, invasion history into terrestrial habitats and multiple origins of symbiosis. Mol. Phylogenet. Evol. 2022, 177, 107596. [Google Scholar] [CrossRef]
- Xin, Z.Z.; Zhang, D.Z.; Wang, Z.F.; Zhang, H.B.; Tang, B.P.; Zhou, C.L.; Zhou, C.L.; Chai, X.Y.; Liu, Q.N. Mitochondrial genome of Helice tientsinensis (Brachyura: Grapsoidea: Varunidae): Gene rearrangements and higher-level phylogeny of the Brachyura. Gene 2017, 627, 307–314. [Google Scholar] [CrossRef]
- Qin, X.; Sun, H.; Wang, C.; Yu, Y.; Sun, T. Impacts of crab bioturbation on the fate of polycyclic aromatic hydrocarbons in sediment from the Beitang estuary of Tianjin, China. Environ. Toxicol. Chem. 2010, 29, 1248–1255. [Google Scholar] [CrossRef] [PubMed]
- Dai, A.-Y.; Yang, S.-L. Crabs of the China seas. Weather 1991, 682, 335–338. [Google Scholar] [CrossRef]
- Little, C. The Colonisation of Land; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Crocetta, F.; Tanduo, V.; Osca, D.; Turolla, E. The Chinese mitten crab Eriocheir sinensis H. Milne Edwards, 1853 (Crustacea: Decapoda: Varunidae) reappears in the northern Adriatic Sea: Another intrusion attempt or the trace of an overlooked population? Mar. Pollut. Bull. 2020, 156, 111221. [Google Scholar] [CrossRef]
- Farrelly, C.A.; Greenaway, P. Land crabs with smooth lungs: Grapsidae, Gecarcinidae, and Sundathelphusidae ultrastructure and vasculature. J. Morphol. 1993, 215, 245–260. [Google Scholar] [CrossRef]
- Paoli, F.; Wirkner, C.S.; Cannicci, S. The branchiostegal lung of Uca vocans (Decapoda: Ocypodidae): Unreported complexity revealed by corrosion casting and MicroCT techniques. Arthropod Struct. Dev. 2015, 44, 622–629. [Google Scholar] [CrossRef]
- Faria, S.C.; Provete, D.B.; Thurman, C.L.; McNamara, J.C. Phylogenetic patterns and the adaptive evolution of osmoregulation in fiddler crabs (Brachyura, Uca). PLoS ONE 2017, 12, e0171870. [Google Scholar] [CrossRef]
- Greenaway, P. Ion and water balance. In Biology of the Land Crabs; Cambridge University Press: Cambridge, UK, 1988; pp. 211–248. [Google Scholar] [CrossRef]
- Wood, C.M.; Boutilier, R.G. Osmoregulation, ionic exchange, blood chemistry, and nitrogenous waste excretion in the land crab Cardisoma carnifex: A field and laboratory study. Biol. Bull. 1985, 169, 267–290. [Google Scholar] [CrossRef]
- Farrelly, C.A.; Greenaway, P. Gas exchange through the lungs and gills in air-breathing crabs. J. Exp. Biol. 1994, 187, 113–130. [Google Scholar] [CrossRef] [PubMed]
- Krieger, J.; Hörnig, M.K.; Kenning, M.; Hansson, B.S.; Harzsch, S. More than one way to smell ashore-evolution of the olfactory pathway in terrestrial malacostracan crustaceans. Arthropod Struct. Dev. 2021, 60, 101022. [Google Scholar] [CrossRef] [PubMed]
- Feng, G.P.; Zhang, H.L.; Zhuang, P. Comparison of energy metabolism of female Eriocheir sinensis between releasing population and wild population in the Yangtze Estuary. Mar. Fish. 2015, 37, 209–215. [Google Scholar]
- Wen, Z.R.; Xie, P. Effects of disiccation on water metabolism and mortality of Helice tientsinensis. Hubei Agric. Sci. 2014, 53, 4374–4377. [Google Scholar]
- Ding, S.; Yan, W.; Ma, Y.; Fang, J. The impact of probiotics on gut health via alteration of immune status of monogastric animals. Anim. Nutr. 2021, 7, 24–30. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, C.; Nepal, S.; Yang, C.; Dou, W.; Chen, J. A hybrid approach for scalable sub-tree anonymization over big data using MapReduce on cloud. J. Comput. Syst. Sci. 2014, 80, 1008–1020. [Google Scholar] [CrossRef]
- Saqib, H.S.A.; Yuan, Y.; Kazmi, S.S.U.H.; Li, S.; Zheng, H.; Zhang, Y.; Ikhwanuddin, M.; Ma, H. Salinity gradients drove the gut and stomach microbial assemblages of mud crabs (Scylla Paramamosain) in marine environments. Ecol. Indic. 2023, 151, 110315. [Google Scholar] [CrossRef]
- Nagalakshmi, U.; Wang, Z.; Waern, K.; Shou, C.; Raha, D.; Gerstein, M.; Snyder, M. The transcriptional landscape of the yeast genome defined by RNA sequencing. Science 2008, 320, 1344–1349. [Google Scholar] [CrossRef]
- Morris, S. The ecophysiology of air-breathing in crabs with special reference to Gecarcoidea natalis. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2002, 131, 559–570. [Google Scholar] [CrossRef] [PubMed]
- Morris, S. Neuroendocrine regulation of osmoregulation and the evolution of air-breathing in Decapod Crustaceans. Biochem. Mol. Biol. 2001, 204, 979–989. [Google Scholar] [CrossRef] [PubMed]
- Weihrauch, D.; Morris, S.; Towle, D.W. Ammonia excretion in aquatic and terrestrial crabs. J. Exp. Biol. 2004, 207, 4491–4504. [Google Scholar] [CrossRef] [PubMed]
- Ahern, K.; Premier, P. Premier primer designs. Science 1999, 286, 433. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Novais, W.R.; Carvalho, F.L.; Couto, E.C. Conservation of the endangered blue land crab Cardisoma guanhumi latreille in latreille, le peletier, serville & guérin, 1828 (Decapoda: Brachyura: Gecarcinidae) in Brazil: Optimal habitats and environmental factors. J. Crustac. Biol. 2021, 41, ruab011. [Google Scholar] [CrossRef]
- He, Q.; Altieri, A.H.; Cui, B. Herbivory drives zonation of stress-tolerant marsh plants. Ecology 2015, 96, 1318–1328. [Google Scholar] [CrossRef]
- Hug, L.A.; Baker, B.J.; Anantharaman, K.; Brown, C.T.; Probst, A.J.; Castelle, C.J.; Butterfield, C.N.; Hernsdorf, A.W.; Amano, Y.; Ise, K.; et al. A new view of the tree of life. Nat. Microbiol. 2016, 1, 16048. [Google Scholar] [CrossRef]
- Watanabe, S.; Takabayashi, A.; Tanaka, M.; Yanagihara, D. Neurovestibular physiology in fish. Adv. Space Biol. Med. 1991, 1, 99–128. [Google Scholar] [CrossRef]
- Marino, M.; Stagnitti, M.; Stancanelli, L.M.; Musumeci, R.E.; Foti, E. Dynamics of wave-supported gravity currents in intermediate water. Cont. Shelf Res. 2023, 267, 105082. [Google Scholar] [CrossRef]
- Bonnefoy, J.; Ghislin, S.; Beyrend, J.; Coste, F.; Calcagno, G.; Lartaud, I.; Gauquelin-Koch, G.; Poussier, S.; Frippiat, J.P. Gravitational experimental platform for animal models, a new platform at ESA’s terrestrial facilities to study the effects of micro-and hypergravity on aquatic and rodent animal models. Int. J. Mol. Sci. 2021, 22, 2961. [Google Scholar] [CrossRef] [PubMed]
- Dent, E.W.; Baas, P.W. Microtubules in neurons as information carriers. J. Neurochem. 2014, 129, 235–239. [Google Scholar] [CrossRef]
- Chakraborti, S.; Natarajan, K.; Curiel, J.; Janke, C.; Liu, J. The emerging role of the tubulin code: From the tubulin molecule to neuronal function and disease. Cytoskeleton 2016, 73, 521–550. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.; Hu, L.; Zhao, F.; Qiu, W.; Wang, P.; Ma, X.; Zhang, Y.; Chen, L.; Qian, A. BPAG1, a distinctive role in skin and neurological diseases. Semin. Cell Dev. Biol. 2017, 69, 34–39. [Google Scholar] [CrossRef]
- Yoshioka, N. Roles of dystonin isoforms in the maintenance of neural, muscle, and cutaneous tissues. Anat. Sci. Int. 2023, 99, 7–16. [Google Scholar] [CrossRef] [PubMed]
- Fortugno, P.; Angelucci, F.; Cestra, G.; Camerota, L.; Ferraro, A.S.; Cordisco, S.; Uccioli, L.; Castiglia, D.; Angelis, B.D.; Kurth, I.; et al. Recessive mutations in the neuronal isoforms of DST, encoding dystonin, lead to abnormal actin cytoskeleton organization and HSAN type VI. Hum. Mutat. 2018, 40, 106–114. [Google Scholar] [CrossRef]
- Ackermann, K.; Angus, S.D. A resource efficient big data analysis method for the social sciences: The case of global IP activity. Procedia Comput. Sci. 2014, 29, 2360–2369. [Google Scholar] [CrossRef]
- Chen, R.; Du, S.; Yao, Y.; Zhang, L.; Luo, J.; Shen, Y.; Xu, Z.P.; Zeng, X.M.; Zhang, L.Y.; Liu, M.G.; et al. A novel SPAST mutation results in spastin accumulation and defects in microtubule dynamics. Mov. Disord. 2021, 37, 598–607. [Google Scholar] [CrossRef]
- Doty, K.F.; Betzelberger, A.M.; Kocot, K.M.; Cook, M.E. Immunofluorescence localization of the tubulin cytoskeleton during cell division and cell growth in members of the Coleochaetales (Streptophyta). J. Phycol. 2014, 4, 50. [Google Scholar] [CrossRef]
- Pan, L.Q.; Zhang, L.J.; Liu, H.Y. Effects of salinity and pH on ion-transport enzyme activities, survival and growth of Litopenaeus vannamei postlarvae. Aquaculture 2007, 273, 711–720. [Google Scholar] [CrossRef]
- Bae, S.-H.; Okutsu, T.; Tsutsui, N.; Kang, B.J.; Chen, H.-Y.; Wilder, M.N. Involvement of second messengers in the signaling pathway of vitellogenesis-inhibiting hormone and their effects on vitellogenin mRNA expression in the whiteleg shrimp, Litopenaeus vannamei. Gen. Comp. Endocrinol. 2017, 246, 301–308. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Chen, Y. Salinity tolerance of embryos of obscure puffer Takifugu obscurus. Aquaculture 2006, 253, 393–397. [Google Scholar] [CrossRef]
- Kristensen, A.S.; Andersen, J.; Jørgensen, T.N.; Sørensen, L.; Eriksen, J.; Loland, C.J.; Strømgaard, K.; Gether, U. SLC6 neurotransmitter transporters: Structure, function, and regulation. Pharmacol. Rev. 2011, 63, 585–640. [Google Scholar] [CrossRef]
- Capparelli, M.V.; Abessa, D.M.; McNamara, J.C. Effects of metal contamination in situ on osmoregulation and oxygen consumption in the mudflat fiddler crab Uca rapax (Ocypodidae, Brachyura). Comp. Biochem. Physiol. Toxicol. Pharmacol. 2016, 185, 102–111. [Google Scholar] [CrossRef] [PubMed]
- Shi, Z.H.; Liao, Y.L.; Wang, X.S.; Zhang, C.; Peng, S.; Gao, Q. Impact of the abrupt salinity decrease on ion-regulation enzyme activity in the gill and serum osmolality from Epinehelus moara. J. Saf. Environ. 2017, 17, 1210–1214. [Google Scholar]
- Scranton, K.; John, S.; Escobar, A.; Goldhaber, J.I.; Ottolia, M. Modulation of the cardiac Na+-Ca2+ exchanger by cytoplasmic protons: Molecular mechanisms and physiological implications. Cell Calcium 2020, 87, 102140. [Google Scholar] [CrossRef]
- Wang, W.J.; Zhou, Y.L.; He, J.; Feng, Z.Q.; Zhang, L.; Lai, X.B.; Zhou, J.X.; Wang, H. Characterizing the composition of intestinal microflora by 16S rRNA gene sequencing. World J. Gastroenterol. 2020, 26, 614. [Google Scholar] [CrossRef]
- Vasanthakumar, T.; Keon, K.A.; Bueler, S.A.; Jaskolka, M.C.; Rubinstein, J.L. Coordinated conformational changes in the V-1 complex during V-ATPase reversible dissociation. Nat. Struct. Mol. Biol. 2022, 29, 430–439. [Google Scholar] [CrossRef]
- Wang, H.; Rubinstein, J.L. CryoEM of V-ATPases: Assembly, disassembly, and inhibition. Curr. Opin. Struct. Biol. 2023, 80, 102592. [Google Scholar] [CrossRef]
- Bröer, S.; Palacin, M. The role of amino acid transporters in inherited and acquired diseases. Biochem. J. 2011, 436, 193–211. [Google Scholar] [CrossRef]
- Zarate, J.M.; Bradley, T.M. Molecular cloning and characterization of the taurine transporter of Atlantic salmon. Aquaculture 2007, 273, 209–217. [Google Scholar] [CrossRef]
- Sébert, P.; Simon, B.; Péqueux, A. Effects of hydrostatic pressure on energy metabolism and osmoregulation in crab and fish. Comp. Biochem. Physiol. Part A Physiol. 1997, 116, 281–290. [Google Scholar] [CrossRef]
- Zhu, S.; Huang, J.; Xu, R.; Wang, Y.; Wan, Y.; McNeel, R.; Parker, E.; Kolson, D.; Yam, M.; Webb, B.; et al. Isocitrate dehydrogenase 3b is required for spermiogenesis but dispensable for retinal viability. J. Biol. Chem. 2022, 298, 102387. [Google Scholar] [CrossRef]
- Douglas, C.C. An open framework for dynamic big-data-driven application systems (DBDDAS) development. Procedia Comput. Sci. 2014, 29, 1246–1255. [Google Scholar] [CrossRef]
- Fu, P.; Zhu, R.; Jia, J.; Hu, Y.; Wu, C.; Cieszczyk, P.; Holmberg, H.C.; Gong, L. Aerobic exercise promotes the functions of brown adipose tissue in obese mice via a mechanism involving COX2 in the VEGF signaling pathway. Nutr. Metab. 2021, 18, 56. [Google Scholar] [CrossRef]
- Wan, Q.; Kong, D.; Liu, Q.; Guo, S.; Wang, C.; Zhao, Y.; Zun, J.K.; Yu, Y. Congestive heart failure in COX2 deficient rats. Sci. China Life Sci. 2021, 64, 1068–1076. [Google Scholar] [CrossRef] [PubMed]
- Carlsson, A. Role of mast cells and probiotics in the regulation of intestinal barrier function. Linkop. Univ. 2013, 10, 274–291. [Google Scholar] [CrossRef]
- Cuesta, S.; Burdisso, P.; Segev, A.; Kourrich, S.; Sperandio, V. Gut colonization by Proteobacteria alters host metabolism and modulates cocaine neurobehavioral responses. Cell Host Microbe 2022, 30, 1615–1629. [Google Scholar] [CrossRef]
- Barbierato, E.; Gribaudo, M.; Iacono, M. Performance evaluation of NoSQL big-data applications using multi-formalism models. Future Gener. Comput. Syst. 2014, 37, 345–353. [Google Scholar] [CrossRef]
- Zhou, Z.; Tran, P.Q.; Kieft, K.; Anantharaman, K. Genome diversification in globally distributed novel marine Proteobacteria is linked to environmental adaptation. ISME J. 2020, 14, 2060–2077. [Google Scholar] [CrossRef]
- Jiang, X.; Niu, M.; Qin, K.; Hu, Y.; Li, Y.; Che, C.; Wang, C.L.; Mu, C.K.; Wang, H. The shared microbiome in mud crab (Scylla paramamosain) of Sanmen Bay, China: Core gut microbiome. Front. Microbiol. 2023, 14, 1243334. [Google Scholar] [CrossRef]
- Sun, Y.; Han, W.; Liu, J.; Huang, X.; Zhou, W.; Zhang, J.; Cheng, Y. Bacterial community compositions of crab intestine, surrounding water, and sediment in two different feeding modes of Eriocheir sinensis. Aquacul. Rep. 2020, 16, 100236. [Google Scholar] [CrossRef]
- Ma, R.; Wang, Y.; Zhao, S.; Ma, Q.; Yin, M.; Li, X.; Fang, W. Bacterial flora in the gill tissues and intestinal tracts of male and female Chinese mitten crabs (Eriocheir sinensis) with different diets in a mud pond. Curr. Microbiol. 2021, 78, 2291–2297. [Google Scholar] [CrossRef]
- Chen, X.; Chen, H.; Liu, Q.; Ni, K.; Ding, R.; Wang, J.; Wang, C. High plasticity of the gut microbiome and muscle metabolome of Chinese mitten crab (Eriocheir sinensis) in diverse environments. J. Microbiol. Biotechnol. 2021, 31, 240. [Google Scholar] [CrossRef] [PubMed]
- Auguste, M.; Rahman, F.U.; Balbi, T.; Leonessi, M.; Oliveri, C.; Bellese, G.; Vezzulli, L.; Furones, D.; Canesi, L. Responses of Mytilus galloprovincialis to challenge with environmental isolates of the potential emerging pathogen Malaciobacter marinus. Fish Shellfish Immunol. 2022, 131, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Gharibzahedi, S.M.T.; Razavi, S.H.; Mousavi, S.M. Characterization of bacteria of the genus Dietzia: An updated review. Ann. Microbiol. 2014, 64, 1–11. [Google Scholar] [CrossRef]
- Fang, H.; Xu, J.B.; Nie, Y.; Wu, X.L. Pan-genomic analysis reveals that the evolution of Dietzia species depends on their living habitats. Environ. Microbiol. 2021, 23, 861–877. [Google Scholar] [CrossRef]
Gene Name | Forward Primer Sequence (5′-3′) | Reverse Primer Sequence (5′-3′) |
---|---|---|
HACL1 | GGCGTCAATGCGTTATGTC | CCTTCCACCTCCTCCTCTG |
RRP4 | CAATAGTTGGGCGTATCACC | CCTAATCAAGCCATCATCAC |
SLC6A3 | TAGCGTGGAGTCTTCGGTTCT | GAGGAGGAGTAGGAGGTGTTGG |
CGR1 | AACTCCTCAAAGTCATCCCA | CCTCTATCGCAGCACTCATC |
USP16-45 | GAGCAACGCAAGCAAACAGA | CCCAGGGAGATTGAGGAGGT |
TSPAN13_31 | CCCTCAAACCCTCACTGCTA | TGCTGTTGTTGGTGCTCCTT |
CYTB | CCCTGCTAATCCTCTTGT | CTCGGCTACTTCGTTCAT |
COX6B | ACTCCCTACATTCACAGATTC | ACTTCAGAACAGCCTACACC |
yidC | CTTGTCTCCTGTGACCTCCCG | CACCAGCATTCCTCGCCTC |
ABCF1 | AGAAGGACGAGGACGAAAG | TCCAAATCAATGCCGAAGT |
SLC27A1-4 | GGGGCTATGTGAGCAAAGGT | GATGCGGATGAAGCGAGGTA |
TUBB | ATTTGCCTCCTGAGTTGTTC | CGTCATTATCGCTACTGCCTA |
SPAST | GTGATACGCTGACTACGGG | GTGTAGGCTGCTGAACGAC |
CPLX1-2 | GGTGTAACCCAACTTAATCG | CAAATGTCATACCCTCAGAAT |
GAPDH | ACCTGATGCTCCGATGTTT | CTTGTCCTGGTTGACTCCC |
Group | Total Raw Reads (n) | Total Clean Reads (n) | Q30% | GC% |
---|---|---|---|---|
A1-S | 37,301,190 | 36,317,604 | 95.85 | 45.86 |
A2-S | 44,511,258 | 43,564,496 | 95.90 | 45.11 |
A3-S | 41,005,450 | 39,844,232 | 95.37 | 46.77 |
H1-S | 43,072,134 | 42,012,372 | 96.00 | 45.99 |
H2-S | 39,228,176 | 38,125,102 | 95.82 | 45.46 |
H3-S | 38,576,812 | 37,781,692 | 95.84 | 44.41 |
T1-S | 38,161,214 | 37,297,652 | 95.79 | 46.03 |
T2-S | 41,179,406 | 40,285,070 | 96.01 | 46.14 |
T3-S | 37,966,558 | 37,019,366 | 95.79 | 45.45 |
Assembly | ||||
Number of total unigenes (n) | 337,150 | |||
Number of total transcripts (n) | 547,835 | |||
Average unigene length (bp) | 520 | |||
Average transcript length (bp) | 700 | |||
N50 of unigenes (bp) | 597 | |||
N50 of transcripts (bp) | 1110 | |||
N90 of unigenes (bp) | 244 | |||
N90 of transcripts (bp) | 279 | |||
Largest unigenes (bp) | 33,403 | |||
Smallest unigenes (bp) | 201 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Cui, L.; Wang, X.; Shen, C.; Wang, Y.; Jiang, W.; Gu, Y. Comparative Transcriptomics and Intestinal Microbiome Analysis Provide Insights into the Semi-Terrestrial Adaptation of Helice tientsinensis. Animals 2025, 15, 1244. https://doi.org/10.3390/ani15091244
Wang Z, Cui L, Wang X, Shen C, Wang Y, Jiang W, Gu Y. Comparative Transcriptomics and Intestinal Microbiome Analysis Provide Insights into the Semi-Terrestrial Adaptation of Helice tientsinensis. Animals. 2025; 15(9):1244. https://doi.org/10.3390/ani15091244
Chicago/Turabian StyleWang, Zhengfei, Lijie Cui, Xinyu Wang, Chenchen Shen, Yan Wang, Weijie Jiang, and Yue Gu. 2025. "Comparative Transcriptomics and Intestinal Microbiome Analysis Provide Insights into the Semi-Terrestrial Adaptation of Helice tientsinensis" Animals 15, no. 9: 1244. https://doi.org/10.3390/ani15091244
APA StyleWang, Z., Cui, L., Wang, X., Shen, C., Wang, Y., Jiang, W., & Gu, Y. (2025). Comparative Transcriptomics and Intestinal Microbiome Analysis Provide Insights into the Semi-Terrestrial Adaptation of Helice tientsinensis. Animals, 15(9), 1244. https://doi.org/10.3390/ani15091244