Could Mesquite (Prosopis juliflora) Help Control Gastrointestinal Parasites in Horses?
Simple Summary
Abstract
1. Introduction
2. Methods
3. General Information on Mesquite (Prosopis juliflora)
3.1. Uses of Prosopis juliflora
3.2. Phytochemical Compounds of Prosopis juliflora and Their Pharmacological Potential
4. Most Common Parasitic Diseases in Equines
5. Mechanism of Action of Phytochemical Compounds from Prosopis juliflora Against Parasites
6. Possible Adverse Effects of Mesquite
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Valette, D. Invisible Workers: The Economic Contributions of Working Donkeys, Horses and Mules to Livelihoods; Brooke: London, UK, 2015; p. 43. [Google Scholar]
- De Palo, P.; Maggiolino, A.; Centoducati, P.; Calzaretti, G.; Milella, P.; Tateo, A. Equid milk production: Evaluation of Martina Franca jennies and IHDH mares by Wood’s model application. Anim. Prod. Sci. 2017, 57, 2110–2116. [Google Scholar] [CrossRef]
- De Palo, P.; Tateo, A.; Maggiolino, A.; Centoducati, P. Effect of nutritive level on carcass traits and meat quality of IHDH foals. Anim. Sci. J. 2014, 85, 780–786. [Google Scholar] [CrossRef] [PubMed]
- Maggiolino, A.; Lorenzo, J.M.; Marino, R.; Della Malva, A.; Centoducati, P.; De Palo, P. Foal meat volatile compounds: Effect of vacuum ageing on semimembranosus muscle. J. Sci. Food Agric. 2019, 99, 1660–1667. [Google Scholar] [CrossRef] [PubMed]
- De Palo, P.; Tateo, A.; Maggiolino, A.; Marino, R.; Ceci, E.; Nisi, A.; Lorenzo, J.M. Martina Franca donkey meat quality: Influence of slaughter age and suckling technique. Meat Sci. 2017, 134, 128–134. [Google Scholar] [CrossRef]
- Centoducati, P.; Maggiolino, A.; De Palo, P.; Tateo, A. Application of Wood’s model to lactation curve of Italian Heavy Draft horse mares. J. Dairy. Sci. 2012, 95, 5770–5775. [Google Scholar] [CrossRef]
- De Palo, P.; Auclair-Ronzaud, J.; Maggiolino, A. Mammary gland physiology and farm management of dairy mares and jennies. JDS Commun. 2022, 3, 234–237. [Google Scholar] [CrossRef]
- Pritchard, J.C.; Lindberg, A.C.; Main, D.C.J.; Whay, H.R. Assessment of the welfare of working horses, mules and donkeys, using health and behaviour parameters. Prev. Vet. Med. 2005, 69, 265–283. [Google Scholar] [CrossRef]
- Gonçalves, S.; Julliand, V.; Leblond, A. Risk factors associated with colic in horses. Vet. Res. 2002, 33, 641–652. [Google Scholar] [CrossRef]
- Beg, Z.; Roohi, N.; Iqbal, Z.; Iqbal, M.; Zulfiqar, A. Role of herbs as anthelmintic in controling parascariasis in equines. J. Anim. Plant Sci. 2023, 33, 235–240. [Google Scholar] [CrossRef]
- Matthews, J.B. Facing the threat of equine parasitic disease. Equine Vet. J. 2011, 43, 126–132. [Google Scholar] [CrossRef]
- Emeto, U.; Okolo, C.; Nweze, N. Strongyliasis occurs in epidemic proportion amongst other nematodiasis and cestodiasis of horses (Equus caballus) in Obollo-Afor southeastern Nigeria. Vet. Sci. Res. Rev. 2022, 8, 15–22. [Google Scholar] [CrossRef]
- Thakur, V.; Uniyal, A.; Tiwari, V. A comprehensive review on pharmacology of efflux pumps and their inhibitors in antibiotic resistance. Eur. J. Pharmacol. 2021, 903, 174151. [Google Scholar] [CrossRef]
- WHO. Global Antimicrobial Resistance and Use Surveillance System (GLASS) Report 2022; World Health Organization: Geneva, Switzerland, 2022.
- Rupani, R.; Chavez, A. Medicinal plants with traditional use: Ethnobotany in the Indian subcontinent. Clin. Dermatol. 2018, 36, 306–309. [Google Scholar] [CrossRef]
- Mali, R.G.; Dhake, A.S. A review on herbal antiasthmatics. Orient. Pharm. Exp. Med. 2011, 11, 77–90. [Google Scholar] [CrossRef] [PubMed]
- El-Sayed, S.A.E.-S.; Rizk, M.A.; Yokoyama, N.; Igarashi, I. Evaluation of the in vitro and in vivo inhibitory effect of thymoquinone on piroplasm parasites. Parasites Vectors 2019, 12, 37. [Google Scholar] [CrossRef] [PubMed]
- Berköz, M. Nigella sativa L. In Novel Drug Targets with Traditional Herbal Medicines: Scientific and Clinical Evidence; Gürağaç Dereli, F.T., Ilhan, M., Belwal, T., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 445–461. [Google Scholar]
- Jamaldeen, F.N.; Sofi, G.; Fahim, M.F.M.; Aleem, M.; Begum, E.M.G.K.N. Shahatra (F. parviflora Lam)-a comprehensive review of its ethnopharmacology, phytochemistry and pharmacology. J. Ethnopharmacol. 2022, 286, 114839. [Google Scholar] [CrossRef]
- Niderkorn, V.; Jayanegara, A. Opportunities Offered by Plant Bioactive Compounds to Improve Silage Quality, Animal Health and Product Quality for Sustainable Ruminant Production: A Review. Agronomy 2021, 11, 86. [Google Scholar] [CrossRef]
- Elghandour, M.M.M.Y.; Maggiolino, A.; García, E.I.; Sánchez-Aparicio, P.; De Palo, P.; Ponce-Covarrubias, J.L.; Pliego, A.B.; Salem, A.Z.M. Effects of Microencapsulated Essential Oils on Equine Health: Nutrition, Metabolism and Methane Emission. Life 2023, 13, 455. [Google Scholar] [CrossRef]
- Geesing, D.; Felker, P.; Bingham, R.L. Influence of mesquite (Prosopis glandulosa) on soil nitrogen and carbon development: Implications for global carbon sequestration. J. Arid. Environ. 2000, 46, 157–180. [Google Scholar] [CrossRef]
- de Brito Damasceno, G.A.; Souto, A.L.; da Silva, I.B.; Roque, A.d.A.; Ferrari, M.; Giordani, R.B. Prosopis juliflora: Phytochemical, Toxicological, and Allelochemicals. In Co-Evolution of Secondary Metabolites; Mérillon, J.-M., Ramawat, K.G., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 521–541. [Google Scholar]
- Sawal, R.K.; Ratan, R.; Yadav, S.B.S. Mesquite (Prosopis juliflora) Pods as a Feed Resource for Livestock—A Review. Asian Australas. J. Anim. Sci. 2004, 17, 719–725. [Google Scholar] [CrossRef]
- Peixoto, C.M.; Dias, M.I.; Alves, M.J.; Calhelha, R.C.; Barros, L.; Pinho, S.P.; Ferreira, I.C.F.R. Grape pomace as a source of phenolic compounds and diverse bioactive properties. Food Chem. 2018, 253, 132–138. [Google Scholar] [CrossRef] [PubMed]
- Hussain, M.I.; Shackleton, R.; El-Keblawy, A.; González, L.; Trigo, M.M. Impact of the Invasive Prosopis juliflora on Terrestrial Ecosystems. In Sustainable Agriculture Reviews 52; Lichtfouse, E., Ed.; Springer International Publishing: Cham, Switzerland, 2021; pp. 223–278. [Google Scholar]
- Aguillón-Gutiérrez, D.; Torres-León, C.; Aguirre-Joya, J. Aromatic and Medicinal Plants of Drylands and Deserts: Ecology, Ethnobiology, and Potential Uses, 1st ed.; CRC Press: Boca Raton, FL, USA, 2023. [Google Scholar]
- Mwangi, E.; Swallow, B. Prosopis juliflora Invasion and Rural Livelihoods in the Lake Baringo Area of Kenya. Conserv. Soc. 2008, 6, 207. [Google Scholar]
- Bibi, S.; Bibi, A.; Al-Ghouti, M.A.; Abu-Dieyeh, M.H. Allelopathic Effects of the Invasive Prosopis juliflora (Sw.) DC. on Native Plants: Perspectives toward Agrosystems. Agronomy 2023, 13, 590. [Google Scholar] [CrossRef]
- Noor, M.; Salam, U.; Khan, A.M. Allelopathic effects of Prosopis juliflora Swartz. J. Arid. Environ. 1995, 31, 83–90. [Google Scholar] [CrossRef]
- Eshete, A.; Treydte, A.C.; Hailemariam, M.; Solomon, N.; Dejene, T.; Yilma, Z.; Birhane, E. Variations in soil properties and native woody plant species abundance under Prosopis juliflora invasion in Afar grazing lands, Ethiopia. Ecol. Process. 2020, 9, 36. [Google Scholar] [CrossRef]
- Mohanraj, R.; Akil Prasath, R.V.; Rajasekaran, A. Assessment of vegetation, soil nutrient dynamics and heavy metals in the Prosopis juliflora invaded lands at semi-arid regions of Southern India. CATENA 2022, 216, 106374. [Google Scholar] [CrossRef]
- Satapathy, S.; Kar, D.; Kuanar, A. Application of Metal Hyperaccumulator Plants in Phytoremediation. In Sustainable Management of Environmental Pollutants Through Phytoremediation, 1st ed.; Group, T.F., Ed.; CRC Press: Boca Raton, FL, USA, 2024; pp. 305–324. [Google Scholar]
- Saha, D.; Das, S.; Chakraborty, P.; Saha, A. Nutrient Availability and Plant–Microbe Interactions in Phytoremediation of Metalliferous Soils. In Phytoremediation of Environmental Pollutants, 1st ed.; Group, T.F., Ed.; CRC Press: Boca Raton, FL, USA, 2017; pp. 201–226. [Google Scholar]
- Beramendi-Orosco, L.E.; Rodriguez-Estrada, M.L.; Morton-Bermea, O.; Romero, F.M.; Gonzalez-Hernandez, G.; Hernandez-Alvarez, E. Correlations between metals in tree-rings of Prosopis julifora as indicators of sources of heavy metal contamination. Appl. Geochem. 2013, 39, 78–84. [Google Scholar] [CrossRef]
- Pasiecznik, N.; Felker, P.; Harris, P.; Harsh, L.; Cruz, G.; Tewari, J.; Cadoret, K.; Maldonado, L. The Prosopis juliflora-Prosopis pallida Complex: A Monograph; HDRA, Ed.; HDRA: Coventry, UK, 2001; Volume 172. [Google Scholar]
- Bhansali, R.R. Biology and Multiplication of Prosopis species Grown in the Thar Desert. In Desert Plants: Biology and Biotechnology; Ramawat, K.G., Ed.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 371–406. [Google Scholar]
- van Wilgen, B.W.; Richardson, D.M. Challenges and trade-offs in the management of invasive alien trees. Biol. Invasions 2014, 16, 721–734. [Google Scholar] [CrossRef]
- Sharifi-Rad, J.; Kobarfard, F.; Ata, A.; Ayatollahi, S.A.; Khosravi-Dehaghi, N.; Jugran, A.K.; Tomas, M.; Capanoglu, E.; Matthews, K.R.; Popović-Djordjević, J.; et al. Prosopis Plant Chemical Composition and Pharmacological Attributes: Targeting Clinical Studies from Preclinical Evidence. Biomolecules 2019, 9, 777. [Google Scholar] [CrossRef]
- Duraisamy, B.; Velmurugan, K.; Venkatachalapathy, V.S.K.; Madheswaran, D.K.; Varuvel, E.G. Biodiesel from Biomass Waste Feedstock Prosopis juliflora as a Fuel Substitute for Diesel and Enhancement of Its Usability in Diesel Engines Using Decanol. Energy Technol. 2023, 11, 2300346. [Google Scholar] [CrossRef]
- da Silva, V.D.A.; da Silva, A.M.M.; e Silva, J.H.C.; Costa, S.L. Neurotoxicity of Prosopis juliflora: From Natural Poisoning to Mechanism of Action of Its Piperidine Alkaloids. Neurotox. Res. 2018, 34, 878–888. [Google Scholar] [CrossRef]
- Fall, D.; Bakhoum, N.; Fall, F.; Diouf, F.; Ndiaye, C.; Faye, M.N.; Hocher, V.; Diouf, D. Effect of peanut shells amendment on soil properties and growth of seedlings of Senegalia senegal (L.) Britton, Vachellia seyal (Delile) P. Hurter, and Prosopis juliflora (Swartz) DC in salt-affected soils. Ann. For. Sci. 2018, 75, 32. [Google Scholar] [CrossRef]
- Henciya, S.; Seturaman, P.; James, A.R.; Tsai, Y.-H.; Nikam, R.; Wu, Y.-C.; Dahms, H.-U.; Chang, F.R. Biopharmaceutical potentials of Prosopis spp. (Mimosaceae, Leguminosa). J. Food Drug Anal. 2017, 25, 187–196. [Google Scholar] [CrossRef] [PubMed]
- Wamburu, R.; Kareru, P.; Mbaria, J.; Njonge, F.; Nyaga, G.; Rechab, S. Acute and sub-acute toxicological evaluation of ethanolic leaves extract of Prosopis juliflora (Fabaceae). J. Nat. Sci. Res. 2013, 3, 8–15. [Google Scholar]
- Kipyegon, C.; Helen, K.L.; Patrick, K.G.; Francis, N.K.; Odhiambo, R.S.; Jackson, M.K.; Edwin, M. In vitro ovicidal activity of encapsulated ethanolic extract of Prosopis juliflora against Haemonchus contortus eggs. J. Pharm. Biol. Sci. 2015, 10, 18–22. [Google Scholar]
- Lima, H.G.; Gomes, D.C.; Santos, N.S.; Dias, Ê.R.; Botura, M.B.; Batatinha, M.J.M.; Branco, A. Prosopis juliflora Pods Alkaloid-rich Fraction: In vitro Anthelmintic Activity on Goat Gastrointestinal Parasites and Its Cytotoxicity on Vero Cells. Pharmacogn. Mag. 2017, 13, S684–S687. [Google Scholar] [CrossRef] [PubMed]
- Saleh, I.A.; BiBi, A.; Bibi, S.; Abu-Dieyeh, M.; Al-Ghouti, M.A. Waste-to-value: Guidelines for the potential applications of Prosopis juliflora. Bioresour. Technol. Rep. 2023, 24, 101678. [Google Scholar] [CrossRef]
- Muñoz-Acevedo, A.; Guzmán, C.P.; Peralta, N.M.; González, M.C.; Cervanles-Díaz, M. Taking Advantage of the Therapeutic/Nutritional Properties of Some Medicinal Plants for Use in Animal Feed. In Ethnobotany; Group, T.F., Ed.; CRC Press: Boca Raton, FL, USA, 2023; pp. 1–43. [Google Scholar]
- Dos Santos, E.T.; Pereira, M.L.A.; Da Silva, C.F.P.G.; Souza-Neta, L.C.; Geris, R.; Martins, D.; Santana, A.E.G.; Barbosa, L.C.A.; Silva, H.G.O.; Freitas, G.C.; et al. Antibacterial Activity of the Alkaloid-Enriched Extract from Prosopis juliflora Pods and Its Influence on in Vitro Ruminal Digestion. Int. J. Mol. Sci. 2013, 14, 8496–8516. [Google Scholar] [CrossRef]
- Hedayati, N.; Bemani Naeini, M.; Mohammadinejad, A.; Mohajeri, S.A. Beneficial effects of celery (Apium graveolens) on metabolic syndrome: A review of the existing evidences. Phytother. Res. 2019, 33, 3040–3053. [Google Scholar] [CrossRef]
- Salem, S.E.; Abd El-Ghany, A.M.; Hamad, M.H.; Abdelaal, A.M.; Elsheikh, H.A.; Hamid, A.A.; Saud, M.A.; Daniels, S.P.; Ras, R. Prevalence of gastrointestinal nematodes, parasite control practices and anthelmintic resistance patterns in a working horse population in Egypt. Equine Vet. J. 2021, 53, 339–348. [Google Scholar] [CrossRef]
- Hautala, K.; Näreaho, A.; Kauppinen, O.; Nielsen, M.K.; Sukura, A.; Rajala-Schultz, P.J. Risk factors for equine intestinal parasite infections and reduced efficacy of pyrantel embonate against Parascaris sp. Vet. Parasitol. 2019, 273, 52–59. [Google Scholar] [CrossRef] [PubMed]
- Preeti, K.; Sharma, R.A.; Mala, A. Phytochemical Analyses of Various Parts of Prosopis cineraria. Int. J. Pharm. Chem. 2016, 2, 6–9. [Google Scholar] [CrossRef]
- Craig, T.M.; Diamond, P.L.; Ferwerda, N.S.; Thompson, J.A. Evidence of Ivermectin Resistance by Parascaris equorum on a Texas Horse Farm. J. Equine Vet. Sci. 2007, 27, 67–71. [Google Scholar] [CrossRef]
- Malik, S.K.; Ahmed, M.; Khan, F. Identification of novel anticancer terpenoids from Prosopis juliflora (Sw) DC (Leguminosae) pods. Trop. J. Pharm. Res. 2018, 17, 661–668. [Google Scholar] [CrossRef]
- Khalid, A.; Abdalgadir, E.A.; Abdel Gadir, I.K.; Abdalla, A.N.; Homeida, H.E.; Sultana, S.; Rehman, Z.u.; Hassani, R.; Alqahtani, A.S.; Alhazmi, H.A. GC-MS Profiling and Therapeutic Potentials of Prosopis juliflora (Sw.) DC: Cytotoxic and Antimicrobial Insights. J. Spectrosc. 2024, 2024, 1121745. [Google Scholar] [CrossRef]
- Zhong, J.; Lu, P.; Wu, H.; Liu, Z.; Sharifi-Rad, J.; Setzer, W.N.; Suleria, H.A.R. Current Insights into Phytochemistry, Nutritional, and Pharmacological Properties of Prosopis Plants. Evid. Based Complement. Altern. Med. 2022, 2022, 2218029. [Google Scholar] [CrossRef]
- Isla, M.I.; Cattaneo, F.; Pérez, J.; Rodríguez, I.F.; Correa Uriburu, F.M.; Zampini, I.C. Chapter 20-Prosopis alba seed flour: A source of bioactive phenolic and proteins. In Prosopis as a Heat Tolerant Nitrogen Fixing Desert Food Legume; Puppo, M.C., Felker, P., Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 287–295. [Google Scholar]
- Sharifi-Rad, J.; Zhong, J.; Ayatollahi, S.A.; Kobarfard, F.; Faizi, M.; Khosravi-Dehaghi, N.; Suleria, H.A.R. LC-ESI-QTOF-MS/MS characterization of phenolic compounds from Prosopis farcta (Banks & Sol.) J.F.Macbr. and their potential antioxidant activities. Cell. Mol. Biol. 2021, 67, 189–200. [Google Scholar] [CrossRef]
- Rechab Sylvester, O.; Ngugi Christine, M.; Maina Ernest, G.; Madivoli Edwin, S.; Kareru Patrick, G.; Mutembei Jackson, K.; Kairigo Pius, K.; Cheruiyot, K.; Ruto Mercy, C. Antioxidant activity and antimicrobial properties of Entada leptostachya and Prosopis juliflora extracts. J. Med. Plants Econ. Dev. 2018, 2, a31. [Google Scholar] [CrossRef]
- Zintl, A.; Mulcahy, G.; Skerrett Helen, E.; Taylor Stuart, M.; Gray Jeremy, S. Babesia divergens, a Bovine Blood Parasite of Veterinary and Zoonotic Importance. Clin. Microbiol. Rev. 2003, 16, 622–636. [Google Scholar] [CrossRef]
- Reslova, N.; Skorpikova, L.; Kyrianova, I.A.; Vadlejch, J.; Höglund, J.; Skuce, P.; Kasny, M. The identification and semi-quantitative assessment of gastrointestinal nematodes in faecal samples using multiplex real-time PCR assays. Parasites Vectors 2021, 14, 391. [Google Scholar] [CrossRef]
- Peregrine, A.S.; Molento, M.B.; Kaplan, R.M.; Nielsen, M.K. Anthelmintic resistance in important parasites of horses: Does it really matter? Vet. Parasitol. 2014, 201, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Königová, A.; Babják, M.; Kuzmina, T.A.; Burcáková, Ľ.; Syrota, Y.; Várady, M. Assessing the benzimidazole resistance in equine strongyles by in vitro methods. Vet. Parasitol. 2025, 334, 110387. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, R.M.; Vidyashankar, A.N. An inconvenient truth: Global worming and anthelmintic resistance. Vet. Parasitol. 2012, 186, 70–78. [Google Scholar] [CrossRef] [PubMed]
- Saumell, C.; Lifschitz, A.; Baroni, R.; Fusé, L.; Bistoletti, M.; Sagües, F.; Bruno, S.; Alvarez, G.; Lanusse, C.; Alvarez, L. The route of administration drastically affects ivermectin activity against small strongyles in horses. Vet. Parasitol. 2017, 236, 62–67. [Google Scholar] [CrossRef]
- Waller, P.J.; Thamsborg, S.M. ematode control in ‘green’ ruminant production systems. Trends Parasitol. 2004, 20, 493–497. [Google Scholar] [CrossRef]
- Güiris, A.D.M.; Rojas, H.N.M.; Berovides, A.V.; Sosa, P.J.; Pérez, E.M.E.; Cruz, A.E.; Chávez, H.C.; Moguel, A.J.A.; Jimenez-Coello, M.; Ortega-Pacheco, A. Biodiversity and distribution of helminths and protozoa in naturally infected horses from the biosphere reserve “La Sierra Madre de Chiapas”, México. Vet. Parasitol. 2010, 170, 268–277. [Google Scholar] [CrossRef]
- Reinemeyer, C.R. Anthelmintic resistance in non-strongylid parasites of horses. Vet. Parasitol. 2012, 185, 9–15. [Google Scholar] [CrossRef]
- Matthews, J.B. Anthelmintic resistance in equine nematodes. Int. J. Parasitol. Drugs Drug Resist. 2014, 4, 310–315. [Google Scholar] [CrossRef]
- Martin, F.; Halvarsson, P.; Alm, Y.H.; Tydén, E. Occurrence of fenbendazole resistance in Parascaris spp. on breeding farms in Sweden. Vet. Parasitol. 2024, 331, 110272. [Google Scholar] [CrossRef]
- Lyons, E.T.; Tolliver, S.C.; Ionita, M.; Collins, S.S. Evaluation of parasiticidal activity of fenbendazole, ivermectin, oxibendazole, and pyrantel pamoate in horse foals with emphasis on ascarids (Parascaris equorum) in field studies on five farms in Central Kentucky in 2007. Parasitol. Res. 2008, 103, 287–291. [Google Scholar] [CrossRef]
- Kuzmina, T.A.; Kharchenko, V.O. Anthelmintic resistance in cyathostomins of brood horses in Ukraine and influence of anthelmintic treatments on strongylid community structure. Vet. Parasitol. 2008, 154, 277–288. [Google Scholar] [CrossRef]
- Felippelli, G.; Cruz, B.C.; Gomes, L.V.C.; Lopes, W.D.Z.; Teixeira, W.F.P.; Maciel, W.G.; Buzzulini, C.; Bichuette, M.A.; Campos, G.P.; Soares, V.E.; et al. Susceptibility of helminth species from horses against different chemical compounds in Brazil. Vet. Parasitol. 2015, 212, 232–238. [Google Scholar] [CrossRef] [PubMed]
- Goh, G.S.-L.; Tang, Z.Y.; Xie, S. Effectiveness of neem oil versus Praziquantel/Oxfendazole for treatment of endoparasites in Eared Doves (Zenaida auriculata): A randomized controlled trial. J. Exot. Pet. Med. 2020, 35, 87–91. [Google Scholar] [CrossRef]
- Odhiambo, R.S.; Patrick, K.G.; Helen, K.L.; Gathu, N.C.; Francis, N.K.; Richard, W.W. Evaluation of in vitro ovicidal activity of ethanolic extracts of Prosopis juliflora (Sw.) DC (Fabaceae). J. Pharm. Biol. Sci. 2014, 9, 15–18. [Google Scholar] [CrossRef]
- Makkar, H.P.S.; Francis, G.; Becker, K. Bioactivity of phytochemicals in some lesser-known plants and their effects and potential applications in livestock and aquaculture production systems. Animal 2007, 1, 1371–1391. [Google Scholar] [CrossRef] [PubMed]
- Borges, D.G.L.; Echeverria, J.T.; de Oliveira, T.L.; Heckler, R.P.; de Freitas, M.G.; Damasceno-Junior, G.A.; Carollo, C.A.; Borges, F.d.A.J.P.O. Discovery of potential ovicidal natural products using metabolomics. PLoS ONE 2019, 14, e0211237. [Google Scholar] [CrossRef]
- Nguyen, T.M.; Binh, D.V.; Ørskov, E.R. Effect of foliages containing condensed tannins and on gastrointestinal parasites. Anim. Feed. Sci. Technol. 2005, 121, 77–87. [Google Scholar] [CrossRef]
- Min, B.R.; Hart, S.P. Tannins for suppression of internal parasites. J. Anim. Sci. 2003, 81, E102–E109. [Google Scholar] [CrossRef]
- Hoste, H.; Torres-Acosta, J.F.J.; Sandoval-Castro, C.A.; Mueller-Harvey, I.; Sotiraki, S.; Louvandini, H.; Thamsborg, S.M.; Terrill, T.H. Tannin containing legumes as a model for nutraceuticals against digestive parasites in livestock. Vet. Parasitol. 2015, 212, 5–17. [Google Scholar] [CrossRef]
- Hoste, H.; Jackson, F.; Athanasiadou, S.; Thamsborg, S.M.; Hoskin, S.O. The effects of tannin-rich plants on parasitic nematodes in ruminants. Trends Parasitol. 2006, 22, 253–261. [Google Scholar] [CrossRef]
- El-Keblawy, A.; Al-Rawai, A. Impacts of the invasive exotic Prosopis juliflora (Sw.) D.C. on the native flora and soils of the UAE. Plant Ecol. 2007, 190, 23–35. [Google Scholar] [CrossRef]
- Tadros, M.J.; Al-Assaf, A.; Othman, Y.A.; Makhamreh, Z.; Taifour, H. Evaluating the Effect of Prosopis juliflora, an Alien Invasive Species, on Land Cover Change Using Remote Sensing Approach. Sustainability 2020, 12, 5887. [Google Scholar] [CrossRef]
- Fayrer-Hosken, R.; Heusner, G.; Hill, N.; Caudle, A. Review on Effects of Fescue Grass Ergot Alkaloids in the Horse and Preliminary Study on Effect of Fescue Grass Ergot Alkaloid in the Stallion. J. Equine Vet. Sci. 2008, 28, 666–671. [Google Scholar] [CrossRef]
- Poppenga, R.H. Risks Associated with the Use of Herbs and Other Dietary Supplements. Vet. Clin. N. Am. Equine Pract. 2001, 17, 455–477. [Google Scholar] [CrossRef] [PubMed]
- Silva, V.D.A.; Pitanga, B.P.S.; Nascimento, R.P.; Souza, C.S.; Coelho, P.L.C.; Menezes-Filho, N.; Silva, A.M.M.; Costa, M.d.F.D.; El-Bachá, R.S.; Velozo, E.S.; et al. Juliprosopine and Juliprosine from Prosopis juliflora Leaves Induce Mitochondrial Damage and Cytoplasmic Vacuolation on Cocultured Glial Cells and Neurons. Chem. Res. Toxicol. 2013, 26, 1810–1820. [Google Scholar] [CrossRef]
- Maioli, M.A.; Lemos, D.E.C.V.; Guelfi, M.; Medeiros, H.C.D.; Riet-Correa, F.; Medeiros, R.M.T.; Barbosa-Filho, J.M.; Mingatto, F.E. Mechanism for the uncoupling of oxidative phosphorylation by juliprosopine on rat brain mitochondria. Toxicon 2012, 60, 1355–1362. [Google Scholar] [CrossRef]
Phytochemical Compound | Concentration (% on DM) | Location | Examples | Function | Reference |
---|---|---|---|---|---|
Alkaloids | ~3.6 | Leaves, Pods, Seeds | Juliprosin, Juliflorin, Isojuliprosin, Piperidine, Juliflorin (juliprosopina), julifloricin, julifloridine | Antimicrobial activity, Cytotoxicity, improved digestion in livestock, neuroprotective potential | [51] |
Flavonoids | ~16 | Leaves, Flowers, Bark | 4′-O-methylgallocatechin, Mesquitol | Antioxidant, Anti-inflammatory, Cardioprotective, Cancer prevention, Neuroprotective | [52] |
Saponins | ~2.2 | Leaves, Root | Aescin, Dioscin | Antimicrobial, Antioxidant, Antimalarial, Insecticidal | [53] |
Phenols | ~0.66 | Leaves, Pods, Flowers | Affeic acid, chlorogenic acid | Antioxidant, Anti-inflammatory, Anticancer | [53] |
Tannins | ~0.33 | Roots, Leaves | Catechin, Epicatechin | Antimicrobial, Antioxidant, Anti-inflammatory, Anticancer | [54] |
Terpenoids | ~1.0 | Leaves, Flowers | Limonene, Beta-caryophyllene | Anti-inflammatory, Anticancer, Antimicrobial | [43,55] |
Sterols | ~0.5 | Leaves, Stem | β-sitosterol, Stigmasterol | Antiinflammatory, Cardiovascular protection | [56,57] |
Lignans | ~0.2 | Pods, Seeds | Secoisolariciresinol, Matairesinol | Antioxidant, Antitumoral, Hormonal balance | [58,59] |
Acidic phenols | ~0.2 | Leaves, Pods | Caffeic acid, Ferulic acid | Antioxidant, Anti-inflammatory | [60] |
Glycosides | ~0.3 | Leaves, Pods | Stevioside, Aucubin | Antidiabetic, Antiallergic, Antioxidant | [59] |
Chemical Compound | Examples | Concentration | Impact as an Antiparasitic | Resistance | Reference |
---|---|---|---|---|---|
Macrocyclic lactones | Ivermectin | 0.2 mg/kg | Decreased egg count | Present resistance, controlled with rotation | [54,66,68] |
Moxidectin | 0.4 mg/kg | Effective against larvae stages | - | [54] | |
Doramectin | 0.2 mg/kg | Targeted strongyles and ascaridis | Emerging resistance | [51] | |
Tetrahydropyrimidines | Pyrantelpamoate | 19 mg/kg | Effective against adult strongyles | Present resistance in certain populations | [52,65,69] |
Benzidamizoles | Fenbendazole | 5–10 mg/kg | Reduced strongyle egg counts | Present resistance, controlled by rotation | [52,69,70,71] |
Oxibendazole | 7.5 mg/kg | Reduced Parascaris equorum eggs | Resistance in foals | [52,72] | |
Albendazole | 7.5 mg/kg | Broad-spectrum efficacy | Emerging resistance in some regions | [73] | |
Organophosphates | Trichlorfon | 25 mg/kg | Effective against bots | Limited resistance reported | [74] |
Phytochemical-based antiparasitics | Neem oil | 1–5% solution | Inhibits larval development | No resistance observed yet | [75] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodriguez Velazquez, D.; Forte, L.; Varela Guerrero, J.A.; Díaz Alvarado, T.; Elghandour, M.M.M.Y.; Maggiolino, A.; De Palo, P.; Salem, A.Z.M. Could Mesquite (Prosopis juliflora) Help Control Gastrointestinal Parasites in Horses? Animals 2025, 15, 1245. https://doi.org/10.3390/ani15091245
Rodriguez Velazquez D, Forte L, Varela Guerrero JA, Díaz Alvarado T, Elghandour MMMY, Maggiolino A, De Palo P, Salem AZM. Could Mesquite (Prosopis juliflora) Help Control Gastrointestinal Parasites in Horses? Animals. 2025; 15(9):1245. https://doi.org/10.3390/ani15091245
Chicago/Turabian StyleRodriguez Velazquez, Desiderio, Lucrezia Forte, Jorge Antonio Varela Guerrero, Tonantzin Díaz Alvarado, Mona M. M. Y. Elghandour, Aristide Maggiolino, Pasquale De Palo, and Abdelfattah Z. M. Salem. 2025. "Could Mesquite (Prosopis juliflora) Help Control Gastrointestinal Parasites in Horses?" Animals 15, no. 9: 1245. https://doi.org/10.3390/ani15091245
APA StyleRodriguez Velazquez, D., Forte, L., Varela Guerrero, J. A., Díaz Alvarado, T., Elghandour, M. M. M. Y., Maggiolino, A., De Palo, P., & Salem, A. Z. M. (2025). Could Mesquite (Prosopis juliflora) Help Control Gastrointestinal Parasites in Horses? Animals, 15(9), 1245. https://doi.org/10.3390/ani15091245