Anti-Nutritional Factors of Plant Protein Feeds for Ruminants and Methods for Their Elimination
Simple Summary
Abstract
1. Introduction
2. Overview of Plant Protein Feeds and ANFs
2.1. ANFs in SBM
2.1.1. Soybean Antigenic Protein
2.1.2. Protease Inhibitors
2.1.3. Soybean Agglutinin
2.1.4. Tannins
2.1.5. Phytic Acid
2.1.6. Non-Starch Polysaccharides
2.1.7. ANFs in Miscellaneous Meals
2.1.8. Gossypol
2.1.9. Glucosinolates
3. Advances in ANF Elimination Methods
3.1. Physical Methods
3.2. Chemical Methods
3.3. Biological Methods
3.3.1. Enzymatic Method
3.3.2. Microbial Degradation
4. Prospects
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ANFs | Anti-Nutritional Factors |
SBM | Soybean Meal |
RSM | Rapeseed Meal |
CSM | Cottonseed Meal |
TIs | Trypsin Inhibitors |
BBI | Bowman-Birk Inhibitor |
KTI | Kunitz Inhibitor |
SBA | Soybean Agglutinin |
HTs | Hydrolysed Tannins |
CTs | Condensed Tannins |
PA | Phytic Acid |
NSPs | Non-Starch Polysaccharides |
FG | Free Gossypol |
OZT | Oxazolidinethione |
ITC | Isothiocyanate |
EB | Electron Beam |
GR | Gamma Ray |
ADF | Acid Detergent Fibres |
References
- Kim, T.-I.; Mayakrishnan, V.; Lim, D.-H.; Yeon, J.-H.; Baek, K.-S. Effect of Fermented Total Mixed Rations on the Growth Performance, Carcass and Meat Quality Characteristics of Hanwoo Steers. Anim. Sci. J. 2018, 89, 606–615. [Google Scholar] [CrossRef] [PubMed]
- Górka, P.; Penner, G.B. Rapeseed and Canola Meal as Protein Sources in Starter Diets for Calves: Current Knowledge and Directions of Future Studies. Ank. Üniversitesi Vet. Fakültesi Derg. 2020, 67, 313–321. [Google Scholar] [CrossRef]
- Di, D.; He, S.; Zhang, R.; Gao, K.; Qiu, M.; Li, X.; Sun, H.; Xue, S.; Shi, J. Exploring the Dual Role of Anti-Nutritional Factors in Soybeans: A Comprehensive Analysis of Health Risks and Benefits. Crit. Rev. Food Sci. Nutr. 2024, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Bondi, A.; Alumot, E. Anti-Nutritive Factors in Animal Feedstuffs and Their Effects on Livestock. Prog. Food Nutr. Sci. 1987, 11, 115–151. [Google Scholar]
- Yusuf, H.A.; Piao, M.; Ma, T.; Huo, R.; Tu, Y. Enhancing the Quality of Total Mixed Ration Containing Cottonseed or Rapeseed Meal by Optimization of Fermentation Conditions. Fermentation 2021, 7, 234. [Google Scholar] [CrossRef]
- Santosh, S.; Raghavendra, K.P.; Velmourougane, K.; Mageshwaran, V.; Blaise, D.; Waghmare, V.N. Microbial Detoxification of Gossypol in Cotton Seed Meal by Solid Substrate Fermentation. Int. J. Curr. Microbiol. App. Sci. 2020, 9, 1654–1663. [Google Scholar] [CrossRef]
- Heendeniya, R.G.; Christensen, D.A.; Maenz, D.D.; McKinnon, J.J.; Yu, P. Protein Fractionation Byproduct from Canola Meal for Dairy Cattle. J. Dairy Sci. 2012, 95, 4488–4500. [Google Scholar] [CrossRef]
- Enneking, D.; Wink, M. Towards the Elimination of Anti-Nutritional Factors in Grain Legumes. In Linking Research and Marketing Opportunities for Pulses in the 21st Century: Proceedings of the Third International Food Legumes Research Conference; Knight, R., Ed.; Springer: Dordrecht, The Netherlands, 2000; pp. 671–683. ISBN 978-94-011-4385-1. [Google Scholar]
- Tao, A.; Wang, J.; Luo, B.; Liu, B.; Wang, Z.; Chen, X.; Zou, T.; Chen, J.; You, J. Research Progress on Cottonseed Meal as a Protein Source in Pig Nutrition: An Updated Review. Anim. Nutr. 2024, 18, 220–233. [Google Scholar] [CrossRef]
- Yin, X.; Chen, M.; Yang, C.; Duan, C.; Ji, S.; Yan, H.; Liu, Y.; Zhang, Y. Effects of Replacing Soybean Meal with Cottonseed Meal, Peanut Meal, Rapeseed Meal, or Distillers’ Dried Grains with Solubles on the Growth Performance, Nutrient Digestibility, Serum Parameters, and Rumen Fermentation in Growing Lambs. Vet. Sci. 2024, 11, 322. [Google Scholar] [CrossRef]
- Wang, L.; Liu, Y.; Zhang, D.; Ding, H.; Feng, S.; Zhao, C.; Wu, J.; Wang, X. Soybean Antigen Protein-Induced Intestinal Barrier Damage by Trigging Endoplasmic Reticulum Stress and Disordering Gut Microbiota in Weaned Piglets. Molecules 2023, 28, 6500. [Google Scholar] [CrossRef]
- Ogawa, T.; Bando, N.; Tsuji, H.; Nishikawa, K.; Kitamura, K. α-Subunit of β-Conglycinin, an Allergenic Protein Recognized by IgE Antibodies of Soybean-Sensitive Patients with Atopic Dermatitis. Biosci. Biotechnol. Biochem. 1995, 59, 831–833. [Google Scholar] [CrossRef] [PubMed]
- Zheng, S.; Qin, G.; Tian, H.; Zhang, F. Three-Dimensional Structure of Gly m 5 (β-Conglycinin) Plays an Important Role in Its Stability and Overall Allergenicity. Food Chem. 2017, 234, 381–388. [Google Scholar] [CrossRef] [PubMed]
- Arsov, A.; Tsigoriyna, L.; Batovska, D.; Armenova, N.; Mu, W.; Zhang, W.; Petrov, K.; Petrova, P. Bacterial Degradation of Antinutrients in Foods: The Genomic Insight. Foods 2024, 13, 2408. [Google Scholar] [CrossRef] [PubMed]
- Lin, P.; Ye, X.; Ng, T. Purification of Melibiose-Binding Lectins from Two Cultivars of Chinese Black Soybeans. Acta Biochim. Biophys. Sin. 2008, 40, 1029–1038. [Google Scholar] [CrossRef]
- Lam, S.K.; Ng, T.B. Lectins: Production and Practical Applications. Appl. Microbiol. Biotechnol. 2011, 89, 45–55. [Google Scholar] [CrossRef]
- Tianjiao, E.; Xu, C.; Fan, X.; Liu, J.; Zhao, J.; Bao, N.; Zhao, Y.; Farouk, M.H.; Ji, Y.; Wu, Z.; et al. Soybean Agglutinin Induced Apoptotic Effects by Down-Regulating ANXA2 Through FAK Pathway in IPEC-J2 Cells. J. Anim. Physiol. Anim. Nutr. 2024, 109, 350–361. [Google Scholar] [CrossRef]
- Lalles, J.P.; Tukur, H.M.; Toullec, R.; Miller, B.G. Analytical Criteria for Predicting Apparent Digestibility of Soybean Protein in Preruminant Calves. J. Dairy Sci. 1996, 79, 475–482. [Google Scholar] [CrossRef]
- Besharati, M.; Maggiolino, A.; Palangi, V.; Kaya, A.; Jabbar, M.; Eseceli, H.; De Palo, P.; Lorenzo, J.M. Tannin in Ruminant Nutrition: Review. Molecules 2022, 27, 8273. [Google Scholar] [CrossRef]
- Biagia, G.; Cipollini, I.; Paulicks, B.R.; Roth, F.X. Effect of Tannins on Growth Performance and Intestinal Ecosystem in Weaned Piglets. Arch. Anim. Nutr. 2010, 64, 121–135. [Google Scholar] [CrossRef]
- Khajali, F.; Slominski, B.A. Factors That Affect the Nutritive Value of Canola Meal for Poultry. Poult. Sci. 2012, 91, 2564–2575. [Google Scholar] [CrossRef]
- Sun, X.; Tiffany, D.G.; Urriola, P.E.; Shurson, G.G.; Hu, B. Nutrition Upgrading of Corn-Ethanol Co-Product by Fungal Fermentation: Amino Acids Enrichment and Anti-Nutritional Factors Degradation. Food Bioprod. Process. 2021, 130, 1–13. [Google Scholar] [CrossRef]
- Kiszonas, A.M.; Fuerst, E.P.; Morris, C.F. Wheat Arabinoxylan Structure Provides Insight into Function. Cereal Chem. 2013, 90, 387–395. [Google Scholar] [CrossRef]
- Chio, C.; Sain, M.; Qin, W. Lignin Utilization: A Review of Lignin Depolymerization from Various Aspects. Renew. Sustain. Energy Rev. 2019, 107, 232–249. [Google Scholar] [CrossRef]
- Wee, M.S.M.; Henry, C.J. Reducing the Glycemic Impact of Carbohydrates on Foods and Meals: Strategies for the Food Industry and Consumers with Special Focus on Asia. Compr. Rev. Food Sci. Food Saf. 2020, 19, 670–702. [Google Scholar] [CrossRef] [PubMed]
- Marcobal, A.M.; McConnell, B.R.; Drexler, R.A.; Ng, K.M.; Maldonado-Gomez, M.X.; Conner, A.M.S.; Vierra, C.G.; Krishnakumar, N.; Gerber, H.M.; Garcia, J.K.A.; et al. Highly Soluble β-Glucan Fiber Modulates Mechanisms of Blood Glucose Regulation and Intestinal Permeability. Nutrients 2024, 16, 2240. [Google Scholar] [CrossRef]
- Recharla, N.; Kim, D.; Ramani, S.; Song, M.; Park, J.; Balasubramanian, B.; Puligundla, P.; Park, S. Dietary Multi-Enzyme Complex Improves In Vitro Nutrient Digestibility and Hind Gut Microbial Fermentation of Pigs. PLoS ONE 2019, 14, e0217459. [Google Scholar] [CrossRef]
- Basini, G.; Bussolati, S.; Baioni, L.; Grasselli, F. Gossypol, a Polyphenolic Aldehyde from Cotton Plant, Interferes with Swine Granulosa Cell Function. Domest. Anim. Endocrinol. 2009, 37, 30–36. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, L.; Zhao, L.; Zhang, Y. Structure, Properties of Gossypol and Its Derivatives—From Physiological Activities to Drug Discovery and Drug Design. Nat. Prod. Rep. 2022, 39, 1282–1304. [Google Scholar] [CrossRef]
- Ma, M.; Ren, Y.; Xie, W.; Zhou, D.; Tang, S.; Kuang, M.; Wang, Y.; Du, S. Physicochemical and Functional Properties of Protein Isolate Obtained from Cottonseed Meal. Food Chem. 2018, 240, 856–862. [Google Scholar] [CrossRef]
- Noftsger, S.M.; Hopkins, B.A.; Diaz, D.E.; Brownie, C.; Whitlow, L.W. Effect of Whole and Expanded-Expelled Cottonseed on Milk Yield and Blood Gossypol. J. Dairy Sci. 2000, 83, 2539–2547. [Google Scholar] [CrossRef]
- Paim, T.; Viana, P.; Brandão, E.; Amador, S.; Barbosa, T.; Cardoso, C.; Lucci, C.; DeSouza, J.; Mcmanus, C.; Abdalla, A.; et al. Impact of Feeding Cottonseed Coproducts on Reproductive System of Male Sheep during Peripubertal Period. Sci. Agric. 2016, 73, 489–497. [Google Scholar] [CrossRef]
- Yadav, S.; Teng, P.-Y.; Choi, J.; Singh, A.K.; Vaddu, S.; Thippareddi, H.; Kim, W.K. Influence of Rapeseed, Canola Meal and Glucosinolate Metabolite (AITC) as Potential Antimicrobials: Effects on Growth Performance, and Gut Health in Salmonella Typhimurium Challenged Broiler Chickens. Poult. Sci. 2022, 101, 101551. [Google Scholar] [CrossRef] [PubMed]
- Wlazło, Ł.; Kowalska, D.; Bielański, P.; Chmielowiec-Korzeniowska, A.; Ossowski, M.; Łukaszewicz, M.; Czech, A.; Nowakowicz-Dębek, B. Effect of Fermented Rapeseed Meal on the Gastrointestinal Microbiota and Immune Status of Rabbit (Oryctolagus cuniculus). Animals 2021, 11, 716. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.W.; Kim, I.H.; Woyengo, T.A. Toxicity of Canola-Derived Glucosinolate Degradation Products in Pigs—A Review. Animals 2020, 10, 2337. [Google Scholar] [CrossRef]
- Hamadi, S.; Salari, S.; Aghaei, A.; Ghorbani, M.R. Changes in Performance and Apparent Ileal Digestibility of Broiler Chickens Fed Diets Containing Electron-Irradiated Full-Fat Canola Seed. Radiat. Phys. Chem. 2023, 210, 111046. [Google Scholar] [CrossRef]
- Hajiazizi, F.; Sadeghi, A.; Ibrahim, S. Camelina sativa (L. Crantz) Products; an Alternative Feed Ingredient for Poultry Diets with Its Nutritional and Physiological Consequences. Trop. Anim. Health Prod. 2024, 56, 59. [Google Scholar] [CrossRef]
- Grela, E.R.; Czech, A.; Kiesz, M.; Wlazło, Ł.; Nowakowicz-Dębek, B. A Fermented Rapeseed Meal Additive: Effects on Production Performance, Nutrient Digestibility, Colostrum Immunoglobulin Content and Microbial Flora in Sows. Anim. Nutr. 2019, 5, 373–379. [Google Scholar] [CrossRef]
- Kelly, D.; O’Brien, J.J.; McCracken, K.J. Effect of Creep Feeding on the Incidence, Duration and Severity of Post-Weaning Diarrhoea in Pigs. Res. Vet. Sci. 1990, 49, 223–228. [Google Scholar] [CrossRef]
- Hampson, D.J.; Smith, W.C. Influence of Creep Feeding and Dietary Intake after Weaning on Malabsorption and Occurrence of Diarrhoea in the Newly Weaned Pig. Res. Vet. Sci. 1986, 41, 63–69. [Google Scholar] [CrossRef]
- Peng, C.; Cao, C.; He, M.; Shu, Y.; Tang, X.; Wang, Y.; Zhang, Y.; Xia, X.; Li, Y.; Wu, J. Soybean Glycinin- and β-Conglycinin-Induced Intestinal Damage in Piglets via the P38/JNK/NF-κB Signaling Pathway. J. Agric. Food Chem. 2018, 66, 9534–9541. [Google Scholar] [CrossRef]
- Deng, H.; Ye, T.; Deng, Y.; Cui, Y.; Guo, H.; Deng, J. miRNA Expression Analysis of IPEC-J2 Cells Damaged by Soybean 7S Globulin Reveals Ssc-miR-221-5p as the Factor Alleviating Cell Damage. J. Agric. Food Chem. 2024, 72, 11694–11705. [Google Scholar] [CrossRef] [PubMed]
- Gillman, J.D.; Kim, W.-S.; Krishnan, H.B. Identification of a New Soybean Kunitz Trypsin Inhibitor Mutation and Its Effect on Bowman-Birk Protease Inhibitor Content in Soybean Seed. J. Agric. Food Chem. 2015, 63, 1352–1359. [Google Scholar] [CrossRef] [PubMed]
- Moreau, T.; Recoules, E.; De Pauw, M.; Labas, V.; Réhault-Godbert, S. Evidence That the Bowman-Birk Inhibitor from Pisum Sativum Affects Intestinal Proteolytic Activities in Chickens. Poult. Sci. 2024, 103, 103182. [Google Scholar] [CrossRef] [PubMed]
- Kabir, S.R.; Rahman, M.M.; Amin, R.; Karim, M.R.; Mahmud, Z.H.; Hossain, M.T. Solanum Tuberosum Lectin Inhibits Ehrlich Ascites Carcinoma Cells Growth by Inducing Apoptosis and G2/M Cell Cycle Arrest. Tumour Biol. 2016, 37, 8437–8444. [Google Scholar] [CrossRef]
- Qiao, W.-L.; Hu, H.-Y.; Shi, B.-W.; Zang, L.-J.; Jin, W.; Lin, Q. Lentivirus-Mediated Knockdown of TSP50 Suppresses the Growth of Non-Small Cell Lung Cancer Cells via G0/G1 Phase Arrest. Oncol. Rep. 2016, 35, 3409–3418. [Google Scholar] [CrossRef]
- Xu, H.; Fu, J.; Luo, Y.; Li, P.; Song, B.; Lv, Z.; Guo, Y. Effects of Tannic Acid on the Immunity and Intestinal Health of Broiler Chickens with Necrotic Enteritis Infection. J. Anim. Sci. Biotechnol. 2023, 14, 72. [Google Scholar] [CrossRef]
- Soares, S.; Brandão, E.; Guerreiro, C.; Soares, S.; Mateus, N.; De Freitas, V. Tannins in Food: Insights into the Molecular Perception of Astringency and Bitter Taste. Molecules 2020, 25, 2590. [Google Scholar] [CrossRef]
- Bee, G.; Silacci, P.; Ampuero-Kragten, S.; Čandek-Potokar, M.; Wealleans, A.L.; Litten-Brown, J.; Salminen, J.-P.; Mueller-Harvey, I. Hydrolysable Tannin-Based Diet Rich in Gallotannins Has a Minimal Impact on Pig Performance but Significantly Reduces Salivary and Bulbourethral Gland Size. Animal 2017, 11, 1617–1625. [Google Scholar] [CrossRef]
- Li, J.; Gao, T.; Hao, Z.; Guo, X.; Zhu, B. Anaerobic Solid-State Fermentation with Bacillus Subtilis for Digesting Free Gossypol and Improving Nutritional Quality in Cottonseed Meal. Front. Nutr. 2022, 9, 1017637. [Google Scholar] [CrossRef]
- Rathore, K.; Pandeya, D.; Campbell, L.; Wedegaertner, T.; Puckhaber, L.; Stipanovic, R.; Thenell, S.; Hague, S.; Hake, K. Ultra-Low Gossypol Cottonseed: Selective Gene Silencing Opens Up a Vast Resource of Plant-Based Protein to Improve Human Nutrition. Crit. Rev. Plant Sci. 2020, 39, 2539–2547. [Google Scholar] [CrossRef]
- Chen, Z.; Li, S.; Fu, Y.; Li, C.; Chen, D.; Chen, H. Arabinoxylan Structural Characteristics, Interaction with Gut Microbiota and Potential Health Functions. J. Funct. Foods 2019, 54, 536–551. [Google Scholar] [CrossRef]
- Ravindran, V.; Cabahug, S.; Ravindra, G.; Selle, P.H.; Bryden, W.L. Response of Broiler Chickens to Microbial Phytase Supplementation as Influenced by Dietary Phytic Acid and Non-Phytate Phosphorous Levels. II. Effects on Apparent Metabolisable Energy, Nutrient Digestibility and Nutrient Retention. Br. Poult. Sci. 2000, 41, 193–200. [Google Scholar] [CrossRef] [PubMed]
- Babatunde, O.O.; Bello, A.; Dersjant-Li, Y.; Adeola, O. Evaluation of the Responses of Broiler Chickens to Varying Concentrations of Phytate Phosphorus and Phytase. Ⅱ. Grower Phase (Day 12–23 Post Hatching). Poult. Sci. 2022, 101, 101616. [Google Scholar] [CrossRef] [PubMed]
- Darambazar, E.; Damiran, D.; Beaulieu, D. Effect of Hydrothermal, Phytase, or Organic Acid Pretreatments of Canola Meal on Phytate Level of the Meal. Sustain. Agric. Res. 2019, 8, 35. [Google Scholar] [CrossRef]
- Samtiya, M.; Aluko, R.E.; Dhewa, T. Plant Food Anti-Nutritional Factors and Their Reduction Strategies: An Overview. Food Prod. Process Nutr. 2020, 2, 6. [Google Scholar] [CrossRef]
- Xie, C.; Li, W.; Gao, R.; Yan, L.; Wang, P.; Gu, Z.; Yang, R. Determination of Glucosinolates in Rapeseed Meal and Their Degradation by Myrosinase from Rapeseed Sprouts. Food Chem. 2022, 382, 132316. [Google Scholar] [CrossRef]
- Korompokis, K.; De Brier, N.; Delcour, J.A. Differences in Endosperm Cell Wall Integrity in Wheat (Triticum aestivum L.) Milling Fractions Impact on the Way Starch Responds to Gelatinization and Pasting Treatments and Its Subsequent Enzymatic in Vitro Digestibility. Food Funct. 2019, 10, 4674–4684. [Google Scholar] [CrossRef]
- Andrade, J.C.; Mandarino, J.M.G.; Kurozawa, L.E.; Ida, E.I. The Effect of Thermal Treatment of Whole Soybean Flour on the Conversion of Isoflavones and Inactivation of Trypsin Inhibitors. Food Chem. 2016, 194, 1095–1101. [Google Scholar] [CrossRef]
- Jensen, S.K.; Liu, Y.-G.; Eggum, B.O. The Effect of Heat Treatment on Glucosinolates and Nutritional Value of Rapeseed Meal in Rats. Anim. Feed Sci. Technol. 1995, 53, 17–28. [Google Scholar] [CrossRef]
- Duodu, C.P.; Adjei-Boateng, D.; Edziyie, R.E.; Agbo, N.W.; Owusu-Boateng, G.; Larsen, B.K.; Skov, P.V. Processing Techniques of Selected Oilseed By-Products of Potential Use in Animal Feed: Effects on Proximate Nutrient Composition, Amino Acid Profile and Antinutrients. Anim. Nutr. 2018, 4, 442–451. [Google Scholar] [CrossRef]
- Acosta, J.A.; Petry, A.L.; Gould, S.A.; Jones, C.K.; Stark, C.R.; Fahrenholz, A.; Patience, J.F. Effects of Grinding Method and Particle Size of Wheat Grain on Energy and Nutrient Digestibility in Growing and Finishing Pigs. Transl. Anim. Sci. 2020, 4, txaa062. [Google Scholar] [CrossRef] [PubMed]
- Bornaei, L.; Salari, S.; Erfani Majd, N. Effect of Electron Beam Irradiated Barley Grains on Growth Performance, Blood Parameters, Nutrient Digestibility, Microbial Population, and Intestinal Histomorphometry in Broiler Chickens. J. Appl. Anim. Res. 2022, 50, 408–419. [Google Scholar] [CrossRef]
- Bahraini, Z.; Salari, S.; Sari, M.; Fayazi, J.; Behgar, M. Effect of Radiation on Chemical Composition and Protein Quality of Cottonseed Meal. Anim. Sci. J. 2017, 88, 1425–1435. [Google Scholar] [CrossRef] [PubMed]
- Soetan, K.O.; Oyewole, O.E. The Need for Adequate Processing to Reduce the Anti-Nutritional Factors in Plants Used as Human Foods and Animal Feeds: A Review. Afr. J. Food Sci. 2009, 3, 223–232. [Google Scholar]
- Nikmaram, N.; Leong, S.Y.; Koubaa, M.; Zhu, Z.; Barba, F.J.; Greiner, R.; Oey, I.; Roohinejad, S. Effect of Extrusion on the Anti-Nutritional Factors of Food Products: An Overview. Food Control 2017, 79, 62–73. [Google Scholar] [CrossRef]
- Alonso, R.; Aguirre, A.; Marzo, F. Effects of Extrusion and Traditional Processing Methods on Antinutrients and in Vitro Digestibility of Protein and Starch in Faba and Kidney Beans. Food Chem. 2000, 68, 159–165. [Google Scholar] [CrossRef]
- Rodriguez, D.A.; Lee, S.A.; Jones, C.K.; Htoo, J.K.; Stein, H.H. Digestibility of Amino Acids, Fiber, and Energy by Growing Pigs, and Concentrations of Digestible and Metabolizable Energy in Yellow Dent Corn, Hard Red Winter Wheat, and Sorghum May Be Influenced by Extrusion. Anim. Feed Sci. Technol. 2020, 268, 114602. [Google Scholar] [CrossRef]
- Barraza, M.L.; Coppock, C.E.; Brooks, K.N.; Wilks, D.L.; Saunders, R.G.; Latimer, G.W. Iron Sulfate and Feed Pelleting to Detoxify Free Gossypol in Cottonseed Diets for Dairy Cattle1. J. Dairy Sci. 1991, 74, 3457–3467. [Google Scholar] [CrossRef]
- Bhattacharjee, P.; Singhal, R.S.; Tiwari, S.R. Supercritical Carbon Dioxide Extraction of Cottonseed Oil. J. Food Eng. 2007, 79, 892–898. [Google Scholar] [CrossRef]
- Pelitire, S.M.; Dowd, M.K.; Cheng, H.N. Acidic Solvent Extraction of Gossypol from Cottonseed Meal. Anim. Feed Sci. Technol. 2014, 195, 120–128. [Google Scholar] [CrossRef]
- Dersjant-Li, Y.; Awati, A.; Schulze, H.; Partridge, G. Phytase in Non-Ruminant Animal Nutrition: A Critical Review on Phytase Activities in the Gastrointestinal Tract and Influencing Factors. J. Sci. Food Agric. 2015, 95, 878–896. [Google Scholar] [CrossRef] [PubMed]
- Kryukov, V.S.; Glebova, I.V.; Zinoviev, S.V. Reevaluation of Phytase Action Mechanism in Animal Nutrition. Biochemistry 2021, 86, S152–S165. [Google Scholar] [CrossRef]
- Jorquera, M.; Martínez, O.; Maruyama, F.; Marschner, P.; de la Luz Mora, M. Current and Future Biotechnological Applications of Bacterial Phytases and Phytase-Producing Bacteria. Microbes Environ. 2008, 23, 182–191. [Google Scholar] [CrossRef] [PubMed]
- Olukomaiya, O.; Fernando, C.; Mereddy, R.; Li, X.; Sultanbawa, Y. Solid-State Fermented Plant Protein Sources in the Diets of Broiler Chickens: A Review. Anim. Nutr. 2019, 5, 319–330. [Google Scholar] [CrossRef] [PubMed]
- Missotten, J.A.; Michiels, J.; Degroote, J.; De Smet, S. Fermented Liquid Feed for Pigs: An Ancient Technique for the Future. J. Anim. Sci. Biotechnol. 2015, 6, 4. [Google Scholar] [CrossRef]
- Canibe, N.; Jensen, B.B. Fermented Liquid Feed—Microbial and Nutritional Aspects and Impact on Enteric Diseases in Pigs. Anim. Feed Sci. Technol. 2012, 173, 17–40. [Google Scholar] [CrossRef]
- Yang, L.; Zeng, X.; Qiao, S. Advances in Research on Solid-State Fermented Feed and Its Utilization: The Pioneer of Private Customization for Intestinal Microorganisms. Anim. Nutr. 2021, 7, 905–916. [Google Scholar] [CrossRef]
- Zheng, L.; Li, D.; Li, Z.-L.; Kang, L.-N.; Jiang, Y.-Y.; Liu, X.-Y.; Chi, Y.-P.; Li, Y.-Q.; Wang, J.-H. Effects of Bacillus Fermentation on the Protein Microstructure and Anti-Nutritional Factors of Soybean Meal. Lett. Appl. Microbiol. 2017, 65, 520–526. [Google Scholar] [CrossRef]
- O’Meara, F.M.; Gardiner, G.E.; O’Doherty, J.V.; Clarke, D.; Cummins, W.; Lawlor, P.G. Effect of Wet/Dry, Fresh Liquid, Fermented Whole Diet Liquid, and Fermented Cereal Liquid Feeding on Feed Microbial Quality and Growth in Grow-Finisher Pigs. J. Anim. Sci. 2020, 98, skaa166. [Google Scholar] [CrossRef]
- Dujardin, M.; Elain, A.; Lendormi, T.; Le Fellic, M.; Le Treut, Y.; Sire, O. Keeping under Control a Liquid Feed Fermentation Process for Pigs: A Reality Scale Pilot Based Study. Anim. Feed Sci. Technol. 2014, 194, 81–88. [Google Scholar] [CrossRef]
- Pandey, A. Solid-State Fermentation. Biochem. Eng. J. 2003, 13, 81–84. [Google Scholar] [CrossRef]
- Verni, M.; Rizzello, C.G.; Coda, R. Fermentation Biotechnology Applied to Cereal Industry By-Products: Nutritional and Functional Insights. Front. Nutr. 2019, 6, 42. [Google Scholar] [CrossRef] [PubMed]
- Huws, S.A.; Creevey, C.J.; Oyama, L.B.; Mizrahi, I.; Denman, S.E.; Popova, M.; Muñoz-Tamayo, R.; Forano, E.; Waters, S.M.; Hess, M.; et al. Addressing Global Ruminant Agricultural Challenges Through Understanding the Rumen Microbiome: Past, Present, and Future. Front. Microbiol. 2018, 9, 2161. [Google Scholar] [CrossRef] [PubMed]
- Garrido-Galand, S.; Asensio-Grau, A.; Calvo-Lerma, J.; Heredia, A.; Andrés, A. The Potential of Fermentation on Nutritional and Technological Improvement of Cereal and Legume Flours: A Review. Food Res. Int. 2021, 145, 110398. [Google Scholar] [CrossRef]
- Chi, C.-H.; Cho, S.-J. Improvement of Bioactivity of Soybean Meal by Solid-State Fermentation with Bacillus Amyloliquefaciens versus Lactobacillus Spp. and Saccharomyces Cerevisiae. LWT Food Sci. Technol. 2016, 68, 619–625. [Google Scholar] [CrossRef]
- Wang, Z.; Yu, Y.; Li, X.; Xiao, H.; Zhang, P.; Shen, W.; Wan, F.; He, J.; Tang, S.; Tan, Z.; et al. Fermented Soybean Meal Replacement in the Diet of Lactating Holstein Dairy Cows: Modulated Rumen Fermentation and Ruminal Microflora. Front. Microbiol. 2021, 12, 625857. [Google Scholar] [CrossRef]
- Kim, M.H.; Yun, C.H.; Kim, H.S.; Kim, J.H.; Kang, S.J.; Lee, C.H.; Ko, J.Y.; Ha, J.K. Effects of Fermented Soybean Meal on Growth Performance, Diarrheal Incidence and Immune-Response of Neonatal Calves. Anim. Sci. J. 2010, 81, 475–481. [Google Scholar] [CrossRef]
- Shi, C.; Zhang, Y.; Yin, Y.; Wang, C.; Lu, Z.; Wang, F.; Feng, J.; Wang, Y. Amino Acid and Phosphorus Digestibility of Fermented Corn-Soybean Meal Mixed Feed with Bacillus Subtilis and Enterococcus Faecium Fed to Pigs. J. Anim. Sci. 2017, 95, 3996–4004. [Google Scholar] [CrossRef]
- Khalaf, M.A.; Meleigy, S.A. Reduction of Free Gossypol Levels in Cottonseed Meal by Microbial Treatment. Int. J. Agric. Biol. 2008, 10, 1560–8530. [Google Scholar]
- Olukomaiya, O.O.; Fernando, W.C.; Mereddy, R.; Li, X.; Sultanbawa, Y. Solid-State Fermentation of Canola Meal with Aspergillus Sojae, Aspergillus Ficuum and Their Co-Cultures: Effects on Physicochemical, Microbiological and Functional Properties. LWT 2020, 127, 109362. [Google Scholar] [CrossRef]
- Dzialo, M.C.; Park, R.; Steensels, J.; Lievens, B.; Verstrepen, K.J. Physiology, Ecology and Industrial Applications of Aroma Formation in Yeast. FEMS Microbiol. Rev. 2017, 41, S95–S128. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, R.; Chakraborty, R.; Dutta, A. Role of Fermentation in Improving Nutritional Quality of Soybean Meal—A Review. Asian-Australas. J. Anim. Sci. 2016, 29, 1523–1529. [Google Scholar] [CrossRef] [PubMed]
- Murekatete, N.; Hua, Y.; Kong, X.; Zhang, C. Effects of Fermentation on Nutritional and Functional Properties of Soybean, Maize, and Germinated Sorghum Composite Flour. Int. J. Food Eng. 2012, 8, 1–15. [Google Scholar] [CrossRef]
- Deng, W.; Dong, X.F.; Tong, J.M.; Zhang, Q. The Probiotic Bacillus Licheniformis Ameliorates Heat Stress-Induced Impairment of Egg Production, Gut Morphology, and Intestinal Mucosal Immunity in Laying Hens. Poult. Sci. 2012, 91, 575–582. [Google Scholar] [CrossRef]
- Mi, H.; Ren, A.; Zhu, J.; Ran, T.; Shen, W.; Zhou, C.; Zhang, B.; Tan, Z. Effects of Different Protein Sources on Nutrient Disappearance, Rumen Fermentation Parameters and Microbiota in Dual-Flow Continuous Culture System. AMB Express 2022, 12, 15. [Google Scholar] [CrossRef]
- Zhang, Z.; Yang, D.; Liu, L.; Chang, Z.; Peng, N. Effective Gossypol Removal from Cottonseed Meal through Optimized Solid-State Fermentation by Bacillus Coagulans. Microb. Cell Factories 2022, 21, 252. [Google Scholar] [CrossRef]
- Qi, N.; Zhan, X.; Milmine, J.; Sahar, M.; Chang, K.-H.; Li, J. Isolation and Characterization of a Novel Hydrolase-Producing Probiotic Bacillus Licheniformis and Its Application in the Fermentation of Soybean Meal. Front. Nutr. 2023, 10, 1123422. [Google Scholar] [CrossRef]
- Chen, L.; Zhao, Z.; Yu, W.; Zheng, L.; Li, L.; Gu, W.; Xu, H.; Wei, B.; Yan, X. Nutritional Quality Improvement of Soybean Meal by Bacillus Velezensis and Lactobacillus Plantarum during Two-Stage Solid-State Fermentation. AMB Express 2021, 11, 23. [Google Scholar] [CrossRef]
- Ranjan, A.; Sahu, N.P.; Deo, A.D.; Kumar, S. Solid State Fermentation of De-Oiled Rice Bran: Effect on in Vitro Protein Digestibility, Fatty Acid Profile and Anti-Nutritional Factors. Food Res. Int. 2019, 119, 1–5. [Google Scholar] [CrossRef]
- Jain, J.; Kumar, A.; Singh, D.; Singh, B. Purification and Kinetics of a Protease-Resistant, Neutral, and Thermostable Phytase from Bacillus Subtilis Subsp. Subtilis JJBS250 Ameliorating Food Nutrition. Prep. Biochem. Biotechnol. 2018, 48, 718–724. [Google Scholar] [CrossRef]
- Ashayerizadeh, A.; Dastar, B.; Shams Shargh, M.; Sadeghi Mahoonak, A.; Zerehdaran, S. Fermented Rapeseed Meal Is Effective in Controlling Salmonella Enterica Serovar Typhimurium Infection and Improving Growth Performance in Broiler Chicks. Vet. Microbiol. 2017, 201, 93–102. [Google Scholar] [CrossRef] [PubMed]
- Puyo, M.; Simonin, S.; Klein, G.; David-Vaizant, V.; Quijada-Morín, N.; Alexandre, H.; Tourdot-Maréchal, R. Use of Oenological Tannins to Protect the Colour of Rosé Wine in a Bioprotection Strategy with Metschnikowia Pulcherrima. Foods 2023, 12, 735. [Google Scholar] [CrossRef] [PubMed]
- Refstie, S.; Sahlström, S.; Bråthen, E.; Baeverfjord, G.; Krogedal, P. Lactic Acid Fermentation Eliminates Indigestible Carbohydrates and Antinutritional Factors in Soybean Meal for Atlantic Salmon (Salmo Salar). Aquaculture 2005, 246, 331–345. [Google Scholar] [CrossRef]
- Wang, W.-K.; Li, W.-J.; Wu, Q.-C.; Wang, Y.-L.; Li, S.-L.; Yang, H.-J. Isolation and Identification of a Rumen Lactobacillus Bacteria and Its Degradation Potential of Gossypol in Cottonseed Meal during Solid-State Fermentation. Microorganisms 2021, 9, 2200. [Google Scholar] [CrossRef]
- Ezekiel, C.N.; Ayeni, K.I.; Ezeokoli, O.T.; Sulyok, M.; van Wyk, D.A.B.; Oyedele, O.A.; Akinyemi, O.M.; Chibuzor-Onyema, I.E.; Adeleke, R.A.; Nwangburuka, C.C.; et al. High-Throughput Sequence Analyses of Bacterial Communities and Multi-Mycotoxin Profiling During Processing of Different Formulations of Kunu, a Traditional Fermented Beverage. Front. Microbiol. 2018, 9, 3282. [Google Scholar] [CrossRef]
ANFs | Anti-Nutritional Mechanisms | References |
---|---|---|
Soybean antigenic protein | It can cross the epithelium of the small intestine and enter the internal circulatory system, activating the immune response and promoting the production of specific antibodies by B-cells, leading to intestinal allergy and disruption of the intestinal barrier, which can lead to diarrhoea and a decline in production performance. | [12,39,40,41,42] |
Protease inhibitors | It binds to the active site of trypsin to form a stable inhibitory complex, which renders trypsin and pancreatic rennet ineffective, thereby affecting the growth rate of the animal and possibly leading to abnormal pancreatic function. | [43,44] |
SBA | SBA disrupts the intestinal flora environment and negatively affects the immune system by inhibiting the intestinal production of immunoglobulin A (IgA). SBA also acts by inducing apoptosis through the FAK signalling pathway. | [17,45,46] |
Tannins | High levels of tannins react with salivary mucins to bring about astringency, which in turn reduces their intake and decreases the efficiency of nutrient transport by the intestinal mucosa. Tannins also affect the metabolism of indole compounds and androstenone in animals, which in turn affects the development of the secondary gonads. | [47,48,49] |
Gossypol | FG inhibits cardiovascular diastole and contraction, hinders neurotransmitter transmission, complexes with amino acids, and reduces lysine utilisation efficiency. FG causes loss of electrical rhythm in animals, leading to heart failure. FG affects the function of various enzymes, alters the nature of cell membranes, forms a strong bond with metal ions, and interferes with the bioavailability of mineral elements. | [6,28,50,51] |
NSPs | They have a complex structure that requires the simultaneous presence of multiple digestive enzymes for degradation, so they are less fermentable in the digestive tract. Insoluble cellulose consists of glucose linked by β-1,4-glycosidic bonds, which cannot interact with water after the formation of hydrogen bonds and is therefore degraded at a slower rate. | [25,26,52] |
PA | PA has the ability to reduce the bioavailability of some essential minerals by chelating with divalent or multivalent metal ions (e.g., zinc, calcium, copper) to form insoluble PA salts. PA also directly affects the activity of digestive enzymes, such as proteases and amylases, which can inhibit protein breakdown and absorption during rumen fermentation in ruminants. | [53,54,55,56] |
Glucosinolates | Glucosinolates hydrolysed to produce thiocyanate, isothiocyanate, and oxazolidinethione, which affects thyroid development and hormone secretion in animals. | [35,57] |
ANFs | Microbiological Species | Experimental Methods | Effects | References |
---|---|---|---|---|
Soybean antigenic protein | Bacillus licheniformis | SBM fermented for 24 h | Soybean antigenic protein reduced by 25.5% | [98] |
Soybean antigenic protein | Bacillus cereus | SBM fermented for 24 h | Soybean antigenic protein reduced by 68.14% | [99] |
Protease inhibitors | Planctomyces militaris | De-oiled rice bran fermented for 3 d | TIs reduced by 24.8% | [100] |
Protease inhibitors | Bacillus Siamensis jl8 | SBM fermented for 24 h | TIs reduced by 95.01% | [79] |
PA | Bacillus subtilis | Wheat flour fermentation for 24 h | PA content reduced by 55% | [101] |
Glucosinolates | Lactobacillus acidophilus | RSM fermented for 25 d | Glucosinolates levels decreased by 67.81% | [102] |
Tannins | Saccharomyces cerevisiae | SBM incubated at 28 °C for 48 h | Tannin degradation rate of 37.9% | [103] |
NSPs | Lactobacillus plantarum | SBM fermented for 48 h | NSPs decreased by 39.15% | [104] |
NSPs | Bacillus licheniformis B4 | SBM fermented for 48 h | NSPs decreased by 30.20% | [98] |
Gossypol | Bacillus coagulans | CSM fermented for 14 d | The detoxification efficiency of FG was 93.46% | [97] |
Gossypol | Lactobacillus agalactiae | CSM anaerobically fermented for 5 d | The detoxification efficiency of FG was 80% | [105] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, Z.; Liu, Z.; Zhou, C.; Tan, Z. Anti-Nutritional Factors of Plant Protein Feeds for Ruminants and Methods for Their Elimination. Animals 2025, 15, 1107. https://doi.org/10.3390/ani15081107
Yan Z, Liu Z, Zhou C, Tan Z. Anti-Nutritional Factors of Plant Protein Feeds for Ruminants and Methods for Their Elimination. Animals. 2025; 15(8):1107. https://doi.org/10.3390/ani15081107
Chicago/Turabian StyleYan, Zhiyong, Zixin Liu, Chuanshe Zhou, and Zhiliang Tan. 2025. "Anti-Nutritional Factors of Plant Protein Feeds for Ruminants and Methods for Their Elimination" Animals 15, no. 8: 1107. https://doi.org/10.3390/ani15081107
APA StyleYan, Z., Liu, Z., Zhou, C., & Tan, Z. (2025). Anti-Nutritional Factors of Plant Protein Feeds for Ruminants and Methods for Their Elimination. Animals, 15(8), 1107. https://doi.org/10.3390/ani15081107