Partial Replacement of Soyabean Meal with Defatted Black Soldier Fly (Hermetia illucens L.) Larvae Meal Influences Blood Biochemistry and Modulate Oxidative Stress, but Not Growth Performance of Pigs
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Insect Meal and Experimental Diets
2.2. Animals, Experimental Design, and Sample Collection
2.3. Laboratory Analyses
2.3.1. Feed, BSFLM, and Faeces
2.3.2. Haematological Variables
2.3.3. Antioxidant and Oxidative Damage Indicators
2.3.4. Products of Protein and Lipid Oxidation
2.3.5. Inflammatory Markers
2.4. Calculations
2.5. Statistical Analysis
3. Results
3.1. Insect Meal
3.2. Growth Performance, Digestible Energy, and Nutrient Digestibility
3.3. Haematological Variables
3.4. Antioxidant and Oxidative Damage Indicators
3.5. Products of Protein and Lipid Oxidation
3.6. Inflammatory Markers (Cytokines)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chia, S.Y.; Tanga, C.M.; Osuga, I.M.; Alaru, A.O.; Mwangi, D.M.; Githinji, M.; Subramanian, S.; Fiaboe, K.K.; Ekesi, S.; van Loon, J.J.; et al. Effect of dietary replacement of fishmeal by insect meal on growth performance, blood profiles and economics of growing pigs in Kenya. Animals 2019, 9, 705. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Rose, S.P.; Yang, H.M.; Pirgozliev, V.; Wang, Z.Y. Egg production in China. World’s Poult. Sci. J. 2018, 74, 417–426. [Google Scholar] [CrossRef]
- Statista. Global Pork Production by Country 2024. Available online: https://www.statista.com/statistics/273232/net-pork-production-worldwide-by-country/ (accessed on 27 February 2025).
- DiGiacomo, K.; Leury, B.J. Insect meal: A future source of protein feed for pigs? Animal 2019, 13, 3022–3030. [Google Scholar] [CrossRef] [PubMed]
- Esteves, V.P.P.; Esteves, E.M.M.; Bungenstab, D.J.; Loebmann, D.G.D.S.W.; Victoria, C.; Vicente, L.E.; Araújo, Q.F.; Morgado, R.V. Land use change (LUC) analysis and life cycle assessment (LCA) of Brazilian soybean biodiesel. Clean Technol. Environ. Policy 2016, 18, 1655–1673. [Google Scholar] [CrossRef]
- Garofalo, D.F.T.; Novaes, R.M.L.; Pazianotto, R.A.; Maciel, V.G.; Brandão, M.; Shimbo, J.Z.; Folegatti-Matsuura, M.I. Land-use change CO2 emissions associated with agricultural products at municipal level in Brazil. J. Clean. Prod. 2022, 364, 132549. [Google Scholar] [CrossRef]
- Grossi, S.; Massa, V.; Giorgino, A.; Rossi, L.; Dell’Anno, M.; Pinotti, L.; Avidano, F.; Compiani, R.; Rossi, C.A.S. Feeding Bakery Former Foodstuffs and Wheat Distiller’s as Partial Replacement for Corn and Soybean Enhances the Environmental Sustainability and Circularity of Beef Cattle Farming. Sustainability 2022, 14, 4908. [Google Scholar] [CrossRef]
- IDH&IUCN NL. European Soy Monitor. Researched by B. Kuepper and M. Riemersma of Profundo. IDH, The Sustainable Trade Initiative and IUCN. National Committee of the Netherlands. 2020. Available online: https://www.idhsustainabletrade.com/uploaded/2019/04/European-Soy-Monitor.pdf (accessed on 7 August 2024).
- Makkar, H.P.; Tran, G.; Heuzé, V.; Ankers, P. State-of-the-art on use of insects as animal feed. Anim. Feed Sci. Technol. 2014, 197, 1–33. [Google Scholar] [CrossRef]
- Sheppard, D.C.; Newton, G.L.; Thompson, S.A.; Savage, S. A value added manure management system using the black soldier fly. Bioresour. Technol. 1994, 50, 275–279. [Google Scholar] [CrossRef]
- Nguyen, T.T.X.; Tomberlin, J.K.; Vanlaerhoven, S. Influence of resources on Hermetia illucens (Diptera: Stratiomyidae) larval development. J. Med. Entomol. 2013, 50, 898–906. [Google Scholar] [CrossRef]
- Myers, H.M.; Tomberlin, J.K.; Lambert, B.D.; Kattes, D. Development of black soldier fly (Diptera: Stratiomyidae) larvae fed dairy manure. Environ. Entomol. 2008, 37, 11–15. [Google Scholar] [CrossRef]
- Chobanova, S.; Karkelanov, N.; Mansbridge, S.C.; Whiting, I.M.; Simic, A.; Rose, S.P.; Pirgozliev, V.R. Defatted black soldier fly larvae meal as an alternative to soybean meal for broiler chickens. Poultry 2023, 2, 430–441. [Google Scholar] [CrossRef]
- Mahmoud, A.E.; Morel, P.C.H.; Potter, M.A.; Ravindran, V. The apparent metabolisable energy and ileal amino digestibility of black soldier fly (Hermetia illucens) larvae meal for broiler chickens. Br. Poult. Sci. 2023, 64, 377–383. [Google Scholar]
- De Marco, M.; Martínez, S.; Hernandez, F.; Madrid, J.; Gai, F.; Rotolo, L.; Belforti, M.; Bergero, D.; Atz, H.; Dabbou, S. Nutritional Value of Two Insect Larval Meals (Tenebrio molitor and Hermetia illucens) for Broiler Chickens: Apparent Nutrient Digestibility, Apparent Ileal Amino Acid Digestibility and Apparent Metabolizable Energy. Anim. Feed Sci. Technol. 2015, 209, 211–218. [Google Scholar] [CrossRef]
- Kieronczyk, B.; Rawski, M.; Stuper-Szablewska, K.; Józefiak, D. First report of the apparent metabolisable energy value of black soldier fly larvae fat used in broiler chicken diets. Animal 2022, 16, 100656. [Google Scholar] [CrossRef]
- Chobanova, S.; Karkelanov, N.; Mansbridge, S.C.; Whiting, I.M.; Tukša, M.; Rose, S.P.; Pirgozliev, V.R. Metabolizable energy value of fat and meals obtained from black soldier fly larvae (Hermetia illucens) for broiler chickens. Poultry 2024, 3, 298–306. [Google Scholar] [CrossRef]
- Yordanova, G.; Nedeva, R.D.; Apostolov, A.P.; Whiting, I.M.; Mansbridge, S.C.; Rose, S.P.; Pirgozliev, V.R. Estimation of the digestible energy value of fat obtained from black soldier fly larvae (Hermetia illucens) for growing pigs. Arch. Anim. Nutr. 2024, 78, 315–324. [Google Scholar] [CrossRef]
- Onsongo, V.O.; Osuga, I.M.; Gachuiri, C.K.; Wachira, A.M.; Miano, D.M.; Tanga, C.M.; Ekesi, S.; Nakimbugwe, D.; Fiaboe, K.K.M. Insects for income generation through animal feed: Effect of dietary replacement of soybean and fish meal with black soldier fly meal on broiler growth and economic performance. J. Econ. Entomol. 2018, 111, 1966–1973. [Google Scholar] [CrossRef]
- Marono, S.; Loponte, R.; Lombardi, P.; Vassalotti, G.; Pero, M.E.; Russo, F.; Gasco, L.; Parisi, G.; Piccolo, G.; Nizza, S.; et al. Productive performance and blood profiles of laying hens fed Hermetia illucens larvae meal as total replacement of soybean meal from 24 to 45 weeks of age. Poult. Sci. 2017, 96, 1783–1790. [Google Scholar] [CrossRef]
- Bovera, F.; Loponte, R.; Pero, M.E.; Cutrignelli, M.I.; Calabrò, S.; Musco, N.; Vassalotti, G.; Panettieri, V.; Lombardi, P.; Piccolo, G.; et al. Laying performance, blood profiles, nutrient digestibility and inner organs traits of hens fed an insect meal from Hermetia illucens larvae. Res. Vet. Sci. 2018, 120, 86–93. [Google Scholar] [CrossRef]
- Dumas, A.; Raggi, T.; Barkhouse, J.; Lewis, E.; Weltzien, E. The oil fraction and partially defatted meal of black soldier fly larvae (Hermetia illucens) affect differently growth performance, feed efficiency, nutrient deposition, blood glucose and lipid digestibility of rainbow trout (Oncorhynchus mykiss). Aquaculture 2018, 492, 24–34. [Google Scholar]
- Devic, E.; Leschen, W.; Murray, F.; Little, D.C. Growth performance, feed utilization and body composition of advanced nursing Nile tilapia (Oreochromis niloticus) fed diets containing black soldier fly (Hermetia illucens) larvae meal. Aquacult. Nutr. 2018, 24, 416–423. [Google Scholar]
- Zarantoniello, M.; Bruni, L.; Randazzo, B.; Vargas, A.; Gioacchini, G.; Truzzi, C.; Annibaldi, A.; Riolo, P.; Parisi, G.; Cardinaletti, G.; et al. Partial dietary inclusion of Hermetia illucens (black soldier fly) full-fat prepupae in Zebrafish feed: Biometric, histological, biochemical, and molecular implications. Zebrafish 2018, 15, 519–532. [Google Scholar] [PubMed]
- Maurer, V.; Holinger, M.; Amsler, Z.; Früh, B.; Wohlfahrt, J.; Stamer, A.; Leiber, F. Replacement of soybean cake by Hermetia illucens meal in diets for layers. J. Insects Food Feed 2015, 2, 83–90. [Google Scholar]
- Schiavone, A.; Cullere, M.; De Marco, M.; Meneguz, M.; Biasato, I.; Bergagna, S.; Dezzutto, D.; Gai, F.; Dabbou, S.; Gasco, L.; et al. Partial or total replacement of soybean oil by black soldier fly larvae (Hermetia illucens L.) fat in broiler diets: Effect on growth performances, feed-choice, blood traits, carcass characteristics and meat quality. Ital. J. Anim. Sci. 2017, 16, 93–100. [Google Scholar]
- Newton, G.L.; Booram, C.V.; Barker, R.W.; Hale, O.M. Dried Hermetia illucens larvae meal as a supplement for Swine. J. Anim. Sci. 1977, 44, 395–400. [Google Scholar]
- Newton, L.A.; Sheppard, C.R.; Watson, D.W.; Burtle, G.A.; Dove, R.O. Using the Black Soldier Fly, Hermetia illucens, as a Value-Added Tool for the Management of Swine Manure; Animal and Poultry Waste Management Center, North Carolina State University: Raleigh, NC, USA, 2005. [Google Scholar]
- Spranghers, T.; Michiels, J.; Vrancx, J.; Ovyn, A.; Eeckhout, M.; De Clercq, P.; De Smet, S. Gut antimicrobial effects and nutritional value of black soldier fly (Hermetia illucens L.) pre-pupae for weaned piglets. Anim. Feed Sci. Technol. 2018, 235, 33–42. [Google Scholar]
- Biasato, I.; Renna, M.; Gai, F.; Dabbou, S.; Meneguz, M.; Perona, G.; Martinez, S.; Lajusticia, A.C.; Bergagna, S.; Sardi, L.; et al. Partially defatted black soldier fly larva meal inclusion in piglet diets: Effects on the growth performance, nutrient digestibility, blood profile, gut morphology and histological features. J. Anim. Sci. Biotechnol. 2019, 10, 12. [Google Scholar]
- Boontiam, W.; Phaengphairee, P.; Hong, J.; Kim, Y.Y. Full-fatted Hermetia illucens larva as a protein alternative: Effects on weaning pig growth performance, gut health, and antioxidant status under poor sanitary conditions. J. Appl. Anim. Res. 2022, 50, 732–739. [Google Scholar]
- Etim, N.N.; Offiong, E.E.A.; Williams, M.E.; Asuquo, L.E. Influence of nutrition on blood parameters of pigs. Am. J. Biol. Life Sci. 2014, 2, 46–52. [Google Scholar]
- Wilson, G.D.A.; Harvey, D.G.; Snook, C.R. A review of factors affecting blood biochemistry in the pig. Br. Vet. J. 1972, 128, 596–610. [Google Scholar]
- Shanmugam, A.A.; Muliya, S.K.; Deshmukh, A.; Suresh, S.; Nath, A.; Kalaignan, P.; Venkatramappa, M.; Jose, L. Baseline hematology and serum biochemistry results for Indian leopards (Panthera pardus fusca). Vet. World 2017, 10, 818–824. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Liu, M.; Wei, Y.; Li, L.; Ma, D.; Weng, Y.; Wang, H.; Xu, X. Influence of a mixture of protein hydrolysate from Black Soldier fly larvae and Schizochytrium on palatability, plasma biochemistry, and antioxidative and anti-inflammatory capacity in cat diets. Animals 2024, 14, 751. [Google Scholar] [CrossRef]
- European Commission (EC). No 1069/2009 of the European Parliament and the Council of 21 October 2009 Laying Down Health Rules as Regards Animal by-Products and Derived Products Not Intended for Human Consumption and Repealing Regulation (EC) No 1774/2002 (Animal by-Products Regulation); European Union: Brussels, Belgium, 2009. [Google Scholar]
- European Commission (EC). Directive 2010/63/EU of the European parliament and the council of 22 September 2010 on the protection of animals used for scientific purposes. Off. J. Eur. Union 2010, L276, 33–79. Available online: http://data.europa.eu/eli/dir/2010/63/oj (accessed on 19 December 2014).
- Percie du Sert, N.; Hurst, V.; Ahluwalia, A.; Alam, S.; Avey, M.T.; Baker, M.; Browne, W.J.; Clark, A.; Cuthill, I.C.; Dirnagl, U.; et al. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. J. Cereb. Blood Flow Metab. 2020, 40, 1769–1777. [Google Scholar] [CrossRef]
- Adeola, O. Chapter 40: Digestion and balance techniques in pigs. In Swine Nutrition, 2nd ed.; Lewis, A.J., Lee Southern, J., Eds.; CRC press: Boca Raton, FL, USA, 2001; pp. 923–936. [Google Scholar]
- Zhang, F.; Adeola, O. Techniques for evaluating digestibility of energy, amino acids, phosphorus, and calcium in feed ingredients for pigs. Anim. Nutr. 2017, 3, 344–352. [Google Scholar] [CrossRef]
- Yordanova, G.; Nenova, R.; Apostolov, A.; Nedeva, R. Effect of the use of autolyzed brewer’s yeast in compound feeds for weaned pigs. Bulg. J. Anim. Husb. Zivotn. Nauk. 2023, 60, 50–57. [Google Scholar]
- Jacobs, B.M.; Patience, J.F.; Dozier III, W.A.; Stalder, K.J.; Kerr, B.J. Effects of drying methods on nitrogen and energy concentrations in pig feces and urine, and poultry excreta. J. Anim. Sci. 2011, 89, 2624–2630. [Google Scholar] [CrossRef]
- Tanner, S.D.; Baranov, V.I.; Bandura, D.R. Reaction cells and collision cells for ICP-MS: A tutorial review. Spectrochim. Acta Part B At. Spectrosc. 2002, 57, 1361–1452. [Google Scholar] [CrossRef]
- AOAC (Association of Analytical Communities). Official Method of Analysis, 18th ed.; AOAC International: Gaithersburg, MD, USA, 2006. [Google Scholar]
- Pirgozliev, V.R.; Rose, S.P.; Kettlewell, P.S. Effect of ambient storage of wheat samples on their nutritive value for chickens. Br. Poult. Sci. 2006, 47, 342–349. [Google Scholar] [CrossRef]
- ISO 13903: 2005; Animal Feeding Stuffs: Determination of Amino Acids Content. British Dtandards; International Organization for Standardization (ISO): Geneva, Switzerland, 2005. [CrossRef]
- Van Keulen, J.Y.B.A.; Young, B.A. Evaluation of acid-insoluble ash as a natural marker in ruminant digestibility studies. J. Anim. Sci. 1977, 44, 282–287. [Google Scholar] [CrossRef]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [PubMed]
- Hahn, T.; Roth, A.; Febel, E.; Fijalkowska, M.; Schmitt, E.; Arsiwalla, T.; Zibek, S. New methods for high-accuracy insect chitin measurement. J. Sci. Food Agric. 2018, 98, 5069–5073. [Google Scholar] [PubMed]
- Georgiev, T.; Nikolova, G.; Dyakova, V.; Karamalakova, Y.; Georgieva, E.; Ananiev, J.; Ivanov, V.; Hadzhibozheva, P. Vitamin E and silymarin reduce oxidative tissue damage during gentamycin-induced nephrotoxicity. Pharmaceuticals 2023, 16, 1365. [Google Scholar] [CrossRef]
- Buettner, G.R.; Jurkiewicz, B.A. Ascorbate free-radical as a marker of oxidative stress—An EPR study. Free Radic. Biol. Med. 1993, 14, 49–55. [Google Scholar]
- Yoshioka, T.; Iwamoto, N.; Ito, K. An application of Electron Paramagnetic Resonance to evaluate nitric oxide and its quenchers. J. Am. Soc. Nephrol. 1996, 7, 961–965. [Google Scholar] [PubMed]
- Yokoyama, K.; Hashiba, K.; Wakabayashi, H.; Hashimoto, K.; Saton, K.; Kurihara, T.; Motohashi, N.; Sakagami, H. Inhibition of LPS-stimulated NO production in mouse macrophage-like cells by Tropolones. Anticancer. Res. 2004, 24, 3917–3922. [Google Scholar]
- Shi, H.; Sui, Y.; Wang, X.; Luo, Y.; Ji, L. Hydroxyl radical production and oxidative damage induced by cadmium and naphthalene in liver of Carassius auratus. Comp. Biochem. Phys. Part C Toxicol. Pharmacol. 2005, 140, 115–121. [Google Scholar]
- Gamede, M.; Mabuza, L.; Ngubane, P.; Khathi, A. Preventing the onset of diabetes-induced chronic kidney disease during prediabetes: The effects of oleanolic acid on selected markers of chronic kidney disease in a diet-induced prediabetic rat model. Biomed. Pharmacother. 2021, 139, 111570. [Google Scholar] [CrossRef]
- Karamalakova, Y.; Stefanov, I.; Georgieva, E.; Nikolova, G. Pulmonary protein oxidation and oxidative stress modulation by Lemna minor L. in progressive bleomycin-induced idiopathic pulmonary fibrosis. Antioxidants 2022, 11, 523. [Google Scholar] [CrossRef]
- Cullere, M.; Tasoniero, G.; Giaccone, V.; Miotti-Scapin, R.; Claeys, E.; De Smet, S.; DalleZotte, A. Black soldier fly as dietary protein source for broiler quails: Apparent digestibility, excreta microbial load, feed choice, performance, carcass and meat traits. Animal 2016, 10, 1923–1930. [Google Scholar] [CrossRef]
- Matin, N.; Utterback, P.; Parsons, C. True metabolizable energy and amino acid digestibility of black soldier fly larvae meals, cricket meal, and mealworms using a precision-fed rooster assay. Poult. Sci. 2021, 100, 101146. [Google Scholar]
- Sealey, W.M.; Gaylord, T.G.; Barrows, F.T.; Tomberlin, J.K.; McGuire, M.A.; Ross, C.; St-Hilaire, S. Sensory analysis of rainbow trout, Oncorhynchus mykiss, fed enriched black soldier fly pre-pupae, Hermetia illucens. J. World Aquac. Soc. 2011, 42, 34–45. [Google Scholar] [CrossRef]
- Hartinger, K.; Greinix, J.; Thaler, N.; Ebbing, M.A.; Yacoubi, N.; Schedle, K.; Gierus, M. Effect of graded substitution of soybean meal by Hermetia illucens larvae meal on animal performance, apparent ileal digestibility, gut histology and microbial metabolites of broilers. Animals 2021, 11, 1628. [Google Scholar] [CrossRef] [PubMed]
- Facey, H.; Kithama, M.; Mohammadigheisar, M.; Huber, L.A.; Shoveller, A.K.; Kiarie, E.G. Complete replacement of soybean meal with black soldier fly larvae meal in feeding program for broiler chickens from placement through to 49 days of age reduced growth performance and altered organs morphology. Poult. Sci. 2023, 102, 102293. [Google Scholar] [PubMed]
- Friendship, R.M.; Lumsden, J.H.; McMillan, I.; Wilson, M.R. Hematology and biochemistry reference values for Ontario swine. Can. J. Comp. Med. 1984, 48, 390–393. [Google Scholar] [PubMed]
- Nathan, C. Neutrophils and immunity: Challenges and opportunities. Nat. Rev. Immunol. 2006, 6, 173–182. [Google Scholar]
- Skrivanova, E.; Marounek, M.; Benda, V.; Brezina, P. Susceptibility of Escherichia coli, Salmonella sp. and Clostridium perfringens to organic acids and monolaurin. Vet. Med. 2006, 51, 81–88. [Google Scholar]
- Ahlante, B.O.; Afiukwa, J.N.; Ajay, O.I. The dietary effects of coconut oil on the leucocytes and neutrophils count in rabbits. J. Ecophysiol. Occup. Health 2010, 10, 143–148. [Google Scholar]
- Jozefiak, A.; Engberg, R.M. Insect proteins as a potential source of antimicrobial peptides in livestock production. A review. J. Anim. Feed. Sci. 2017, 26, 87–99. [Google Scholar]
- Fariz Zahir Ali, M.; Ohta, T.; Ido, A.; Miura, C.; Miura, T. The dipterose of black soldier fly (Hermetia illucens) induces innate immune response through toll-like receptor pathway in mouse macrophage RAW264.7 cells. Biomolecules 2019, 9, 677. [Google Scholar] [CrossRef]
- Li, Y.; Xiang, Q.; Zhang, Q.; Huang, Y.; Su, Z. Review: Overview on the recent study of antimicrobial peptides: Origins, functions, relative mechanisms and application. Peptides 2012, 37, 207–215. [Google Scholar]
- Zhao, L.; Kwon, M.J.; Huang, S.; Lee, J.Y.; Fukase, K.; Inohara, N.; Hwang, D.H. Differential modulation of Nods signaling pathways by fatty acids in human colonic epithelial HCT116 cells. J. Biol. Chem. 2007, 282, 11618–11628. [Google Scholar] [PubMed]
Proximate and Carbohydrate Composition (g/kg) | Indispensable Amino Acids (g/kg) | ||
---|---|---|---|
Dry matter | 972.7 | Arginine | 21.36 |
Gross energy (MJ/kg) | 21.15 | Histidine | 17.21 |
Crude protein (N × 5.60) | 454 | Isoleucine | 20.43 |
Crude fat | 171 | Leucine | 33.31 |
Ash | 122 | Lysine | 32.61 |
Acid detergent fibre | 79.5 | Methionine | 9.08 |
Acid detergent lignin | 20.4 | Phenylalanine | 20.75 |
Chitin | 59.1 | Threonine | 18.92 |
Minerals | Valine | 29.21 | |
Boron (mg/kg) | 3.4 | Tryptophane | 7.68 |
Calcium (g/kg) | 39.7 | Dispensable amino acids (g/kg) | |
Cobalt (mg/kg) | 0.09 | Alanine | 30.38 |
Copper (mg/kg) | 23.9 | Aspartic acid | 47.41 |
Magnesium (g/kg) | 4.0 | Cystine | 3.32 |
Manganese (mg/kg) | 132.3 | Glycine | 25.09 |
Molybdenum (mg/kg) | 0.9 | Glutamic acid | 46.89 |
Phosphorus (g/kg) | 11.9 | Proline | 24.93 |
Potassium (g/kg) | 13.5 | Serine | 19.54 |
Selenium (mg/kg) | 0.3 | Tyrosine | 30.36 |
Sodium (mg/kg) | 77.0 | ||
Sulphur (g/kg) | 4.3 | ||
Zinc (mg/kg) | 120.7 |
Ingredients (g/kg)/Diets | T0 | T30 | T60 | T90 | T120 |
---|---|---|---|---|---|
Maize | 200.0 | 200.0 | 200.0 | 200.0 | 200.0 |
Wheat | 347.8 | 349.1 | 351.7 | 354.2 | 356.5 |
Barley | 200.0 | 200.0 | 200.0 | 200.0 | 200.0 |
Soybean meal | 228.0 | 199.0 | 169.0 | 139.0 | 109.0 |
BSFLM a | 0.0 | 30.0 | 60.0 | 90.0 | 120.0 |
Lysine | 1.1 | 0.8 | 0.5 | 0.3 | 0.0 |
Premix b | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 |
Limestone | 6.0 | 4.5 | 3.0 | 1.5 | 0.0 |
Dicalcium phosphate | 12.5 | 12.0 | 11.2 | 10.5 | 10.0 |
Salt | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 |
Sunflower oil | 0.11 | 0.08 | 0.06 | 0.03 | 0.00 |
Total | 1000.00 | 1000.00 | 1000.00 | 1000.00 | 1000.00 |
Calculated values | |||||
Digestible energy (MJ/kg) | 13.40 | 13.38 | 13.41 | 13.40 | 13.39 |
Crude protein (g/kg) | 175.3 | 175.4 | 175.4 | 175.2 | 175.1 |
Lysine (g/kg) | 9.2 | 9.2 | 9.2 | 9.2 | 9.2 |
Ca (g/kg) | 8.4 | 8.5 | 8.4 | 8.4 | 8.5 |
P (g/kg) | 5.9 | 6.0 | 5.9 | 5.9 | 6.0 |
Ingredients/Diets | T0 | T30 | T60 | T90 | T120 |
---|---|---|---|---|---|
Gross energy (MJ/kg) | 16.84 | 16.85 | 17.11 | 17.07 | 17.01 |
Dry matter (g/kg) | 897.4 | 890.9 | 903.3 | 894.1 | 907.2 |
Crude protein (g/kg) | 163.1 | 166.4 | 170.8 | 172.3 | 167.3 |
Crude fat (g/kg) | 21.2 | 24.7 | 29.4 | 33.6 | 34.0 |
Total fibres (g/kg) | 39.7 | 49.0 | 43.9 | 36.2 | 37.7 |
Acid detergent fibres (g/kg) | 59.0 | 60.5 | 65.0 | 53.5 | 55.0 |
Acid detergent lignin (g/kg) | 27.5 | 24.0 | 33.2 | 19.6 | 29.5 |
Calcium (g/kg) | 9.13 | 8.83 | 8.62 | 9.19 | 8.56 |
Total Phosphorus (g/kg) | 7.70 | 7.44 | 7.85 | 6.83 | 7.67 |
Indispensable amino acids (g/kg) | |||||
Arginine | 12.23 | 11.19 | 10.37 | 8.87 | 10.06 |
Histidine | 6.17 | 6.28 | 7.13 | 6.55 | 6.18 |
Isoleucine | 8.09 | 7.70 | 7.76 | 7.11 | 7.52 |
Leucine | 14.95 | 14.09 | 14.30 | 13.29 | 13.92 |
Lysine | 11.77 | 10.99 | 11.15 | 9.45 | 10.56 |
Methionine | 2.63 | 2.37 | 2.69 | 2.55 | 2.75 |
Phenylalanine | 9.81 | 9.02 | 9.12 | 8.37 | 8.80 |
Threonine | 7.34 | 7.00 | 7.22 | 6.62 | 7.22 |
Tryptophan | 3.92 | 4.41 | 3.90 | 4.08 | 4.88 |
Valine | 9.48 | 9.29 | 9.72 | 9.12 | 10.05 |
Dispensable amino acids (g/kg) | |||||
Alanine | 8.55 | 8.58 | 9.54 | 8.79 | 9.98 |
Aspartic acid | 18.17 | 17.03 | 17.59 | 15.34 | 16.69 |
Cystine | 3.54 | 2.88 | 3.17 | 2.70 | 2.75 |
Glutamic acid | 40.97 | 36.79 | 36.23 | 33.76 | 34.03 |
Proline | 13.00 | 12.27 | 12.44 | 12.46 | 13.00 |
Tyrosine | 7.16 | 6.99 | 7.68 | 6.86 | 7.82 |
Serine | 9.16 | 8.89 | 9.09 | 8.09 | 8.71 |
Glycine | 8.15 | 7.81 | 8.24 | 7.76 | 8.57 |
Total indispensable amino acids | 86.39 | 82.34 | 83.36 | 76.01 | 81.94 |
Total dispensable amino acids | 108.7 | 101.24 | 103.98 | 95.76 | 101.55 |
Total amino acids | 195.09 | 183.58 | 187.34 | 171.77 | 183.49 |
Variables/Diets | T0 | T30 | T60 | T90 | T120 | SEM | p-Value | L | Q | DEV |
---|---|---|---|---|---|---|---|---|---|---|
Start weight (kg/pig) | 31.9 | 32 | 31.8 | 31.8 | 31.8 | 2.07 | 1.000 | 0.949 | 1.000 | 0.997 |
End weight (kg/pig) | 60.8 | 59.5 | 60.4 | 58.7 | 58.9 | 2.86 | 0.935 | 0.481 | 0.962 | 0.86 |
FI (kg/pig/day) | 1.89 | 1.85 | 1.92 | 1.87 | 1.82 | 0.05 | 0.278 | 0.237 | 0.243 | 0.303 |
WG (kg/pig/day) | 0.76 | 0.72 | 0.75 | 0.71 | 0.71 | 0.042 | 0.634 | 0.237 | 0.929 | 0.575 |
FCR (kg:kg) | 2.524 | 2.581 | 2.576 | 2.654 | 2.566 | 0.1235 | 0.885 | 0.579 | 0.533 | 0.806 |
Faecal moisture (kg/kg) | 0.763 | 0.751 | 0.754 | 0.747 | 0.766 | 0.006 | 0.134 | 0.944 | 0.024 | 0.383 |
DE (MJ/kg) | 12.95 | 13.04 | 12.77 | 13.31 | 13.2 | 0.208 | 0.406 | 0.261 | 0.607 | 0.294 |
CPD | 0.694 | 0.684 | 0.674 | 0.715 | 0.708 | 0.0291 | 0.619 | 0.369 | 0.481 | 0.521 |
DMD | 0.766 | 0.763 | 0.734 | 0.772 | 0.772 | 0.0114 | 0.123 | 0.536 | 0.096 | 0.119 |
TFD | 0.277 | 0.392 | 0.285 | 0.209 | 0.161 | 0.0852 | 0.101 | 0.037 | 0.196 | 0.384 |
ADFD | 0.092 | 0.21 | 0.164 | 0.128 | 0.251 | 0.0525 | 0.239 | 0.163 | 0.918 | 0.168 |
FD | 0.774 a | 0.814 ab | 0.814 ab | 0.844 bc | 0.860 c | 0.0143 | 0.002 | < 0.001 | 0.744 | 0.519 |
Variable/ Diets | T0 | T30 | T60 | T90 | T120 | SEM | p-Value | L | Q | DEV |
---|---|---|---|---|---|---|---|---|---|---|
RBC (×1012/L) | 7.4 | 7.3 | 7.4 | 7 | 7.1 | 0.18 | 0.58 | 0.213 | 0.731 | 0.561 |
WBC (×109/L) | 15.7 a | 14.7 a | 14.1 a | 15.3 a | 18.9 b | 0.99 | 0.016 | 0.034 | 0.005 | 0.832 |
Plt (K/uL) | 503 | 404 | 433 | 504 | 522 | 36.6 | 0.12 | 0.239 | 0.052 | 0.31 |
Hct (%) | 41.0 | 41.0 | 41.0 | 38.0 | 39.0 | 1.20 | 0.258 | 0.100 | 0.616 | 0.309 |
Hb (g/dL) | 12.79 | 12.74 | 12.95 | 11.81 | 12.06 | 0.397 | 0.2 | 0.067 | 0.617 | 0.297 |
SOD (U/mL) | 2.0 a | 4.1 bc | 4.6 c | 3.7 b | 4.1 bc | 0.19 | <0.001 | <0.001 | <0.001 | <0.001 |
TAC (pg/mL) | 117.8 a | 140.6 b | 152.6 b | 153.8 b | 151.5 b | 5.75 | <0.001 | <0.001 | 0.007 | 0.907 |
CAT (U/mL) | 6.0 b | 5.8 b | 5.0 a | 4.7 a | 4.8 a | 0.25 | 0.002 | <0.001 | 0.243 | 0.389 |
GPx (U/mL) | 64.6 c | 47.6 a | 52.2 b | 52.5 b | 52.8 b | 1.04 | <0.001 | <0.001 | <0.001 | <0.001 |
IL-1β (ng/mL) | 150.9 a | 171.6 b | 185.4 b | 170.2 b | 176.0 b | 5.6 | 0.002 | 0.009 | 0.008 | 0.105 |
IL-6 (pg/mL) | 148.1 a | 171.8 b | 174.0 b | 180.2 b | 177.5 b | 4.84 | <0.001 | <0.001 | <0.011 | 0.469 |
IL-10 (pg/mL) | 180.4 c | 150.9 b | 124.6 a | 149.0 b | 144.6 b | 5.04 | <0.001 | <0.001 | <0.001 | 0.004 |
INF-γ (pg/mL) | 152.6 a | 160.5 ab | 168.5 bc | 169.8 bc | 173.8 c | 3.6 | 0.002 | <0.001 | 0.291 | 0.841 |
TNF-α (pg/mL) | 65.7 a | 70.9 b | 69.7 b | 68.8 b | 65.0 a | 1.04 | <0.001 | 0.273 | <0.001 | 0.293 |
ROS (a.u.) | 0.2 a | 1.7 c | 1.0 b | 1.6 c | 1.0 b | 0.07 | <0.001 | <0.001 | <0.001 | <0.001 |
•NO (a.u.) | 6.7 a | 11.6 b | 12.3 b | 12.2 b | 6.8 a | 0.71 | <0.001 | 0.741 | <0.001 | 0.407 |
•Asc (a.u.) | 0.29 a | 0.56 b | 0.55 b | 0.72 c | 0.75 c | 0.054 | <0.001 | <0.001 | 0.182 | 0.192 |
MDA (µmol/mL | 2.8 a | 4.0 b | 4.7 bc | 4.9 bc | 5.2 c | 0.34 | <0.001 | <0.001 | 0.088 | 0.827 |
8-OHdG (ng/mL) | 12.3 a | 13.8 a | 16.0 b | 13.9 a | 14.0 a | 0.62 | 0.004 | 0.083 | 0.004 | 0.071 |
5-MSL (a.u) | 0.7 a | 1.3 b | 1.3 b | 1.2 b | 1.2 b | 0.05 | <0.001 | <0.001 | <0.001 | <0.001 |
AGE (mg/mL) | 278.0 b | 241.0 a | 253.0 a | 255.0 a | 253.0 a | 6.92 | 0.011 | 0.116 | 0.028 | 0.034 |
PC (nmol/mg) | 2.8 a | 5.3 b | 7.3 c | 9.0 d | 8.2 c | 0.31 | <0.001 | <0.001 | <0.001 | 0.083 |
TEMPOL (a.u.) | 7.5 a | 13.5 b | 14.6 b | 14.1 b | 13.6 b | 0.66 | <0.001 | <0.001 | <0.001 | 0.081 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yordanova, G.; Nedeva, R.D.; Apostolov, A.P.; Mansbridge, S.C.; Whiting, I.M.; Mackenzie, A.M.; Nikolova, G.D.; Karamalakova, Y.D.; Pirgozliev, V.R. Partial Replacement of Soyabean Meal with Defatted Black Soldier Fly (Hermetia illucens L.) Larvae Meal Influences Blood Biochemistry and Modulate Oxidative Stress, but Not Growth Performance of Pigs. Animals 2025, 15, 1077. https://doi.org/10.3390/ani15081077
Yordanova G, Nedeva RD, Apostolov AP, Mansbridge SC, Whiting IM, Mackenzie AM, Nikolova GD, Karamalakova YD, Pirgozliev VR. Partial Replacement of Soyabean Meal with Defatted Black Soldier Fly (Hermetia illucens L.) Larvae Meal Influences Blood Biochemistry and Modulate Oxidative Stress, but Not Growth Performance of Pigs. Animals. 2025; 15(8):1077. https://doi.org/10.3390/ani15081077
Chicago/Turabian StyleYordanova, Gergana, Radka Dimitrova Nedeva, Apostol Petrov Apostolov, Stephen Charles Mansbridge, Isobel Margaret Whiting, Alexander Mackay Mackenzie, Galina Dimitrova Nikolova, Yanka Dimitrova Karamalakova, and Vasil Radoslavov Pirgozliev. 2025. "Partial Replacement of Soyabean Meal with Defatted Black Soldier Fly (Hermetia illucens L.) Larvae Meal Influences Blood Biochemistry and Modulate Oxidative Stress, but Not Growth Performance of Pigs" Animals 15, no. 8: 1077. https://doi.org/10.3390/ani15081077
APA StyleYordanova, G., Nedeva, R. D., Apostolov, A. P., Mansbridge, S. C., Whiting, I. M., Mackenzie, A. M., Nikolova, G. D., Karamalakova, Y. D., & Pirgozliev, V. R. (2025). Partial Replacement of Soyabean Meal with Defatted Black Soldier Fly (Hermetia illucens L.) Larvae Meal Influences Blood Biochemistry and Modulate Oxidative Stress, but Not Growth Performance of Pigs. Animals, 15(8), 1077. https://doi.org/10.3390/ani15081077