RNA-Seq and Single-Cell RNA-Seq Analyses of Tilapia Head Kidney in Response to Streptococcus agalactiae and Aeromonas hydrophila
Abstract
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Fish and Bacteria
2.2. Ethics Approval Statement
2.3. Challenge and Statistics of Survival Rate
2.4. Head Kidney Lymphocyte Samples Collection
2.5. RNA-Seq and Bioinformatics Analysis
2.6. ScRNA-Seq Data Processing
2.7. Cell Annotation and DEGs Identification
2.8. Upregulated Gene Identification
2.9. Cell Trajectory Analysis
3. Results
3.1. RNA-Seq of HKLs Reveals Different Responses to Two Bacterial Infections
3.2. ScRNA-Seq of HKLs Indicated NCCs and Mos/Mφs Were Central Defenders
3.3. Characterization of HKLs Biomarkers Against Bacterial Infections
3.4. Differentiation of NCCs Against Bacterial Infections
3.5. Disparate Trajectories of Mos/Mφs Against S. agalactiae and A. hydrophila
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Preenanka, R.; Safeena, M.P. Morphological, biological and genomic characterization of lytic phages against Streptococcus agalactiae causing streptococcosis in tilapia. Microb. Pathog. 2023, 174, 105919. [Google Scholar] [CrossRef]
- Zhang, Z. Research advances on tilapia streptococcosis. Pathogens 2021, 10, 558. [Google Scholar] [CrossRef]
- AlYahya, S.A.; Ameen, F.; Al-Niaeem, K.S.; Al-Sa’adi, B.A.; Hadi, S.; Mostafa, A.A. Histopathological studies of experimental Aeromonas hydrophila infection in blue tilapia, Oreochromis aureus. Saudi J. Biol. Sci. 2018, 25, 182–185. [Google Scholar] [CrossRef]
- Liu, G.; Zhu, J.; Chen, K.; Gao, T.; Yao, H.; Liu, Y.; Zhang, W.; Lu, C. Development of Streptococcus agalactiae vaccines for tilapia. Dis. Aquat. Organ. 2016, 122, 163–170. [Google Scholar] [CrossRef]
- Pau, E.J.J.N.; Yong, C.C. Input–output analysis of Streptococcus disease impact on Malaysian tilapia production and exports. Aquacult. Int. 2025, 33, 1–28. [Google Scholar] [CrossRef]
- Raabe, V.N.; Shane, A.L. Group B streptococcus (Streptococcus agalactiae). Microbiol. Spectr. 2019, 7, 10–1128. [Google Scholar] [CrossRef] [PubMed]
- Hou, X.; Li, Q. Medulla oblongata and NCCs are central defenders against Streptococcus agalactiae infection of the tilapia brain. Front. Immunol. 2024, 15, 1442906. [Google Scholar] [CrossRef]
- Hou, X.; Shi, H.; Jiang, Y.; Li, X.; Chen, K.; Li, Q.; Liu, R. Transcriptome analysis reveals the neuroactive receptor genes response to Streptococcus agalactiae infection in tilapia, Oreochromis niloticus. Fish Shellfish Immunol. 2023, 141, 109090. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Liu, R.; Ma, R.; Huang, Y.; Zhang, Z.; Zhang, L.; Zheng, Z.; Li, X.; Chen, K.; Chen, C.; et al. Brain transcriptome response to Streptococcus agalactiae infection and the heterogeneous regulation of neuropeptides on immune response in tilapia, Oreochromis niloticus. Aquaculture 2022, 555, 738222. [Google Scholar] [CrossRef]
- Fan, B.; Chen, F.; Li, Y.; Wang, Z.; Wang, Z.; Lu, Y.; Wu, Z.; Jian, J.; Wang, B. A comprehensive profile of the tilapia (Oreochromis niloticus) circular RNA and circRNA–miRNA network in the pathogenesis of meningoencephalitis of teleosts. Mol. Omics 2019, 15, 233–246. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, C.; Liu, H.; Fu, P. The important role of phagocytosis and interleukins for Nile tilapia (Oreochromis niloticus) to defense infection of Aeromonas hydrophila based on transcriptome analysis. Fish Shellfish Immunol. 2019, 92, 54–63. [Google Scholar] [CrossRef]
- Cui, M.; Wang, Z.; Yang, Y.; Liu, R.; Wu, M.; Li, Y.; Zhang, Q.; Xu, D. Comparative transcriptomic analysis reveals the regulated expression profiles in Oreochromis niloticus in response to coinfection of Streptococcus agalactiae and Streptococcus iniae. Front. Genet. 2022, 13, 782957. [Google Scholar] [CrossRef]
- Wang, B.; Thompson, K.D.; Wangkahart, E.; Yamkasem, J.; Bondad-Reantaso, M.G.; Tattiyapong, P.; Jian, J.; Surachetpong, W. Strategies to enhance tilapia immunity to improve their health in aquaculture. Rev. Aquac. 2023, 15, 41–56. [Google Scholar] [CrossRef]
- Jiang, B.; Li, Q.; Zhang, Z.; Huang, Y.; Wu, Y.; Li, X.; Huang, M.; Huang, Y.; Jian, J. Involvement of CD27 in innate and adaptive immunities of Nile tilapia (Oreochromis niloticus). Fish Shellfish Immunol. 2023, 139, 108923. [Google Scholar] [CrossRef]
- Mokhtar, D.M.; Zaccone, G.; Alesci, A.; Kuciel, M.; Hussein, M.T.; Sayed, R.K. Main components of fish immunity: An overview of the fish immune system. Fishes 2023, 8, 93. [Google Scholar] [CrossRef]
- Lieschke, G.J.; Trede, N.S. Fish immunology. Curr. Biol. 2009, 19, R678–R682. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Jiang, B.; Zhang, Z.; Huang, Y.; Xu, Z.; Chen, X.; Hou, X.; Cai, J.; Huang, Y.; Jian, J. Serotonin system is partially involved in immunomodulation of Nile tilapia (Oreochromis niloticus) immune cells. Front. Immunol. 2022, 13, 944388. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Gao, A.; Li, L.; Chen, J.; Li, J.; Ye, J. A single-cell transcriptome profiling of anterior kidney leukocytes from Nile tilapia (Oreochromis niloticus). Front. Immunol. 2021, 12, 783196. [Google Scholar] [CrossRef]
- Niu, J.; Huang, Y.; Liu, X.; Zhang, Z.; Tang, J.; Wang, B.; Lu, Y.; Cai, J.; Jian, J. Single-cell RNA-seq reveals different subsets of non-specific cytotoxic cells in teleost. Genomics 2020, 112, 5170–5179. [Google Scholar] [CrossRef]
- Li, Q.; Jiang, B.; Zhang, Z.; Huang, Y.; Xu, Z.; Chen, X.; Huang, Y.; Jian, J.; Yan, Q. Involvement and characterization of NLRCs and pyroptosis-related genes in Nile tilapia (Oreochromis niloticus) immune response. Fish Shellfish Immunol. 2022, 130, 602–611. [Google Scholar] [CrossRef]
- Li, Q.; Jiang, B.; Zhang, Z.; Huang, Y.; Xu, Z.; Chen, X.; Huang, Y.; Jian, J.; Yan, Q. α-MSH is partially involved in the immunomodulation of Nile tilapia (Oreochromis niloticus) antibacterial immunity. Fish Shellfish Immunol. 2022, 131, 929–938. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Li, X.; Huang, M.; Huang, Y.; Tan, X.; Dong, Y.; Huang, Y.; Jian, J. Siglec7 functions as an inhibitory receptor of non-specific cytotoxic cells and can regulate the innate immune responses in a primitive vertebrate (Oreochromis niloticus). Int. J. Biol. Macromol. 2024, 278, 134851. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Niu, J.; Li, Q.; Huang, Y.; Jiang, B.; Li, X.; Jian, J.; Huang, Y. A novel C-type lectin (CLEC12B) from Nile tilapia (Oreochromis niloticus) is involved in host defense against bacterial infection. Fish Shellfish Immunol. 2022, 131, 218–228. [Google Scholar] [CrossRef]
- Duan, H.; Zhang, Y.; Liu, J.; Ren, G.; Li, Z.; Tian, Y. Transcriptome analysis reveals the DNA replication genes response to Vibrio anguillarum and NNV infection in Jinhu grouper (Epinephelus fuscoguttatus♀× Epinephelus tukulal♂). Comp. Biochem. Physiol. Part. D Genomics Proteomics 2025, 54, 101421. [Google Scholar] [CrossRef] [PubMed]
- Ken, C.-F.; Chen, C.-N.; Ting, C.-H.; Pan, C.-Y.; Chen, J.-Y. Transcriptome analysis of hybrid tilapia (Oreochromis spp.) with Streptococcus agalactiae infection identifies Toll-like receptor pathway-mediated induction of NADPH oxidase complex and piscidins as primary immune-related responses. Fish Shellfish Immunol. 2017, 70, 106–120. [Google Scholar] [CrossRef]
- Jia, R.; Hou, Y.; Zhou, L.; Zhang, C.; Li, B.; Zhu, J. Combined effects of high-fat diet feeding and Streptococcus agalactiae infection on lipid metabolism, antioxidant status, and immune response in tilapia (Oreochromis niloticus). Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2025, 298, 110321. [Google Scholar] [CrossRef]
- Guo, S.; Gao, W.; Zeng, M.; Liu, F.; Yang, Q.; Chen, L.; Wang, Z.; Jin, Y.; Xiang, P.; Chen, H. Characterization of TLR1 and expression profiling of TLR signaling pathway related genes in response to Aeromonas hydrophila challenge in hybrid yellow catfish (Pelteobagrus fulvidraco♀× P. vachelli♂). Front. Immunol. 2023, 14, 1163781. [Google Scholar] [CrossRef]
- Zhan, F.-B.; Jakovlić, I.; Wang, W.-M. Identification, characterization and expression in response to Aeromonas hydrophila challenge of five interferon regulatory factors in Megalobrama amblycephala. Fish Shellfish Immunol. 2019, 86, 204–212. [Google Scholar] [CrossRef]
- Wang, X.; Wu, Z.; Wu, S.; Chen, X.; Hanif, M.; Zhang, S. Hematological and cytochemical characteristics of peripheral blood cells in the argus snakehead (Ophiocephalus argus Cantor). PeerJ 2021, 9, e11234. [Google Scholar] [CrossRef]
- Megarani, D.V.; Hardian, A.B.; Arifianto, D.; Santosa, C.M.; Salasia, S.I. Comparative morphology and morphometry of blood cells in zebrafish (Danio rerio), common carp (Cyprinus carpio carpio), and tilapia (Oreochromis niloticus). J. Am. Assoc. Lab. Anim. Sci. 2020, 59, 673–680. [Google Scholar] [CrossRef]
- Bai, H.; Mu, L.; Qiu, L.; Chen, N.; Li, J.; Zeng, Q.; Yin, X.; Ye, J. Complement C3 regulates inflammatory response and Monocyte/Macrophage phagocytosis of Streptococcus agalactiae in a teleost fish. Int. J. Mol. Sci. 2022, 23, 15586. [Google Scholar] [CrossRef]
- Huang, Y.; Chen, Z.; Xie, R.; Wang, P.; Zhang, Z.; Cai, J.; Wang, B.; Jian, J. Transferrin mediated NCC killing activity through NCCRP-1 in Nile tilapia (Oreochromis niloticus). Fishes 2022, 7, 253. [Google Scholar] [CrossRef]
- Monir, M.S.; Yusoff, M.S.M.; Zamri-Saad, M.; Amal, M.N.A.; Mohamad, A.; Azzam-Sayuti, M.; Ina-Salwany, M.Y. Effect of an oral bivalent vaccine on immune response and immune gene profiling in vaccinated red tilapia (Oreochromis spp.) during infections with Streptococcus iniae and Aeromonas hydrophila. Biology 2022, 11, 1268. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Dang, H.; Huang, W.; Hassan, Z.; Yun, S.; Lu, Y.; Wang, J.; Zou, J. IL-20 is produced by CD3γδ T cells and induced in the mucosal tissues of grass carp during infection with Aeromonas hydrophila. Dev. Comp. Immunol. 2024, 158, 105210. [Google Scholar] [CrossRef] [PubMed]
- Tian, T.; Wang, J.; Pan, Y.; Han, X.; Hu, Y.; Li, J.; Zhang, Y.; Zhang, X. Chinese yam polysaccharide induces the differentiation and natural antibody secretion of IgM+ B cells to prevent Aeromonas hydrophila infection in grass carp. Int. J. Biol. Macromol. 2025, 300, 140263. [Google Scholar] [CrossRef] [PubMed]
- Shimon-Hophy, M.; Jacob, A.; Avtalion, R.R. NCCRP-1 might not be a marker of so called NCC cells in common carp (Cyprinus carpio) leukocytes. Am. J. Immunol. 2020, 16, 1–7. [Google Scholar] [CrossRef]
- Kallio, H.; Tolvanen, M.; Jänis, J.; Pan, P.-w.; Laurila, E.; Kallioniemi, A.; Kilpinen, S.; Tuominen, V.J.; Isola, J.; Valjakka, J. Characterization of non-specific cytotoxic cell receptor protein 1: A new member of the lectin-type subfamily of F-box proteins. PLoS ONE 2011, 6, e27152. [Google Scholar] [CrossRef]
- Yao, Y.; Li, Q.; Yan, Q. Distribution and response strategies of non-specific cytotoxic cell receptor protein 1 in large yellow croaker. Fish Shellfish Immunol. 2024, 151, 109728. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, H.; Chen, Y.; Luo, H.; Yang, P.; Yao, B. A zebrafish (Danio rerio) bloodthirsty member 20 with E3 ubiquitin ligase activity involved in immune response against bacterial infection. Biochem. Biophys. Res. Commun. 2015, 457, 83–89. [Google Scholar] [CrossRef]
- Jang, J.H.; Jung, I.Y.; Kim, H.; Cho, J.H. Rainbow trout USP4 downregulates LPS-induced inflammation by removing the K63-linked ubiquitin chain on TAK1. Fish Shellfish Immunol. 2022, 131, 1019–1026. [Google Scholar] [CrossRef]
- Graves, S.S.; Evans, D.L.; Cobb, D.; Dawe, D.L. Nonspecific cytotoxic cells in fish (Ictalurus punctatus) I. Optimum requirements for target cell lysis. Dev. Comp. Immunol. 1984, 8, 293–302. [Google Scholar] [CrossRef] [PubMed]
- Mali, P.; Sanyal, K.B.; Mukherjee, D.; Guchhait, A.; Dash, G. Nonspecific cytotoxic cells (NCC) in fish: A review. J. Interacad. 2017, 21, 372–378. [Google Scholar]
- Li, Q.; Jiang, B.; Zhang, Z.; Huang, Y.; Xu, Z.; Chen, X.; Cai, J.; Huang, Y.; Jian, J. CRP Involved in Nile tilapia (Oreochromis niloticus) against bacterial infection. Biology 2022, 11, 1149. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Q.; Fang, Z.; Li, Z.; Wei, X.; Wei, Y. RNA-Seq and Single-Cell RNA-Seq Analyses of Tilapia Head Kidney in Response to Streptococcus agalactiae and Aeromonas hydrophila. Animals 2025, 15, 2951. https://doi.org/10.3390/ani15202951
Li Q, Fang Z, Li Z, Wei X, Wei Y. RNA-Seq and Single-Cell RNA-Seq Analyses of Tilapia Head Kidney in Response to Streptococcus agalactiae and Aeromonas hydrophila. Animals. 2025; 15(20):2951. https://doi.org/10.3390/ani15202951
Chicago/Turabian StyleLi, Qi, Zulin Fang, Zhengshuang Li, Xinxian Wei, and Youchuan Wei. 2025. "RNA-Seq and Single-Cell RNA-Seq Analyses of Tilapia Head Kidney in Response to Streptococcus agalactiae and Aeromonas hydrophila" Animals 15, no. 20: 2951. https://doi.org/10.3390/ani15202951
APA StyleLi, Q., Fang, Z., Li, Z., Wei, X., & Wei, Y. (2025). RNA-Seq and Single-Cell RNA-Seq Analyses of Tilapia Head Kidney in Response to Streptococcus agalactiae and Aeromonas hydrophila. Animals, 15(20), 2951. https://doi.org/10.3390/ani15202951