Nutritional Aspects of the Association of Spineless Cactus and Urea with Tifton-85 Hay in Wethers’ Diets
Abstract
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals, Management, and Experimental Design
2.2. Data and Sample Collection
2.3. Chemical Analyses
2.4. Calculations
2.5. Statistical Analysis
3. Results
3.1. Nutrient Intake and Apparent Digestibility
3.2. Feeding Behaviour
3.3. Water Intake and Excretion
3.4. Ruminal Dynamics
4. Discussion
4.1. Nutrient Intake and Apparent Digestibility
4.2. Feeding Behaviour
4.3. Water Intake and Excretion
4.4. Ruminal Dynamics
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Safriel, U.; Adeel, Z.; Niemeijer, D.; Puigdefabregas, J.; White, R.; Lal, R.; Winslow, M.; Ziedler, J.; Prince, S.; Archer, E.; et al. Dryland Systems. In Ecosystems and Human Well-Being: Current State and Trends; Hassan, R., Scholes, R., Ash, N., Eds.; Island Press: Washington, DC, USA, 2005; Volume I, pp. 623–662. ISBN 0027-8424. [Google Scholar]
- Huang, J.; Ji, M.; Xie, Y.; Wang, S.; He, Y.; Ran, J. Global Semi-Arid Climate Change over Last 60 Years. Clim. Dyn. 2016, 46, 1131–1150. [Google Scholar] [CrossRef]
- Feng, S.; Fu, Q. Expansion of Global Drylands under a Warming Climate. Atmos. Chem. Phys. 2013, 13, 10081–10094. [Google Scholar] [CrossRef]
- Cherlet, M.; Hutchinson, C.; Reynolds, J.; Hill, J.; Sommer, S.; von Maltitz, G. Aridity Projections. In World Atlas of Desertification [Online]; Cherlet, M., Hutchinson, C., Reynolds, J., Hill, J., Sommer, S., von Maltitz, G., Eds.; Office of the European Union: Luxembourg, 2018. [Google Scholar]
- Melo, J.C. O Fenômeno El Niño e as Secas No Nordeste Do Brasil. Raízes 1999, 20, 13–21. [Google Scholar] [CrossRef]
- Marengo, J.A.; Alves, L.M.; Alvala, R.C.S.; Cunha, A.P.; Brito, S.; Moraes, O.L.L. Climatic Characteristics of the 2010–2016 Drought in the Semiarid Northeast Brazil Region. An. Acad. Bras. Cienc. 2018, 90, 1973–1985. [Google Scholar] [CrossRef]
- Marengo, J.A.; Torres, R.R.; Alves, L.M. Drought in Northeast Brazil—Past, Present, and Future. Theor. Appl. Climatol. 2017, 129, 1189–1200. [Google Scholar] [CrossRef]
- Yamori, W.; Hikosaka, K.; Way, D.A. Temperature Response of Photosynthesis in C3, C4, and CAM Plants: Temperature Acclimation and Temperature Adaptation. Photosynth. Res. 2014, 119, 101–117. [Google Scholar] [CrossRef]
- Santos, D.C.; Lira, M.A.; Silva, M.C.; Cunha, M.V.; Pereira, V.L.A.; Farias, I.; Felix, A.C. Características Agronômicas de Clones Palma Resistentes a Cochonilha Do Carmim Em Pernambuco. In Proceedings of the V Congresso Nordestino de Produção Animal, Aracaju, Brasil, 24–27 November 2008; p. 4. [Google Scholar]
- Griffiths, D. Feeding Prickly Pear to Stock in Texas; Government Printing Office: Washington, DC, USA, 1906.
- Woodward, T.E.; Turner, W.F.; Griffiths, D. Prickly-Pears as a Feed for Dairy Cows. J. Agric. Res. 1915, 4, 405–450. [Google Scholar]
- Andrade-Montemayor, H.M.; Cordova-Torres, A.V.; García-Gasca, T.; Kawas, J.R. Alternative Foods for Small Ruminants in Semiarid Zones, the Case of Mesquite (Prosopis laevigata spp.) and Nopal (Opuntia spp.). Small Rumin. Res. 2011, 98, 83–92. [Google Scholar] [CrossRef]
- Pérez-Sánchez, R.E.; Mendoza-Ortíz, J.L.; Martínez-Flores, H.E.; Ortiz-Rodríguez, R. The Addition of Three Different Levels of Cactus Pear (Opuntia ficus-indica) to the Diet of Holstein Cows and Its Effect on Milk Production in the Dry Season. J. Prof. Assoc. Cactus Dev. 2015, 17, 81–88. [Google Scholar] [CrossRef]
- Razzak, S.; Aouji, M.; Zirari, M.; Benchehida, H.; Taibi, M.; Bengueddour, R.; Wondmie, G.F.; Ibenmoussa, S.; Bin Jardan, Y.A.; Taboz, Y. Nutritional Composition, Functional and Chemical Characterization of Moroccan Opuntia ficus-indica Cladode Powder. Int. J. Food Prop. 2024, 27, 1167–1179. [Google Scholar] [CrossRef]
- El Otmani, S.; Chentouf, M.; Hornick, J.L.; Cabaraux, J.F. Chemical Composition and in vitro Digestibility of Alternative Feed Resources for Ruminants in Mediterranean Climates: Olive Cake and Cactus Cladodes. J. Agric. Sci. 2019, 157, 260–271. [Google Scholar] [CrossRef]
- Ben Salem, H.; Nefzaoui, A.; Ben Salem, L. Supplementing Spineless Cactus (Opuntia ficus-fndica f. inermis) Based Diets with Urea-Treated Straw or Oldman Saltbush (Atriplex nummularia). Effects on Intake, Digestion and Sheep Growth. J. Agric. Sci. 2002, 138, 85–92. [Google Scholar] [CrossRef]
- Mahouachi, M.; Atti, N.; Hajji, H. Use of Spineless Cactus (Opuntia ficus indica f. inermis) for Dairy Goats and Growing Kids: Impacts on Milk Production, Kid’s Growth, and Meat Quality. Sci. World J. 2012, 2012, 4. [Google Scholar] [CrossRef] [PubMed]
- Licona Galeano, V.J.; Monteiro, C.C.F.; Carvalho, F.F.R.; Souza, A.F.; Souza, F.G.; Corrêa, A.M.N.; Vasconcelos, E.Q.L.; Mesquita, F.L.T.; Gama, M.A.S.; Ferreira, M.A. Productive Responses of Dairy Goats Fed on Diets Containing Elephant Grass (Pennisetum purpureum) Associated or Not with Cactus (Opuntia stricta) Cladodes, and Extra-Fat Whole Corn Germ as a Substitute for Corn. Small Rumin. Res. 2022, 207. [Google Scholar] [CrossRef]
- Rocha Filho, R.R.; Santos, D.C.; Véras, A.S.C.; Siqueira, M.C.B.; Novaes, L.P.; Mora-Luna, R.; Monteiro, C.C.F.; Ferreira, M.A. Can Spineless Forage Cactus Be the Queen of Forage Crops in Dryland Areas? J. Arid. Environ. 2021, 186, 104426. [Google Scholar] [CrossRef]
- Rocha Filho, R.R.; Santos, D.C.; Véras, A.S.C.; Siqueira, M.C.B.; Monteiro, C.C.F.; Mora-Luna, R.E.; Farias, L.R.; Santos, V.L.F.; Chagas, J.C.; Ferreira, M.A. Miúda (Nopalea cochenillifera (L.) Salm-Dyck)—The Best Forage Cactus Genotype for Feeding Lactating Dairy Cows in Semiarid Regions. Animals 2021, 11, 1774. [Google Scholar] [CrossRef]
- Ferreira, M.A.; Bispo, S.V.; Rocha Filho, R.R.; Urbano, S.A.; Costa, C.T.F. The Use of Cactus as Forage for Dairy Cows in Semi-Arid Regions of Brazil. In Organic Farming and Food Production; Konvalina, P., Ed.; Intechopen: London, UK, 2012; pp. 169–189. [Google Scholar]
- Santos, D.S.; Macedo, A.V.M.; Conceição, M.G.; Siqueira, M.C.B.; Mora-Luna, R.E.; Vasconcelos Elizabeth, Q.L.; Oliveira, J.P.F.; Monteiro, C.C.F.; Silva, J.L.; Ferreira, M.A. Sugarcane Replaced by Cactus Cladodes Improves the Ruminal Dynamics of Sheep. Small Rumin. Res. 2022, 209, 106649. [Google Scholar] [CrossRef]
- Silva, C.F.; Véras, A.S.C.; Conceição, M.G.; Macedo, A.V.M.; Mora Luna, R.E.; Monteiro, C.C.F.; Souza, F.G.; Almeida, M.d.P.; Silva, J.A.B.A.; Ferreira, M.; et al. Intake, Digestibility, Water Balance, Ruminal Dynamics, and Blood Parameters in Sheep Fed Diets Containing Extra-Fat Whole Corn Germ. Anim. Feed. Sci. Technol. 2022, 285, 115248. [Google Scholar] [CrossRef]
- Siqueira, M.; Chagas, J.; Monnerat, J.P.; Monteiro, C.; Mora-Luna, R.; Dubeux, J.; Dilorenzo, N.; Ruiz-Moreno, M.; Ferreira, M. Nutritive Value, in vitro Fermentation, and Methane Production of Cactus Cladodes, Sugarcane Bagasse, and Urea. Animals 2021, 11, 1266. [Google Scholar] [CrossRef] [PubMed]
- Batista, A.M.V.; Ribeironeto, A.C.; Lucena, R.B.; Santos, D.C.; Dubeux, J.B.; Mustafa, A.F. Chemical Composition and Ruminal Degradability of Spineless Cactus Grown in Northeastern Brazil. Rangel. Ecol. Manag. 2009, 62, 297–301. [Google Scholar] [CrossRef]
- Costa, C.T.F.; Ferreira, M.A.; Campos, J.M.S.; Guim, A.; Silva, J.L.; Siqueira, M.C.B.; Barros, L.J.A.; Siqueira, T.D.Q. Intake, Total and Partial Digestibility of Nutrients, and Ruminal Kinetics in Crossbreed Steers Fed with Multiple Supplements Containing Spineless Cactus Enriched with Urea. Livest. Sci. 2016, 188, 55–60. [Google Scholar] [CrossRef]
- Taffarel, L.E.; Mesquita, E.E.; Castagnara, D.D.; Oliveira, P.S.R.; Oliveira, N.T.E.; Galbeiro, S.; Costa, P.B. Produção de Matéria Seca e Valor Nutritivo Do Feno Do Tifton 85 Adubado Com Nitrogênio e Colhido Com 35 Dias. Revista Brasileira de Saúde e Produção Animal 2014, 15, 544–560. [Google Scholar] [CrossRef]
- Reis Filho, R.J.C.; Oliveira, F.Z. Opções de Produção de Alimentos Para a Pecuária de Pernambuco—Uso Das Áreas Irrigadas. In Proceedings of the Fórum Permanente de Convivência Produtiva com as Secas, Recife, Pernambuco, 14 July 2014; p. 33. [Google Scholar]
- Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; Moraes Gonçalves, J.L.; Sparovek, G. Köppen’s Climate Classification Map for Brazil. Meteorol. Z. 2013, 22, 711–728. [Google Scholar] [CrossRef]
- Carvalho, C.B.M.; Edvan, R.L.; Nascimento, K.S.; Nascimento, R.R.; Bezerra, L.R.; Jácome, D.L.S.; Santos, V.L.F.; Santana Júnior, H.A. Methods of Storing Cactus Pear Genotypes for Animal Feeding. Afr. J. Range Forage Sci. 2020, 37, 173–179. [Google Scholar] [CrossRef]
- Machado, M.G.; Detmann, E.; Mantovani, H.C.; Valadares Filho, S.C.; Bento, C.B.P.; Marcondes, M.I.; Assunção, A.S. Evaluation of the Length of Adaptation Period for Changeover and Crossover Nutritional Experiments with Cattle Fed Tropical Forage-Based Diets. Anim. Feed. Sci. Technol. 2016, 222, 132–148. [Google Scholar] [CrossRef]
- National Research Council (NRC). Nutrient Requirements of Small Ruminants, Sheep, Goats, Cervids and New World Camelids; The National Academies Press: Washington, DC, USA, 2007. [Google Scholar]
- Tolleson, D.R.; Erlinger, L.L. An Improved Harness for Securing Fecal Collection Bags to Grazing Cattle. J. Range Manag. 1989, 42, 396–399. [Google Scholar] [CrossRef]
- Santos, A.C.S.; Santos, S.A.; Carvalho, G.G.P.; Mariz, L.D.S.; Tosto, M.S.L.; Valadares Filho, S.C.; Azevedo, J.A.G. A Comparative Study on the Excretion of Urinary Metabolites in Goats and Sheep to Evaluate Spot Sampling Applied to Protein Nutrition Trials. J. Anim. Sci. 2018, 96, 3381–3397. [Google Scholar] [CrossRef]
- Bateson, M.; Martin, P. Measuring Behaviour. An Introductory Guide, 4th ed.; Cambridge University Press: Cambridge, UK, 2021; ISBN 9780521828680. [Google Scholar]
- Robinson, P.H.; Tamminga, S.; Van Vuuren, A.M. Influence of Declining Level of Feed Intake and Varying the Proportion of Starch in the Concentrate on Milk Production and Whole Tract Digestibility in Dairy Cows. Livest. Prod. Sci. 1987, 17, 19–35. [Google Scholar] [CrossRef]
- AOAC Animal Feed. Association of Official Analytical Chemists (AOAC); Helrich, K., Ed.; Association of Official Analytical Chemists, Inc.: Arlington, VA, USA, 1990; Volume I, pp. 69–90. [Google Scholar]
- Thiex, N.J.; Anderson, S.; Gildemeister, B. Crude Fat, Hexanes Extraction, in Feed, Cereal Grain, and Forage (Randall/Soxtec/Submersion Method): Collaborative Study. J. AOAC Int. 2003, 86, 899–908. [Google Scholar] [CrossRef]
- Krizsan, S.J.; Huhtanen, P. Effect of Diet Composition and Incubation Time on Feed Indigestible Neutral Detergent Fiber Concentration in Dairy Cows. J. Dairy. Sci. 2013, 96, 1715–1726. [Google Scholar] [CrossRef]
- Mertens, D.R. Gravimetric Determination of Amylase-Treated Neutral Detergent Fiber in Feeds with Refluxing in Beakers or Crucibles: Collaborative Study. J. AOAC Int. 2002, 85, 1217–1240. [Google Scholar] [CrossRef]
- Licitra, G.; Hernandez, T.M.; Van Soest, P.J. Standardization of Procedures for Nitrogen Fractionation of Ruminant Feeds. Anim. Feed. Sci. Technol. 1996, 57, 347–358. [Google Scholar] [CrossRef]
- Van Soest, P.J. Collaborative Study of Acid-Detergent Fiber and Lignin. J. AOAC 1973, 56, 781–784. [Google Scholar] [CrossRef]
- Van Soest, P.J.; Wine, R.H. Determination of Lignin and Cellulose in Acid-Detergent Fiber with Permanganate. J. AOAC 1968, 51, 780–785. [Google Scholar] [CrossRef]
- Detmann, E.; Valadares Filho, S.C. On the Estimation of Non-Fibrous Carbohydrates in Feeds and Diets. Arq. Bras. Med. Vet. Zootec. 2010, 62, 980–984. [Google Scholar] [CrossRef]
- Sniffen, C.J.; O’Connor, J.D.; Van Soest, P.J.; Fox, D.G.; Russell, J.B. A Net Carbohydrate and Protein System for Evaluating Cattle Diets: II. Carbohydrate and Protein Availability. J. Anim. Sci. 1992, 70, 3562–3577. [Google Scholar] [CrossRef]
- Beede, D.K. Water: The Most Important Nutrient for Dairy Cattle. In Proceedings of the 31st Florida Dairy Production Conference, Gainesville, FL, USA, 12–13 April 1994; pp. 83–98. [Google Scholar]
- Tamminga, S.; Robinson, P.H.; Vogt, M.; Boer, H. Rumen Ingesta Kinetics of Cell Wall Components in Dairy Cows. Anim. Feed. Sci. Technol. 1989, 25, 89–98. [Google Scholar] [CrossRef]
- Ketelaars, J.J.M.H.; Tolkamp, B.J. Toward a New Theory of Feed Intake Regulation in Ruminants 1. Causes of Differences in Voluntary Feed Intake: Critique of Current Views. Livest. Prod. Sci. 1992, 30, 269–296. [Google Scholar] [CrossRef]
- Ben Salem, H.; Nefzaoui, A.; Abdouli, H.; Ørskov, E.R. Effect of Increasing Level of Spineless Cactus (Opuntia ficus indica var. inermis) on Intake and Digestion by Sheep given Straw-Based Diets. Anim. Sci. 1996, 62, 293–299. [Google Scholar] [CrossRef]
- Allen, M.S.; Bradford, B.J.; Oba, M. Board-Invited Review: The Hepatic Oxidation Theory of the Control of Feed Intake and Its Application to Ruminants. J. Anim. Sci. 2009, 87, 3317–3334. [Google Scholar] [CrossRef]
- Santos, M.V.F.; Lira, M.A.; Farias, I.; Burity, H.A.; Nascimento, M.M.A.; Tavares Filho, J.J. Estudo Do Comportamento Das Cultivares de Palma Forrageira Gigante, Redonda (Opuntia ficus-indica) e Miúda (Nopalea cochenillifera) Na Produção de Leite. Rev. Soc. Bras. Zootec. 1990, 19, 504–511. [Google Scholar]
- Conceição, M.G.; Ferreira, M.A.; Campos, J.M.S.; Silva, J.L.; Detmann, E.; Siqueira, M.C.B.; Barros, L.J.A.; Costa, C.T.F. Replacement of Wheat Bran with Spineless Cactus in Sugarcane-Based Diets for Steers. Rev. Bras. Zootec. 2016, 45, 158–164. [Google Scholar] [CrossRef]
- National Research Council (NRC). Nutrient Requirements of Beef Cattle, 7th ed.; National Academy Press: Washington, DC, USA, 2000; ISBN 0309592410. [Google Scholar]
- Carvalho, G.G.P.; Pires, A.J.V.; Veloso, C.M.; Silva, F.F.; Silva, R.R. Degradabilidade Ruminal Do Feno de Forrageiras Tropicais. Rev. Bras. Agrociência. 2006, 12, 81–85. [Google Scholar]
- Beauchemin, K.A. Ingestion and Mastication of Feed by Dairy Cattle. Vet. Clin. Am. Food Anim. Pract. 1991, 7, 439–463. [Google Scholar] [CrossRef]
- Beauchemin, K.A.; Eriksen, L.; Nørgaard, P.; Rode, L.M. Short Communication: Salivary Secretion during Meals in Lactating Dairy Cattle. J. Dairy. Sci. 2008, 91, 2077–2081. [Google Scholar] [CrossRef]
- Welch, J.G.; Smith, A.M. Influence of Forage Quality on Rumination Time in Sheep. J. Anim. Sci. 1969, 28, 813–818. [Google Scholar] [CrossRef]
- Zebeli, Q.; Tafaj, M.; Weber, I.; Dijkstra, J.; Steingass, H.; Drochner, W. Effects of Varying Dietary Forage Particle Size in Two Concentrate Levels on Chewing Activity, Ruminal Mat Characteristics, and Passage in Dairy Cows. J. Dairy. Sci. 2007, 90, 1929–1942. [Google Scholar] [CrossRef]
- Silva, T.G.P.; Lopes, L.A.; Carvalho, F.F.R.; Guim, A.; Soares, P.C.; Silva Júnior, V.A.; Batista, Â.M.V. Water Balance and Urinary Parameters of Lambs Fed Diets Containing Cactus Cladodes Varieties. J. Dairy. Sci. 2022, 160, 557–563. [Google Scholar] [CrossRef]
- Bezerra, S.B.L.; Véras, R.M.L.; Batista, Â.M.V.; Guim, A.; Maciel, M.D.V.; Cardoso, D.B.; Lima Júnior, D.M.; Carvalho, F.F.R. Effect of Spineless Cactus [Nopalea cochenillifera (L.) Salm Dyck] on Nutrient Intake, Ingestive Behaviour, and Performance of Lambs. An. Acad. Bras. Cienc. 2023, 95. [Google Scholar] [CrossRef]
- Silva, M.P.; Carvalho, F.F.R.; Batista, Â.M.V.; Araujo, C.M.; Soares, P.C.; Souza, A.P.; Fernandes, B.D.O.; Gonzaga Neto, S.; Costa, R.G.; Medeiros, A.N. Nutritional and Mineral Composition of Opuntia stricta Haw: Balance of Macrominerals, Renal Function and Blood Metabolites in Sheep. Arq. Bras. Med. Vet. Zootec. 2023, 75, 333–346. [Google Scholar] [CrossRef]
- Cordova-Torres, A.V.; Costa, R.G.; Medeiros, A.N.; Araújo Filho, J.T.; Ramos, A.O.; Alves, N.L. Performance of Sheep Fed Forage Cactus with Total Water Restriction. Rev. Bras. Saúde Produção Anim. 2017, 18, 369–377. [Google Scholar] [CrossRef]
- Forbes, J.M. The Water Intake of Ewes. Br. J. Nutr. 1968, 22, 33–43. [Google Scholar] [CrossRef]
- Rezende, F.M.; Véras, A.S.C.; Siqueira, M.C.B.; Conceição, M.G.; Lima, C.L.; Almeida, M.P.; Mora-Luna, R.E.; Neves, M.L.M.W.; Monteiro, C.C.F.; Ferreira, M.A. Nutritional Effects of Using Cactus Cladodes (Opuntia stricta Haw Haw) to Replace Sorghum Silage in Sheep Diet. Trop. Anim. Health Prod. 2020, 52, 1875–1880. [Google Scholar] [CrossRef]
- Neto, J.P.; Soares, P.C.; Batista, Â.M.V.; Andrade, S.F.J.; Andrade, R.P.X.; Lucena, R.B.; Guim, A. Balanço Hídrico e Excreção Renal de Metabólitos Em Ovinos Alimentados Com Palma Forrageira (Nopalea cochenillifera Salm Dyck). Pesqui. Vet. Bras. 2016, 36, 322–328. [Google Scholar] [CrossRef]
- De Waal, H.O.; Zeeman, D.C.; Combrinck, W.J. Wet Faeces Produced by Sheep Fed Dried Spineless Cactus Pear Cladodes in Balanced Diets. S. Afr. J. Anim. Sci. 2006, 36, 10–13. [Google Scholar] [CrossRef]
- Menezes, C.M.D.C.; Schwalbach, L.M.J.; Combrinck, W.J.; Fair, M.D.; De Waal, H.O. Effects of Sun-Dried Opuntia ficus-indica on Feed and Water Intake and Excretion of Urine and Faeces by Dorper Sheep. S. Afr. J. Anim. Sci. 2010, 40, 491–494. [Google Scholar]
- Rinne, M.; Huhtanen, P.; Jaakkola, S. Digestive Processes of Dairy Cows Fed Silages Harvested at Four Stages of Grass Maturity. J. Anim. Sci. 2002, 80, 1986–1998. [Google Scholar] [CrossRef]
- Huhtanen, P.; Detmann, E.; Krizsan, S.J. Prediction of Rumen Fiber Pool in Cattle from Dietary, Fecal, and Animal Variables. J. Dairy. Sci. 2016, 99, 5345–5357. [Google Scholar] [CrossRef]
- Detmann, E.; Paulino, M.F.; Mantovani, H.C.; Valadares Filho, S.C.; Sampaio, C.B.; Souza, M.A.; Lazzarini, Í.; Detmann, K.S.C. Parameterization of Ruminal Fibre Degradation in Low-Quality Tropical Forage Using Michaelis-Menten Kinetics. Livest. Sci. 2009, 126, 136–146. [Google Scholar] [CrossRef]
- Aikman, P.C.; Reynolds, C.K.; Beever, D.E. Diet Digestibility, Rate of Passage, and Eating and Rumination Behavior of Jersey and Holstein Cows. J. Dairy. Sci. 2008, 91, 1103–1114. [Google Scholar] [CrossRef]
- McLeod, M.N.; Minson, D.J. Large Particle Breakdown by Cattle Eating Ryegrass and Alfalfa. J. Anim. Sci. 1988, 66, 992–999. [Google Scholar] [CrossRef]
- Moraes, G.S.O.; Guim, A.; Tabosa, J.N.; Chagas, J.C.C.; Almeida, M.P.; Ferreira, M.A. Cactus [Opuntia stricta (Haw.) Haw] Cladodes and Corn Silage: How Do We Maximize the Performance of Lactating Dairy Cows Reared in Semiarid Regions? Livest. Sci. 2019, 221, 133–138. [Google Scholar] [CrossRef]
- McAllan, A.B.; Smith, R.H. Factors Influencing the Digestion of Dietary Carbohydrates between the Mouth and Abomasum of Steers. Br. J. Nutr. 1983, 50, 445–454. [Google Scholar] [CrossRef]
- Pearce, G.R.; Moir, R.J. Rumination in Sheep. I. The Influence of Rumination and Grinding upon the Passage and Digestion of Food. Aust. J. Agric. Res. 1964, 15, 635–644. [Google Scholar] [CrossRef]
| Item | Tifton-85 Hay | Spineless Cactus | Soybean Meal | Ground Corn | Urea | Ammonium Sulphate |
|---|---|---|---|---|---|---|
| DM a | 929 | 223 | 918 | 899 | 991 | 994 |
| Ash | 103 | 92 | 74 | 16 | - | - |
| OM | 897 | 908 | 926 | 984 | - | - |
| CP | 118 | 33 | 518 | 100 | 2900 | 1295 |
| Crude fat | 14 | 15 | 16 | 44 | - | - |
| NDF | 651 | 148 | 97 | 80 | - | - |
| iNDF | 298 | 80 | 1.6 | 4.0 | - | - |
| ADF | 366 | 98 | 85 | 30 | - | - |
| Lignin | 62 | 10 | 4.3 | 10 | - | - |
| NFC | 113 | 712 | 295 | 761 | - | - |
| TC | 765 | 860 | 392 | 841 | - | - |
| Ingredients (g/kg DM) | Inclusion of SC+UAS (g/kg DM) | ||||
|---|---|---|---|---|---|
| 0 | 150 | 300 | 450 | 600 | |
| Tifton-85 hay | 693 | 549 | 399 | 250 | 99 |
| Spineless cactus | 0 | 147 | 293 | 437 | 583 |
| Ground corn | 208 | 204 | 203 | 204 | 205 |
| Soybean meal | 84 | 81 | 82 | 82 | 82 |
| Urea+Ammonium sulphate a | 0 | 4 | 8 | 12 | 16 |
| Common salt | 5 | 5 | 5 | 5 | 5 |
| Mineral mix b | 10 | 10 | 10 | 10 | 10 |
| Chemical composition (g/kg DM) | |||||
| DM c | 922 | 629 | 478 | 387 | 325 |
| OM | 919 | 921 | 923 | 925 | 927 |
| CP | 146 | 143 | 140 | 141 | 140 |
| Crude fat | 20 | 20 | 20 | 21 | 21 |
| NDF | 476 | 404 | 327 | 252 | 175 |
| iNDF | 208 | 176 | 143 | 111 | 77 |
| ADF | 267 | 229 | 188 | 148 | 107 |
| NFC | 277 | 361 | 449 | 534 | 621 |
| TC | 753 | 757 | 762 | 765 | 769 |
| NDF by Tifton-85 hay | 452 | 358 | 260 | 163 | 65 |
| Item | Inclusion of SC+UAS (g/kg DM) | SEM | p-Value | |||||
|---|---|---|---|---|---|---|---|---|
| 0 | 150 | 300 | 450 | 600 | L | Q | ||
| Intake (g/d) | ||||||||
| OM | 1003 | 1061 | 1240 | 1061 | 1104 | 70.5 | 0.104 | 0.014 a |
| CP | 167 | 172 | 195 | 165 | 175 | 11.5 | 0.609 | 0.065 |
| NDF | 504 | 441 | 400 | 255 | 200 | 31.9 | <0.001 | 0.227 |
| NFC | 328 | 458 | 672 | 684 | 789 | 34.3 | <0.001 | 0.896 |
| ME (MJ/d) | 11.3 | 12.4 | 16.1 | 14.1 | 15.5 | 0.94 | <0.001 | 0.025 b |
| Digestibility (g/kg DM) | ||||||||
| DM | 673 | 710 | 781 | 776 | 804 | 17.5 | <0.001 | 0.168 |
| OM | 682 | 733 | 794 | 793 | 822 | 16.9 | <0.001 | 0.122 |
| CP | 768 | 770 | 791 | 784 | 806 | 13.5 | 0.055 | 0.832 |
| NDF | 585 | 586 | 639 | 532 | 540 | 38.2 | 0.239 | 0.313 |
| NFC | 798 | 880 | 899 | 912 | 918 | 15.7 | <0.001 | 0.202 |
| Item | Inclusion of SC+UAS (g/kg DM) | SEM | p-Value | |||||
|---|---|---|---|---|---|---|---|---|
| 0 | 150 | 300 | 450 | 600 | L | Q | ||
| Feeding time (min/d) | 246 | 216 | 242 | 170 | 184 | 16.8 | <0.001 | 0.789 |
| Rumination time (min/d) | 562 | 482 | 488 | 398 | 328 | 42.1 | <0.001 | 0.482 |
| Idle time (min/d) | 632 | 742 | 710 | 872 | 928 | 44.4 | <0.001 | 0.472 |
| Feeding efficiency | ||||||||
| DM (g/h) | 274 | 333 | 349 | 436 | 411 | 35.2 | <0.001 | 0.187 |
| NDF (g/h) | 123 | 124 | 100 | 94.3 | 66.6 | 10.9 | <0.001 | 0.094 |
| Rumination efficiency | ||||||||
| DM (g/h) | 119 | 147 | 175 | 187 | 232 | 13.9 | <0.001 | 0.679 |
| NDF (g/h) | 53.5 | 55.2 | 50.8 | 40.8 | 37.0 | 4.00 | <0.001 | 0.106 |
| Item (L/d) | Inclusion of SC+UAS (g/kg DM) | SEM | p-Value | |||||
|---|---|---|---|---|---|---|---|---|
| 0 | 150 | 300 | 450 | 600 | L | Q | ||
| Preformed water intake (A) | 0.072 | 0.838 | 1.723 | 2.140 | 2.837 | 0.17 | <0.001 | 0.234 |
| Voluntary water intake (B) | 2.298 | 1.886 | 1.497 | 0.960 | 0.555 | 0.19 | <0.001 | 0.852 |
| Water intake (A+B) | 2.369 | 2.724 | 3.220 | 3.099 | 3.392 | 0.21 | 0.002 | 0.317 |
| Metabolic water (C) | 0.470 | 0.529 | 0.617 | 0.536 | 0.543 | 0.04 | 0.048 | 0.006 a |
| Total water intake (A+B+C) | 2.840 | 3.252 | 3.838 | 3.636 | 3.934 | 0.22 | 0.001 | 0.195 |
| Urinary volume | 1.523 | 1.717 | 1.512 | 1.459 | 1.606 | 0.20 | 0.871 | 0.933 |
| Water excretion | ||||||||
| Urine | 1.494 | 1.762 | 1.479 | 1.436 | 1.581 | 0.20 | 0.778 | 0.992 |
| Faeces | 0.509 | 0.616 | 0.708 | 0.717 | 0.717 | 0.06 | 0.007 | 0.143 |
| Voluntary water intake | ||||||||
| L/kg DMI | 2.223 | 1.596 | 1.085 | 0.801 | 0.458 | 0.17 | <0.001 | 0.196 |
| mL/BW0.75 | 130.9 | 105.9 | 83.66 | 52.33 | 32.26 | 11.8 | <0.001 | 0.987 |
| Item | Inclusion of SC+UAS (g/kg DM) | SEM | p-Value | |||||
|---|---|---|---|---|---|---|---|---|
| 0 | 150 | 300 | 450 | 600 | L | Q | ||
| Fresh matter (g) | ||||||||
| Solid | 1428 | 1220 | 1202 | 1122 | 929.1 | 108 | 0.004 | 0.935 |
| Liquid | 3258 | 3100 | 2890 | 2926 | 2554 | 201 | 0.001 | 0.690 |
| Total | 4686 | 4320 | 4092 | 4048 | 3483 | 238 | <0.001 | 0.691 |
| Ruminal pool (g) | ||||||||
| DM | 578.2 | 513.8 | 515.2 | 493.8 | 431.0 | 41.4 | 0.023 | 0.893 |
| NDF | 363.8 | 300.8 | 289.4 | 271.2 | 215.8 | 27.9 | 0.002 | 0.932 |
| iNDF | 211.6 | 174.4 | 154.2 | 141.0 | 111.4 | 20.9 | 0.002 | 0.752 |
| Composition of ruminal DM (g/kg) | ||||||||
| NDF | 625.6 | 586.0 | 558.3 | 545.4 | 499.8 | 14.1 | <0.001 | 0.958 |
| iNDF | 360.0 | 337.5 | 297.0 | 281.6 | 257.4 | 21.2 | <0.001 | 0.725 |
| DM (h−1) | ||||||||
| Ki | 0.0806 | 0.0952 | 0.1128 | 0.1048 | 0.1198 | 0.0066 | 0.001 | 0.295 |
| Kp | 0.0354 | 0.0326 | 0.0330 | 0.0206 | 0.0198 | 0.0035 | <0.001 | 0.414 |
| Kd | 0.0452 | 0.0628 | 0.0796 | 0.0846 | 0.1002 | 0.0047 | <0.001 | 0.395 |
| NDF (h−1) | ||||||||
| Ki | 0.0591 | 0.0610 | 0.0595 | 0.0414 | 0.0384 | 0.0048 | 0.001 | 0.133 |
| Kp | 0.0226 | 0.0217 | 0.0222 | 0.0143 | 0.0144 | 0.0025 | 0.004 | 0.424 |
| Kd | 0.0366 | 0.0393 | 0.0372 | 0.0271 | 0.0239 | 0.0029 | 0.001 | 0.075 |
| iNDF (h−1) | ||||||||
| Kpi | 0.0458 | 0.0459 | 0.0488 | 0.0338 | 0.0347 | 0.0054 | 0.039 | 0.373 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mora-Luna, R.E.; Herrera, A.M.; Siqueira, M.C.B.d.; Conceição, M.G.d.; Chagas, J.C.C.; Santos, T.V.M.; Silva, J.A.B.A.d.; Carvalho, F.F.R.d.; Ferreira, M.d.A. Nutritional Aspects of the Association of Spineless Cactus and Urea with Tifton-85 Hay in Wethers’ Diets. Animals 2025, 15, 2865. https://doi.org/10.3390/ani15192865
Mora-Luna RE, Herrera AM, Siqueira MCBd, Conceição MGd, Chagas JCC, Santos TVM, Silva JABAd, Carvalho FFRd, Ferreira MdA. Nutritional Aspects of the Association of Spineless Cactus and Urea with Tifton-85 Hay in Wethers’ Diets. Animals. 2025; 15(19):2865. https://doi.org/10.3390/ani15192865
Chicago/Turabian StyleMora-Luna, Robert Emilio, Ana María Herrera, Michelle Christina Bernardo de Siqueira, Maria Gabriela da Conceição, Juana Catarina Cariri Chagas, Thayane Vitória Monteiro Santos, José Augusto Bastos Afonso da Silva, Francisco Fernando Ramos de Carvalho, and Marcelo de Andrade Ferreira. 2025. "Nutritional Aspects of the Association of Spineless Cactus and Urea with Tifton-85 Hay in Wethers’ Diets" Animals 15, no. 19: 2865. https://doi.org/10.3390/ani15192865
APA StyleMora-Luna, R. E., Herrera, A. M., Siqueira, M. C. B. d., Conceição, M. G. d., Chagas, J. C. C., Santos, T. V. M., Silva, J. A. B. A. d., Carvalho, F. F. R. d., & Ferreira, M. d. A. (2025). Nutritional Aspects of the Association of Spineless Cactus and Urea with Tifton-85 Hay in Wethers’ Diets. Animals, 15(19), 2865. https://doi.org/10.3390/ani15192865

