Preliminary Evaluation of Blending, Tuning, and Scaling Parameters in ssGBLUP for Genomic Prediction Accuracy in South African Holstein Cattle
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Sources and Editing
2.2. Genotypic Data
2.3. Statistical Analysis
2.3.1. Pedigree-Focused Best Linear Unbiased Prediction
2.3.2. Single-Step Genomic Best Linear Unbiased Prediction
Blending
Tuning
Scaling
2.3.3. Validation of Prediction Accuracy
3. Results
3.1. Genomic Prediction Accuracy of ABLUP and ssGBLUP Models
3.2. Accuracy of Predictions Using Different Blending Parameters
3.3. Accuracy of Predictions Using Different Tuning Options
3.4. Accuracy of Predictions Using Different Scaling Parameters for τ and ω
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BLUP | Best linear unbiased prediction |
EBVs | Estimated breeding values |
GEBVs | Genomic estimated breeding values |
SNP | Single-nucleotide polymorphism |
ssGBLUP | Single-step genomic best linear unbiased prediction |
References
- Legarra, A.; Aguilar, I.; Misztal, I. A Relationship Matrix Including Full Pedigree and Genomic Information. J. Dairy Sci. 2009, 92, 4656–4663. [Google Scholar] [CrossRef]
- Christensen, O.F.; Lund, M.S. Genomic Prediction When Some Animals Are Not Genotyped. Genet. Sel. Evol. 2010, 42, 2. [Google Scholar] [CrossRef] [PubMed]
- Christensen, O.F.; Madsen, P.; Nielsen, B.; Ostersen, T.; Su, G. Single-Step Methods for Genomic Evaluation in Pigs. Animals 2012, 6, 1565–1571. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wang, S.; Huang, J.; Li, L.; Zhang, Q.; Ding, X. Improving the Accuracy of Genomic Prediction in Chinese Holstein Cattle by Using One-Step Blending. Genet. Sel. Evol. 2014, 46, 66. [Google Scholar] [CrossRef] [PubMed]
- Koivula, M.; Strandén, I.; Pösö, J.; Aamand, G.P.; Mäntysaari, E.A. Single-Step Genomic Evaluation Using Multitrait Random Regression Model and Test-Day Data. J. Dairy Sci. 2015, 98, 2775–2784. [Google Scholar] [CrossRef]
- Schaeffer, L.R. Strategy for Applying Genome-Wide Selection in Dairy Cattle. J. Anim. Breed. Genet. 2006, 123, 218–223. [Google Scholar] [CrossRef]
- Saatchi, M.; Miraei-Ashtiani, S.R.; Javaremi, A.N.; Moradi-Shahrebabak, M.; Mehrabani-Yeghaneh, H. The Impact of Information Quantity and Strength of Relationship between Training Set and Validation Set on Accuracy of Genomic Estimated Breeding Values. Afr. J. Biotechnol. 2010, 9, 438–442. [Google Scholar]
- Wientjes, Y.C.J.; Bijma, P.; Vandenplas, J.; Calus, M.P.L. Multi-Population Genomic Relationships for Estimating Current Genetic Variances Within and Genetic Correlations Between Populations. Genetics 2017, 207, 503–515. [Google Scholar] [CrossRef]
- Calus, M.P.L.; Goddard, M.E.; Wientjes, Y.C.J.; Bowman, P.J.; Hayes, B.J. Multibreed Genomic Prediction Using Multitrait Genomic Residual Maximum Likelihood and Multitask Bayesian Variable Selection. J. Dairy Sci. 2018, 101, 4279–4294. [Google Scholar] [CrossRef]
- Weigel, K.A.A.; de los Campos, G.; Vazquez, A.I.I.; Rosa, G.J.M.J.M.; Gianola, D.; Van Tassell, C.P.P. Accuracy of Direct Genomic Values Derived from Imputed Single Nucleotide Polymorphism Genotypes in Jersey Cattle. J. Dairy Sci. 2010, 93, 5423–5435. [Google Scholar] [CrossRef]
- Uemoto, Y.; Osawa, T.; Saburi, J. Effect of Genotyped Cows in the Reference Population on the Genomic Evaluation of Holstein Cattle. Animals 2017, 11, 382–393. [Google Scholar] [CrossRef]
- Zhang, H.; Yin, L.; Wang, M.; Yuan, X.; Liu, X. Factors Affecting the Accuracy of Genomic Selection for Agricultural Economic Traits in Maize, Cattle, and Pig Populations. Front. Genet. 2019, 10, 189. [Google Scholar] [CrossRef]
- Wang, X.; Miao, J.; Chang, T.; Xia, J.; An, B.; Li, Y.; Xu, L.; Zhang, L.; Gao, X.; Li, J.; et al. Evaluation of GBLUP, BayesB and Elastic Net for Genomic Prediction in Chinese Simmental Beef Cattle. PLoS ONE 2019, 14, e0210442. [Google Scholar] [CrossRef] [PubMed]
- Cesarani, A.; Masuda, Y.; Tsuruta, S.; Nicolazzi, E.L.; VanRaden, P.M.; Lourenco, D.; Misztal, I. Genomic Predictions for Yield Traits in US Holsteins with Unknown Parent Groups. J. Dairy Sci. 2021, 104, 5843–5853. [Google Scholar] [CrossRef] [PubMed]
- Nilforooshan, M.A. A Note on the Conditioning of the H−1 Matrix Used in Single-Step GBLUP. Animals 2022, 12, 3208. [Google Scholar] [CrossRef] [PubMed]
- Aguilar, I.; Misztal, I.; Johnson, D.L.; Legarra, A.; Tsuruta, S.; Lawlor, T.J. Hot Topic: A Unified Approach to Utilize Phenotypic, Full Pedigree, and Genomic Information for Genetic Evaluation of Holstein Final Score. J. Dairy Sci. 2010, 93, 743–752. [Google Scholar] [CrossRef] [PubMed]
- Karaman, E.; Lund, M.S.; Su, G. Multi-Trait Single-Step Genomic Prediction Accounting for Heterogeneous (Co)Variances over the Genome. Heredity 2020, 124, 274–287. [Google Scholar] [CrossRef]
- Mehrban, H.; Naserkheil, M.; Lee, D.H.; Cho, C.; Choi, T.; Park, M.; Ibáñez-escriche, N. Genomic Prediction Using Alternative Strategies of Weighted Single-step Genomic Blup for Yearling Weight and Carcass Traits in Hanwoo Beef Cattle. Genes 2021, 12, 266. [Google Scholar] [CrossRef]
- Mancin, E.; Mota, L.F.M.; Tuliozi, B.; Verdiglione, R.; Mantovani, R.; Sartori, C. Improvement of Genomic Predictions in Small Breeds by Construction of Genomic Relationship Matrix Through Variable Selection. Front. Genet. 2022, 13, 814264. [Google Scholar] [CrossRef]
- VanRaden, P.M. Efficient Methods to Compute Genomic Predictions. J. Dairy Sci. 2008, 91, 4414–4423. [Google Scholar] [CrossRef]
- Forni, S.; Aguilar, I.; Misztal, I. Different Genomic Relationship Matrices for Single-Step Analysis Using Phenotypic, Pedigree and Genomic Information. Genet. Sel. Evol. 2011, 43, 1. [Google Scholar] [CrossRef] [PubMed]
- Vitezica, Z.G.; Aguilar, I.; Misztal, I.; Legarra, A. Bias in Genomic Predictions for Populations under Selection. Genet. Res. 2011, 93, 357–366. [Google Scholar] [CrossRef] [PubMed]
- Lourenco, D.; Legarra, A.; Tsuruta, S.; Masuda, Y.; Aguilar, I.; Misztal, I. Single-Step Genomic Evaluations from Theory to Practice: Using Snp Chips and Sequence Data in Blupf90. Genes 2020, 11, 790. [Google Scholar] [CrossRef] [PubMed]
- Tsuruta, S.; Lawlor, T.J.; Lourenco, D.A.L.; Misztal, I. Bias in Genomic Predictions by Mating Practices for Linear Type Traits in a Large-Scale Genomic Evaluation. J. Dairy Sci. 2021, 104, 662–677. [Google Scholar] [CrossRef]
- Tsuruta, S.; Lourenco, D.A.L.; Masuda, Y.; Misztal, I.; Lawlor, T.J. Controlling Bias in Genomic Breeding Values for Young Genotyped Bulls. J. Dairy Sci. 2019, 102, 9956–9970. [Google Scholar] [CrossRef]
- Aguilar, I.; Fernandez, E.N.; Blasco, A.; Ravagnolo, O.; Legarra, A. Effects of Ignoring Inbreeding in Model-Based Accuracy for BLUP and SSGBLUP. J. Anim. Breed. Genet. 2020, 137, 356–364. [Google Scholar] [CrossRef]
- Abdalla, E.E.A.; Schenkel, F.S.; Emamgholi Begli, H.; Willems, O.W.; van As, P.; Vanderhout, R.; Wood, B.J.; Baes, C.F. Single-Step Methodology for Genomic Evaluation in Turkeys (Meleagris gallopavo). Front. Genet. 2019, 10, 1248. [Google Scholar] [CrossRef]
- Chen, C.Y.; Misztal, I.; Aguilar, I.; Legarra, A.; Muir, W.M. Effect of Different Genomic Relationship Matrices on Accuracy and Scale. J. Anim. Sci. 2011, 89, 2673–2679. [Google Scholar] [CrossRef]
- Garcia, A.; Aguilar, I.; Legarra, A.; Tsuruta, S.; Misztal, I.; Lourenco, D. Theoretical Accuracy for Indirect Predictions Based on SNP Effects from Single-Step GBLUP. Genet. Sel. Evol. 2022, 54, 66. [Google Scholar] [CrossRef]
- Banga, C.; Neser, F.; Garrick, D. Breeding Objectives for Holstein Cattle in South Africa. S. Afr. J. Anim. Sci. 2014, 44, 199. [Google Scholar] [CrossRef]
- van Marle-Köster, E.; Visser, C. Genetic Improvement in South African Livestock: Can Genomics Bridge the Gap between the Developed and Developing Sectors? Front. Genet. 2018, 9, 331. [Google Scholar] [CrossRef]
- Visser, C.; Lashmar, S.F.; Reding, J.; Berry, D.P.; van Marle-Köster, E. Pedigree and Genome-Based Patterns of Homozygosity in the South African Ayrshire, Holstein, and Jersey Breeds. Front. Genet. 2023, 14, 1136078. [Google Scholar] [CrossRef]
- Makgahlela, M.; Banga, C.; Norris, D.; Dzama, K.; Ng’ambi, J. Genetic Correlations between Female Fertility and Production Traits in South African Holstein Cattle. S. Afr. J. Anim. Sci. 2007, 37, 180–188. [Google Scholar] [CrossRef]
- Interbull. National Genetic Evaluation–Republic of South Africa. 2020. Available online: https://interbull.org/ib/geforms (accessed on 31 July 2021).
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.R.; Bender, D.; Maller, J.; Sklar, P.; De Bakker, P.I.W.; Daly, M.J.; et al. PLINK: A Tool Set for Whole-Genome Association and Population-Based Linkage Analyses. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef] [PubMed]
- Misztal, I.; Tsuruta, S.; Strabel, T.; Auvray, B.; Druet, T.; Lee, D.H. BLUPF90 and related programs (BGF90). In Proceedings of the 7th World Congress on Genetics Applied to Livestock Production, Montpellier, France, 19–23 August 2002; pp. 1–28. [Google Scholar]
- McWhorter, T.M.; Bermann, M.; Garcia, A.L.S.; Legarra, A.; Aguilar, I.; Misztal, I.; Lourenco, D. Implication of the Order of Blending and Tuning When Computing the Genomic Relationship Matrix in Single-Step GBLUP. J. Anim. Breed. Genet. 2022, 140, 60–78. [Google Scholar] [CrossRef] [PubMed]
- Legarra, A. Comparing Estimates of Genetic Variance across Different Relationship Models. Theor. Popul. Biol. 2016, 107, 26–30. [Google Scholar] [CrossRef] [PubMed]
- Powell, J.E.; Visscher, P.M.; Goddard, M.E. Reconciling the Analysis of IBD and IBS in Complex Trait Studies. Nat. Rev. Genet. 2010, 11, 800–805. [Google Scholar] [CrossRef]
- Junqueira, V.S.; Lopes, P.S.; Lourenco, D.; Silva, F.F.e.; Cardoso, F.F. Applying the Metafounders Approach for Genomic Evaluation in a Multibreed Beef Cattle Population. Front. Genet. 2020, 11, 556399. [Google Scholar] [CrossRef]
- Scholtens, M.; Lopez-Villalobos, N.; Lehnert, K.; Snell, R.; Garrick, D.; Blair, H.T. Advantage of Including Genomic Information to Predict Breeding Values for Lactation Yields of Milk, Fat, and Protein or Somatic Cell Score in a New Zealand Dairy Goat Herd. Animals 2021, 11, 24. [Google Scholar] [CrossRef]
- Bernstein, R.; Du, M.; Du, Z.G.; Strauss, A.S.; Hoppe, A.; Bienefeld, K. First Large-Scale Genomic Prediction in the Honey Bee. Heredity 2023, 130, 320–328. [Google Scholar] [CrossRef]
- Naserkheil, M.; Lee, D.H.; Mehrban, H. Improving the Accuracy of Genomic Evaluation for Linear Body Measurement Traits Using Single-Step Genomic Best Linear Unbiased Prediction in Hanwoo Beef Cattle. Genetics 2020, 21, 144. [Google Scholar] [CrossRef]
- Gorjanc, G.; Bijma, P.; Hickey, J.M. Reliability of Pedigree-Based and Genomic Evaluations in Selected Populations. Genet. Sel. Evol. 2015, 47, 65. [Google Scholar] [CrossRef]
- Lourenco, D.A.L.A.L.; Misztal, I.; Tsuruta, S.; Aguilar, I.; Ezra, E.; Ron, M.; Shirak, A.; Weller, J.I.I. Methods for Genomic Evaluation of a Relatively Small Genotyped Dairy Population and Effect of Genotyped Cow Information in Multiparity Analyses. J. Dairy Sci. 2014, 97, 1742–1752. [Google Scholar] [CrossRef]
- Nayee, N.G.; Su, G.; Gajjar, S.G.; Sahana, G.; Saha, S.; Trivedi, K.R.; Guldbrandtsen, B.; Lund, M.S. Genomic prediction by single-step genomic BLUP using cow reference population in Holstein crossbred cattle in India. In Proceedings of the 11th World Congress on Genetics Applied to Livestock Production, Auckland, New Zealand, 11–16 February 2018; Article 11.411. Available online: http://www.wcgalp.org/proceedings/2018/genomic-prediction-single-step-genomic-blup-using-cow-reference-population-holstein (accessed on 31 July 2022).
- Lee, S.H.; Dang, C.G.; Choy, Y.H.; Do, C.H.; Cho, K.; Kim, J.; Kim, Y.; Lee, J. Comparison of Genome-Wide Association and Genomic Prediction Methods for Milk Production Traits in Korean Holstein Cattle. Asian-Australas J. Anim. Sci. 2019, 32, 913–921. [Google Scholar] [CrossRef] [PubMed]
- Kudinov, A.A.; Mäntysaari, E.A.; Pitkänen, T.J.; Saksa, E.I.; Aamand, G.P.; Uimari, P.; Strandén, I. Single-Step Genomic Evaluation of Russian Dairy Cattle Using Internal and External Information. J. Anim. Breed. Genet. 2022, 139, 259–270. [Google Scholar] [CrossRef] [PubMed]
- Bijma, P. Accuracies of Estimated Breeding Values from Ordinary Genetic Evaluations Do Not Reflect the Correlation between True and Estimated Breeding Values in Selected Populations. J. Anim. Breed. Genet. 2012, 129, 345–358. [Google Scholar] [CrossRef]
- Misztal, I.; Tsuruta, S.; Aguilar, I.; Legarra, A.; VanRaden, P.M.; Lawlor, T.J. Methods to Approximate Reliabilities in Single-Step Genomic Evaluation. J. Dairy Sci. 2013, 96, 647–654. [Google Scholar] [CrossRef]
- Legarra, A.; Christensen, O.F.; Aguilar, I.; Misztal, I. Single Step, a General Approach for Genomic Selection. Livest. Sci. 2014, 166, 54–65. [Google Scholar] [CrossRef]
- Tsuruta, S.; Misztal, I.; Lawlor, T.J. Short Communication: Genomic Evaluations of Final Score for US Holsteins Benefit from the Inclusion of Genotypes on Cows. J. Dairy Sci. 2013, 96, 3332–3335. [Google Scholar] [CrossRef]
- Piccoli, M.L.; Brito, L.F.; Braccini, J.; Brito, F.V.; Cardoso, F.F.; Cobuci, J.A.; Sargolzaei, M.; Schenkel, F.S. A Comprehensive Comparison between Single-and Two-Step GBLUP Methods in a Simulated Beef Cattle Population. Can J. Anim. Sci. 2018, 98, 565–575. [Google Scholar] [CrossRef]
- Curzon, A.Y.; Ezra, E.; Weller, J.I.; Seroussi, E.; Börner, V.; Gershoni, M. Single-Step Genomic BLUP (SsGBLUP) Effectively Models Small Cattle Populations: Lessons from the Israeli-Holstein Herdbook. Genomics 2024, 25, 1147. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.; Christensen, O.F.; Madsen, P.; Nielsen, U.S.; Zhang, Y.; Lund, M.S.; Su, G. Comparison on Genomic Predictions Using Three GBLUP Methods and Two Single-Step Blending Methods in the Nordic Holstein Population. Genet. Sel. Evol. 2012, 44, 8. [Google Scholar] [CrossRef] [PubMed]
- Neves, H.H.R.; Carvalheiro, R.; O’Brien, A.M.P.; Utsunomiya, Y.T.; Do Carmo, A.S.; Schenkel, F.S.; Sölkner, J.; McEwan, J.C.; Van Tassell, C.P.; Cole, J.B.; et al. Accuracy of Genomic Predictions in Bos Indicus (Nellore) Cattle. Genet. Sel. Evol. 2014, 46, 17. [Google Scholar] [CrossRef] [PubMed]
- Meyer, K.; Tier, B.; Swan, A. Estimates of Genetic Trend for Single-Step Genomic Evaluations. Genet. Sel. Evol. 2018, 50, 39. [Google Scholar] [CrossRef]
- Hollifield, M.K.; Bermann, M.; Lourenco, D.; Misztal, I. Impact of Blending the Genomic Relationship Matrix with Different Levels of Pedigree Relationships or the Identity Matrix on Genetic Evaluations. JDS Commun. 2022, 3, 343–347. [Google Scholar] [CrossRef]
- Neshat, M.; Momin, M.; Truong, B.; Van Der Werf, J.H.J.; Lee, S.; Lee, S.H. Finetuning hyper-parameters increases the prediction accuracy in single-step genetic evaluation. In Proceedings of the 12th World Congress on Genetics Applied to Livestock Production, Rotterdam, The Netherlands, 3–8 July 2022; pp. 1352–1355. [Google Scholar]
- Van Grevenhof, E.M.; Van Arendonk, J.A.; Bijma, P. Response to Genomic Selection: The Bulmer Effect and the Potential of Genomic Selection When the Number of Phenotypic Records Is Limiting. Genet. Sel. Evol. 2012, 44, 26. [Google Scholar] [CrossRef]
- Buaban, S.; Prempree, S.; Sumreddee, P.; Duangjinda, M.; Masuda, Y. Genomic Prediction of Milk-Production Traits and Somatic Cell Score Using Single-Step Genomic Best Linear Unbiased Predictor with Random Regression Test-Day Model in Thai Dairy Cattle. J. Dairy Sci. 2021, 104, 12713–12723. [Google Scholar] [CrossRef]
- Misztal, I.; Lourenco, D.; Legarra, A. Current Status of Genomic Evaluation. J. Anim. Sci. 2020, 98, skaa101. [Google Scholar] [CrossRef]
- Spangler, M.L.; Sapp, R.L.; Bertrand, J.K.; MacNeil, M.D.; Rekaya, R. Different Methods of Selecting Animals for Genotyping to Maximize the Amount of Genetic Information Known in the Population. J. Anim. Sci. 2008, 86, 2471–2479. [Google Scholar] [CrossRef]
- Bermann, M.; Lourenco, D.; Misztal, I. Technical Note: Automatic Scaling in Single-Step Genomic BLUP. J. Dairy Sci. 2021, 104, 2027–2031. [Google Scholar] [CrossRef]
- Neshat, M.; Lee, S.; Momin, M.M.; Truong, B.; van der Werf, J.H.J.; Lee, S.H. An Effective Hyper-Parameter Can Increase the Prediction Accuracy in a Single-Step Genetic Evaluation. Front. Genet. 2023, 14, 1104906. [Google Scholar] [CrossRef] [PubMed]
- Hsu, W.L.; Garrick, D.J.; Fernando, R.L. The Accuracy and Bias of Single-Step Genomic Prediction for Populations under Selection. G3 2017, 7, 2685–2694. [Google Scholar] [CrossRef] [PubMed]
- Harris, B.L.; Winkelman, A.M.; Johnson, D.L. Large-Scale Single-Step Genomic Evaluation for Milk Production Traits. In Proceedings of the Interbull, Interbull Bulletin, Cork, Ireland, 28–31 May 2012; Volume 46, pp. 20–24. [Google Scholar]
- Misztal, I.; Aguilar, I.; Lawlor, T.J. Choice of Parameters for Single-Step Genomic Evaluation for Type. J. Dairy Sci. 2010, 93, 533. [Google Scholar]
- Martini, J.W.R.; Schrauf, M.F.; Garcia-Baccino, C.A.; Pimentel, E.C.G.; Munilla, S.; Rogberg-Muñoz, A.; Cantet, R.J.C.; Reimer, C.; Gao, N.; Wimmer, V.; et al. The Effect of the H -1 Scaling Factors τ and ω on the Structure of H in the Single-Step Procedure. Genet. Sel. Evol. 2018, 50, 16. [Google Scholar] [CrossRef]
- Hong, J.K.; Kim, Y.S.; Cho, K.H.; Lee, D.H.; Min, Y.J.; Cho, E.S. Application of Single-Step Genomic Evaluation Using Social Genetic Effect Model for Growth in Pig. Asian-Australas J. Anim. Sci. 2019, 32, 1836–1843. [Google Scholar] [CrossRef]
- Paiva, J.T.; Mota, R.R.; Lopes, P.S.; Hammami, H.; Vanderick, S.; Oliveira, H.R.; Veroneze, R.; Fonseca e Silva, F.; Gengler, N. Genomic Prediction and Genetic Correlations Estimated for Milk Production and Fatty Acid Traits in Walloon Holstein Cattle Using Random Regression Models. J. Dairy Res. 2022, 89, 222–230. [Google Scholar] [CrossRef]
- Ben Zaabza, H.; Taskinen, M.; Mäntysaari, E.A.; Pitkänen, T.; Aamand, G.P.; Strandén, I. Breeding Value Reliabilities for Multiple-Trait Single-Step Genomic Best Linear Unbiased Predictor. J. Dairy Sci. 2022, 105, 5221–5237. [Google Scholar] [CrossRef]
- Guarini, A.R.; Lourenco, D.A.L.; Brito, L.F.; Sargolzaei, M.; Baes, C.F.; Miglior, F.; Misztal, I.; Schenkel, F.S. Comparison of Genomic Predictions for Lowly Heritable Traits Using Multi-Step and Single-Step Genomic Best Linear Unbiased Predictor in Holstein Cattle. J. Dairy Sci. 2018, 101, 8076–8086. [Google Scholar] [CrossRef]
Trait | Descriptive Statistics | Heritability | ||
---|---|---|---|---|
Minimum | Maximum | Mean ± SD | ||
Milk yield (kg) | 1000 | 25,993 | 7940.10 ± 2615.10 | 0.28 |
Protein (kg) | 25 | 857.19 | 290.23 ± 100.25 | 0.21 |
Fat (kg) | 26 | 833.88 | 252.54 ± 82.98 | 0.25 |
Model | Milk | Protein | Fat |
---|---|---|---|
ABLUP | 0.01 | 0.03 | 0.03 |
ssGBLUP | 0.23 | 0.29 | 0.30 |
Model | Milk | Protein | Fat |
---|---|---|---|
ssGBLUP_G0.60 | 0.26 | 0.32 | 0.33 |
ssGBLUP_G0.70 | 0.26 | 0.32 | 0.33 |
ssGBLUP_G0.80 | 0.25 | 0.31 | 0.32 |
ssGBLUP_G0.90 | 0.24 | 0.30 | 0.30 |
ssGBLUP_G0.95 | 0.23 | 0.29 | 0.30 |
Model | Milk | Protein | Fat |
---|---|---|---|
ssGBLUP_TG0 | 0.25 | 0.30 | 0.31 |
ssGBLUP_TG1 | 0.25 | 0.30 | 0.31 |
ssGBLUP_TG2 | 0.23 | 0.29 | 0.30 |
ssGBLUP_TG3 | 0.23 | 0.29 | 0.30 |
ssGBLUP_TG4 | 0.23 | 0.29 | 0.30 |
Model | Milk | Protein | Fat | |
---|---|---|---|---|
Scaling τ | ssGBLUP_τ 0.60 | 0.22 | 0.28 | 0.28 |
ssGBLUP_τ 0.70 | 0.22 | 0.29 | 0.29 | |
ssGBLUP_τ 0.80 | 0.23 | 0.29 | 0.29 | |
ssGBLUP_τ 0.90 | 0.23 | 0.29 | 0.30 | |
ssGBLUP_τ 1 | 0.23 | 0.29 | 0.30 | |
Scaling ω | ssGBLUP_ω 0.60 | 0.26 | 0.32 | 0.34 |
ssGBLUP_ω 0.70 | 0.26 | 0.32 | 0.33 | |
ssGBLUP_ω 0.80 | 0.25 | 0.31 | 0.32 | |
ssGBLUP_ω 0.90 | 0.25 | 0.30 | 0.31 | |
ssGBLUP_ω 1 | 0.23 | 0.29 | 0.30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mafolo, K.S.; MacNeil, M.D.; Neser, F.W.C.; Makgahlela, M.L. Preliminary Evaluation of Blending, Tuning, and Scaling Parameters in ssGBLUP for Genomic Prediction Accuracy in South African Holstein Cattle. Animals 2025, 15, 2866. https://doi.org/10.3390/ani15192866
Mafolo KS, MacNeil MD, Neser FWC, Makgahlela ML. Preliminary Evaluation of Blending, Tuning, and Scaling Parameters in ssGBLUP for Genomic Prediction Accuracy in South African Holstein Cattle. Animals. 2025; 15(19):2866. https://doi.org/10.3390/ani15192866
Chicago/Turabian StyleMafolo, Kgaogelo Stimela, Michael D. MacNeil, Frederick W. C. Neser, and Mahlako Linah Makgahlela. 2025. "Preliminary Evaluation of Blending, Tuning, and Scaling Parameters in ssGBLUP for Genomic Prediction Accuracy in South African Holstein Cattle" Animals 15, no. 19: 2866. https://doi.org/10.3390/ani15192866
APA StyleMafolo, K. S., MacNeil, M. D., Neser, F. W. C., & Makgahlela, M. L. (2025). Preliminary Evaluation of Blending, Tuning, and Scaling Parameters in ssGBLUP for Genomic Prediction Accuracy in South African Holstein Cattle. Animals, 15(19), 2866. https://doi.org/10.3390/ani15192866