Effects of Culture Systems and Feed Types on Water Quality and Growth Performance of Japanese Eel (Anguilla japonica)
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Conditions
2.1.1. Sample Collection and Ethical Considerations
2.1.2. Fish and Environment Conditions
2.1.3. Feeding Regimen
2.1.4. Environmental Parameters
2.1.5. Water Management
2.2. System Configuration
2.3. RAS Flow Rate Optimization
2.4. Water Quality Analysis
2.5. Growth Rate
2.6. Blood Parameters
2.7. Whole-Body Composition
2.8. Gene Analysis
2.9. Statistical Analyses
3. Results
3.1. Water Quality Analysis
3.2. Growth Rate
3.3. Blood Parameters
3.4. Whole-Body Composition
3.5. Gene Expression of Digestion-Related Enzymes
4. Discussion
4.1. Water Quality
4.2. Growth Rate Analysis
4.3. Hematological Analysis
4.4. Whole-Body Composition
4.5. Expression Levels of Genes Encoding the Digestive Enzymes
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- KOSTAT. 2022 Fishery Production Trend Survey Result (Provisional); Statistics Korea: Daejeon, Republic of Korea, 2023. [Google Scholar]
- National Institute of Fisheries Science. Standard Manual of Eel (Anguilla japonica) Aquaculture; National Institute of Fisheries Science: Pusan, Republic of Korea, 2009. [Google Scholar]
- Schreckenbach; Knösche; Ebert. Nutrient and energy content of freshwater fishes. J. Appl. Ichthyol. 2001, 17, 142–144. [Google Scholar] [CrossRef]
- Ahn, J.C.; Chong, W.-S.; Na, J.H.; Yun, H.B.; Shin, K.J.; Lee, K.W.; Park, J.T. An evaluation of major nutrients of four farmed freshwater eel species (Anguilla japonica, A. rostrata, A. bicolor pacifica and A. marmorata). Korean J. Fish. Aquat. Sci. 2015, 48, 44–50. [Google Scholar] [CrossRef]
- Cho, H.-S.; Choi, J.-H.; Ko, H.-B.; Seo, J.-S.; Ahn, J.-C. Evaluation of major nutrients of domestic farmed eels Anguilla japonica. Korean J. Fish. Aquat. Sci. 2011, 44, 237–242. [Google Scholar] [CrossRef]
- Martins, C.; Eding, E.H.; Verdegem, M.C.; Heinsbroek, L.T.; Schneider, O.; Blancheton, J.-P.; d’Orbcastel, E.R.; Verreth, J. New developments in recirculating aquaculture systems in Europe: A perspective on environmental sustainability. Aquac. Eng. 2010, 43, 83–93. [Google Scholar] [CrossRef]
- Zhang, S.-Y.; Li, G.; Wu, H.-B.; Liu, X.-G.; Yao, Y.-H.; Tao, L.; Liu, H. An integrated recirculating aquaculture system (RAS) for land-based fish farming: The effects on water quality and fish production. Aquac. Eng. 2011, 45, 93–102. [Google Scholar] [CrossRef]
- Lee, J.-S.; Kim, D.-Y. The current status and future directions of Korean inland freshwater aquaculture. J. Fish. Bus. Adm. 2006, 37, 1–24. [Google Scholar]
- Robb, D.H.; Crampton, V.O.; Robb, D.; Crampton, V. On-farm feeding and feed management: Perspectives from the fish feed industry. On-Farm Feed. Feed Manag. Aquac. 2013, 489, 518. [Google Scholar]
- Kim, S.-W.; Rim, S.-K.; Sohn, S.-G.; Lee, J. Comparison of growth and water quality in juvenile Japanese eel, Anguilla japonica fed commercial extruded pellet and paste type diets. J. Fish. Mar. Sci. Educ. 2008, 20, 90–94. [Google Scholar]
- Yaqoob, M.; Ali, M.R.; Mehmood, S. Comparison of growth performance of major and Chinese carps fed on floating and sinking pelleted supplementary feeds in ponds. Pak. J. Zool 2010, 42, 765–769. [Google Scholar]
- Diamahesa, W.A.; Fukada, H.; Masumoto, T. Effect of dietary moisture content on growth and feed intake in conger eel Conger myriaster. Aquac. Sci. 2021, 69, 71–77. [Google Scholar] [CrossRef]
- Chen, S.; Timmons, M.B.; Aneshansley, D.J.; Bisogni, J.J., Jr. Suspended solids characteristics from recirculating aquacultural systems and design implications. Aquaculture 1993, 112, 143–155. [Google Scholar] [CrossRef]
- Summerfelt, R.C.; Penne, C.R. Solids removal in a recirculating aquaculture system where the majority of flow bypasses the microscreen filter. Aquac. Eng. 2005, 33, 214–224. [Google Scholar] [CrossRef]
- Xiao, R.; Wei, Y.; An, D.; Li, D.; Ta, X.; Wu, Y.; Ren, Q. A review on the research status and development trend of equipment in water treatment processes of recirculating aquaculture systems. Rev. Aquac. 2019, 11, 863–895. [Google Scholar] [CrossRef]
- Badiola, M.; Mendiola, D.; Bostock, J. Recirculating Aquaculture Systems (RAS) analysis: Main issues on management and future challenges. Aquac. Eng. 2012, 51, 26–35. [Google Scholar] [CrossRef]
- Rurangwa, E.; Verdegem, M.C. Microorganisms in recirculating aquaculture systems and their management. Rev. Aquac. 2015, 7, 117–130. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 15th ed.; Association of Official Analytical Chemist: Washington, DC, USA, 1990. [Google Scholar]
- Choe, J.R.; Park, J.S.; Hwang, J.; Lee, D.; Kim, H. Effects of Acute Toxicity of Ammonia and Nitrite to Juvenile Marbled Eel Anguilla marmorata. Korean J. Fish. Aquat. Sci. 2022, 55, 697–704. [Google Scholar]
- Jauncey, K. The effects of varying dietary protein level on the growth, food conversion, protein utilization and body composition of juvenile tilapias (Sarotherodon mossambicus). Aquaculture 1982, 27, 43–54. [Google Scholar] [CrossRef]
- Gilannejad, N.; de Las Heras, V.; Martos-Sitcha, J.A.; Moyano, F.J.; Yufera, M.; Martinez-Rodriguez, G. Ontogeny of Expression and Activity of Digestive Enzymes and Establishment of gh/igf1 Axis in the Omnivorous Fish Chelon labrosus. Animals 2020, 10, 874. [Google Scholar] [CrossRef]
- Shin, M.G.; Ryu, Y.; Choi, Y.H.; Kim, S.-K. Ontogenetic digestive physiology and expression of nutrient transporters in Anguilla japonica larvae. Aquac. Rep. 2022, 25, 101218. [Google Scholar] [CrossRef]
- Hsu, H.Y.; Chen, S.H.; Cha, Y.R.; Tsukamoto, K.; Lin, C.Y.; Han, Y.S. De Novo Assembly of the Whole Transcriptome of the Wild Embryo, Preleptocephalus, Leptocephalus, and Glass Eel of Anguilla japonica and Deciphering the Digestive and Absorptive Capacities during Early Development. PLoS ONE 2015, 10, e0139105. [Google Scholar] [CrossRef]
- Sadler, K. Effects of temperature on the growth and survival of the European eel, Anguilla anguilla L. J. Fish Biol. 1979, 15, 499–507. [Google Scholar] [CrossRef]
- Seymour, E. Devising optimum feeding regimes and temperatures for the warmwater culture of eel, Anguilla anguilla L. Aquac. Res. 1989, 20, 311–324. [Google Scholar] [CrossRef]
- Rafiee, G.; Saad, C.R. Nutrient cycle and sludge production during different stages of red tilapia (Oreochromis sp.) growth in a recirculating aquaculture system. Aquaculture 2005, 244, 109–118. [Google Scholar] [CrossRef]
- Velichkova, K.N.; Sirakov, I.N. The usage of aquatic floating macrophytes (Lemna and Wolffia) as biofilter in recirculation aquaculture system (RAS). Turk. J. Fish. Aquat. Sci. 2013, 13, 101–110. [Google Scholar] [CrossRef] [PubMed]
- Arshad, M.; Shakoor, A. Irrigation water quality. Water Int 2017, 12, 145–160. [Google Scholar]
- Timmons, M.B.; Ebeling, J.; Wheaton, F.; Summerfelt, S.; Vinci, B. Mass Balances, Loading Rates, and Fish Growth. In Recirculating Aquaculture Systems, 2nd ed.; Cayuga Aqua Ventures: New York, NY, USA, 2002; pp. 89–116. [Google Scholar]
- Wik, T.E.; Lindén, B.T.; Wramner, P.I. Integrated dynamic aquaculture and wastewater treatment modelling for recirculating aquaculture systems. Aquaculture 2009, 287, 361–370. [Google Scholar] [CrossRef]
- Schram, E.; Verdegem, M.; Widjaja, R.; Kloet, C.; Foss, A.; Schelvis-Smit, R.; Roth, B.; Imsland, A. Impact of increased flow rate on specific growth rate of juvenile turbot (Scophthalmus maximus, Rafinesque 1810). Aquaculture 2009, 292, 46–52. [Google Scholar] [CrossRef]
- Ebeling, J.M.; Timmons, M.B. Recirculating Aquaculture Systems. In Aquaculture Production Systems; John Wiley and Sons: Hoboken, NJ, USA, 2012; pp. 245–277. [Google Scholar] [CrossRef]
- Tyson, R.V.; Simonne, E.H.; White, J.M.; Lamb, E.M. Reconciling water quality parameters impacting nitrification in aquaponics: The pH levels. Proc. Fla. State Hortic. Soc. 2004, 117, 79–83. [Google Scholar]
- Mota, V.C.; Hop, J.; Sampaio, L.A.; Heinsbroek, L.T.; Verdegem, M.C.; Eding, E.H.; Verreth, J.A. The effect of low pH on physiology, stress status and growth performance of turbot (Psetta maxima L.) cultured in recirculating aquaculture systems. Aquac. Res. 2018, 49, 3456–3467. [Google Scholar] [CrossRef]
- Timmons, M.B. Recirculating Aquaculture Systems. 2002. Available online: https://en.wikipedia.org/wiki/Recirculating_aquaculture_system (accessed on 5 January 2023).
- Obirikorang, K.A.; Agbo, N.W.; Obirikorang, C.; Adjei-Boateng, D.; Ahiave, S.E.; Skov, P.V. Effects of water flow rates on growth and welfare of Nile tilapia (Oreochromis niloticus) reared in a recirculating aquaculture system. Aquac. Int. 2019, 27, 449–462. [Google Scholar] [CrossRef]
- Van Rijn, J.; Tal, Y.; Schreier, H.J. Denitrification in recirculating systems: Theory and applications. Aquac. Eng. 2006, 34, 364–376. [Google Scholar] [CrossRef]
- Kuhn, D.D.; Drahos, D.D.; Marsh, L.; Flick, G.J., Jr. Evaluation of nitrifying bacteria product to improve nitrification efficacy in recirculating aquaculture systems. Aquac. Eng. 2010, 43, 78–82. [Google Scholar] [CrossRef]
- Preena, P.G.; Rejish Kumar, V.J.; Singh, I.S.B. Nitrification and denitrification in recirculating aquaculture systems: The processes and players. Rev. Aquac. 2021, 13, 2053–2075. [Google Scholar] [CrossRef]
- Tomasso, J. Toxicity of nitrogenous wastes to aquaculture animals. Rev. Fish. Sci. 1994, 2, 291–314. [Google Scholar] [CrossRef]
- Taylor, M.; Elliott, H.A.; Navitsky, L.O. Relationship between total dissolved solids and electrical conductivity in Marcellus hydraulic fracturing fluids. Water Sci. Technol. 2018, 77, 1998–2004. [Google Scholar] [CrossRef]
- Höuner, G.; Hillers, A.; Konjevic, D.; Milojevic, S. Growth of mullet (Liza ramada) fed three commercial trout and eel feeds in open and closed aquaculture systems. J. Appl. Ichthyol. 1989, 5, 157–164. [Google Scholar] [CrossRef]
- Ighwela, K.A.; Ahmad, A.B.; Abol-Munafi, A. The selection of viscerosomatic and hepatosomatic indices for the measurement and analysis of Oreochromis niloticus condition fed with varying dietary maltose levels. Int. J. Fauna Biol. Stud. 2014, 1, 18–20. [Google Scholar]
- Du, Z.-Y.; Liu, Y.-J.; Tian, L.-X.; He, J.-G.; Cao, J.-M.; Liang, G.-Y. The influence of feeding rate on growth, feed efficiency and body composition of juvenile grass carp (Ctenopharyngodon idella). Aquac. Int. 2006, 14, 247–257. [Google Scholar] [CrossRef]
- Kim, Y.-O.; Oh, S.-Y.; Lee, W.-S. Feeding ratio affects growth, body composition, and blood chemistry of mandarin fish (Siniperca scherzeri) in recirculating aquaculture system. Fish. Aquat. Sci. 2021, 24, 219–227. [Google Scholar] [CrossRef]
- Kim, Y.-O.; Oh, S.-Y.; Kim, T. Effects of the feeding rate on growth performance, body composition, and hematological properties of juvenile mandarin fish Siniperca scherzeri in a recirculating aquaculture system. Sustainability 2021, 13, 8257. [Google Scholar] [CrossRef]
- Fazio, F. Fish hematology analysis as an important tool of aquaculture: A review. Aquaculture 2019, 500, 237–242. [Google Scholar] [CrossRef]
- Yu, Y.B.; Choi, J.H.; Lee, J.H.; Jo, A.H.; Lee, K.M.; Kim, J.H. Biofloc Technology in Fish Aquaculture: A Review. Antioxidants 2023, 12, 398. [Google Scholar] [CrossRef]
- Amano, M.; Amiya, N.; Mizusawa, K.; Chiba, H. Effects of background color and rearing density on stress-related hormones in the juvenile Japanese eel Anguilla japonica. Fish. Sci. 2021, 87, 521–528. [Google Scholar] [CrossRef]
- Summerfelt, R.C. Water Quality Considerations for Aquaculture; Department of Animal Ecology: Ames, IA, USA, 2000; pp. 2–7. [Google Scholar]
- Makaras, T.; Razumienė, J.; Gurevičienė, V.; Šakinytė, I.; Stankevičiūtė, M.; Kazlauskienė, N. A new approach of stress evaluation in fish using β-d-Glucose measurement in fish holding-water. Ecol. Indic. 2020, 109, 105829. [Google Scholar] [CrossRef]
- Tan, C.; Sun, D.; Tan, H.; Liu, W.; Luo, G.; Wei, X. Effects of stocking density on growth, body composition, digestive enzyme levels and blood biochemical parameters of Anguilla marmorata in a recirculating aquaculture system. Turk. J. Fish. Aquat. Sci. 2018, 18, 9–16. [Google Scholar] [CrossRef]
- Martínez-Álvarez, R.M.; Morales, A.E.; Sanz, A. Antioxidant defenses in fish: Biotic and abiotic factors. Rev. Fish Biol. Fish. 2005, 15, 75–88. [Google Scholar] [CrossRef]
- Kim, J.H.; Cho, J.H.; Kim, S.R.; Hur, Y.B. Toxic effects of waterborne ammonia exposure on hematological parameters, oxidative stress and stress indicators of juvenile hybrid grouper, Epinephelus lanceolatus ♂ × Epinephelus fuscoguttatus ♀. Env. Toxicol. Pharmacol. 2020, 80, 103453. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, Y.; Zhang, X.; Rabbi, M.H.; Guo, R.; Shi, S.; Ma, Z.; Liu, Y. Effects of dietary florfenicol contained feeds on growth and immunity of European seabass (Dicentrarchus labrax) in flow-through and recirculating aquaculture system. Aquac. Rep. 2021, 19, 100602. [Google Scholar] [CrossRef]
- Sun, S.; Ge, X.; Xuan, F.; Zhu, J.; Yu, N. Nitrite-induced hepatotoxicity in Bluntsnout bream (Megalobrama amblycephala): The mechanistic insight from transcriptome to physiology analysis. Env. Toxicol Pharmacol 2014, 37, 55–65. [Google Scholar] [CrossRef] [PubMed]
- Jung, S.-H.; Seo, J.-S.; Kim, J.-D.; Choi, H.-S.; Park, M. Application of automatic dry chemistry analyzer (FUJI DRI-CHEM 3000) used to hematological analysis of cultured freshwater fish in low temperature season. J. Fish Pathol. 2011, 24, 247–254. [Google Scholar] [CrossRef]
- Okorie, O.E.; Kim, Y.C.; Lee, S.; Bae, J.Y.; Yoo, J.H.; Han, K.; Bai, S.C.; Park, G.J.; Choi, S.M. Reevaluation of the dietary protein requirements and optimum dietary protein to energy ratios in Japanese eel, Anguilla japonica. J. World Aquac. Soc. 2007, 38, 418–426. [Google Scholar] [CrossRef]
- Seo, J.-S.; Choi, J.-H.; Seo, J.-H.; Ahn, T.-H.; Chong, W.-S.; Kim, S.-H.; Cho, H.-S.; Ahn, J.-C. Comparison of major nutrients in eels Anguilla japonica cultured with different formula feeds or at different farms. Fish. Aquat. Sci. 2013, 16, 85–92. [Google Scholar] [CrossRef]
- Heinsbroek, L.T.; Van Hooff, P.L.; Swinkels, W.; Tanck, M.W.; Schrama, J.W.; Verreth, J.A. Effects of feed composition on life history developments in feed intake, metabolism, growth and body composition of European eel, Anguilla anguilla. Aquaculture 2007, 267, 175–187. [Google Scholar] [CrossRef]
- Xu, H.; Li, X.; Sun, W.; Chen, J.; Gao, Q.; Shuai, K.; Leng, X. Effects of different feeding rates of extruded and pelleted feeds on growth and nutrient retention in channel catfish (Ictalurus punctatus). Aquac. Int. 2017, 25, 1361–1372. [Google Scholar] [CrossRef]
- Ezhilmathi, S.; Ahilan, B.; Uma, A.; Felix, N.; Cheryl, A.; Somu Sunder Lingam, R. Effect of stocking density on growth performance, digestive enzyme activity, body composition and gene expression of Asian seabass reared in recirculating aquaculture system. Aquac. Res. 2022, 53, 1963–1972. [Google Scholar] [CrossRef]
- Chen, S.-J.; Liu, P.; Jia, Y.-M.; Liao, H.-P.; Zhu, S.-X.; Zhou, L.-L.; Dan, X.-M.; Liu, L.; Li, J.-H.; Zheng, S.-B. Dietary lipid concentrations influence growth, body composition, morphology of the liver and mid-intestine, and antioxidant status of marbled eel (Anguilla marmorata). Aquac. Int. 2020, 28, 2287–2302. [Google Scholar] [CrossRef]
- Baibai, T.; Oukhattar, L.; Moutaouakkil, A.; Soukri, A. Purification and characterization of glyceraldehyde-3-phosphate dehydrogenase from European pilchard Sardina pilchardus. Acta Biochim. Biophys. Sin. 2007, 39, 947–954. [Google Scholar] [CrossRef] [PubMed]
- Mathur, S.N.; Watt, K.R.; Field, F.J. Regulation of intestinal NPC1L1 expression by dietary fish oil and docosahexaenoic acid. J. Lipid Res. 2007, 48, 395–404. [Google Scholar] [CrossRef] [PubMed]
- Verri, T.; Terova, G.; Romano, A.; Barca, A.; Pisani, P.; Storelli, C.; Saroglia, M. The SoLute Carrier (SLC) family series in teleost fish. Funct. Genom. Aquac. 2012, 24, 219–320. [Google Scholar] [CrossRef]
- Murashita, K.; Fukada, H.; Takahashi, N.; Hosomi, N.; Matsunari, H.; Furuita, H.; Oku, H.; Yamamoto, T. Effect of feed ingredients on digestive enzyme secretion in fish. Bull. Fish. Res. Agency 2015, 40, 69–74. [Google Scholar]
- Qiang, J.; He, J.; Yang, H.; Sun, Y.L.; Tao, Y.F.; Xu, P.; Zhu, Z.X. Dietary lipid requirements of larval genetically improved farmed tilapia, Oreochromis niloticus (L.), and effects on growth performance, expression of digestive enzyme genes, and immune response. Aquac. Res. 2017, 48, 2827–2840. [Google Scholar] [CrossRef]
- Petro-Sakuma, C.; Celino-Brady, F.T.; Breves, J.P.; Seale, A.P. Growth hormone regulates intestinal gene expression of nutrient transporters in tilapia (Oreochromis mossambicus). Gen. Comp. Endocrinol. 2020, 292, 113464. [Google Scholar] [CrossRef]
- Santos, W.M.; Costa, L.S.; Lopez-Olmeda, J.F.; Costa, N.C.S.; Santos, F.A.C.; Oliveira, C.G.; Guilherme, H.O.; Bahiense, R.N.; Luz, R.K.; Ribeiro, P.A.P. Dietary protein modulates digestive enzyme activities and gene expression in red tilapia juveniles. Animal 2020, 14, 1802–1810. [Google Scholar] [CrossRef]
- Comesaña, S.; Lai, F.; Olderbakk Jordal, A.-E.; Verri, T.; Espe, M.; Soengas, J.L.; Rønnestad, I. Amino acid carriers of the solute carrier families 7 (SLC7) and 38 (SLC38) are involved in leucine sensing in the brain of Atlantic salmon (Salmo salar). Front. Mar. Sci. 2021, 8, 711508. [Google Scholar] [CrossRef]
- Panserat, S.; Kaushik, S. Regulation of gene expression by nutritional factors in fish. Aquac. Res. 2010, 41, 751–762. [Google Scholar] [CrossRef]
- Cho, J.H.; Park, J.W.; Ryu, Y.W.; Kim, K.W.; Hur, S.W. Morphology, Histology, and Histochemistry of the Digestive Tract of the Marbled Flounder Pseudopleuronectes yokohamae. Animals 2023, 13, 936. [Google Scholar] [CrossRef] [PubMed]
- Xiao, F.; Wang, J.; Liu, H.; Zhuang, M.; Wen, X.; Zhao, H.; Wu, K. Effects of Dietary Protein Levels on Growth, Digestive Enzyme Activity, Antioxidant Capacity, and Gene Expression Related to Muscle Growth and Protein Synthesis of Juvenile Greasyback Shrimp (Metapenaeus ensis). Animals 2023, 13, 3886. [Google Scholar] [CrossRef] [PubMed]
PA * | PE ** | |
---|---|---|
Proximate composition (% dry matter) | ||
Moisture | 5.8 | 5.4 |
Crude protein | 67.2 | 67.7 |
Crude fat | 7 | 9.6 |
Crude ash | 11 | 10.7 |
Ingredient composition (% inclusion level) | ||
Animal protein sources | ≥73 (Fish meal, hydrolyzed protein) | ≥73 (Fish meal, krill) |
Plant protein sources | ≤0 | ≤9 (Soybean meal, gluten) |
Cereals | ≤23 (Modified starch) | ≤12 (Wheat flour, starch) |
Lipid sources | ≥0 | ≥5 (Fish oil) |
Additives | ≥4 (Fermented grain meal, Mono calcium phosphate, lecithin, vitamin premix, mineral premix) | ≥1 (Calcium, vitamins, minerals, immune enhancers, amino acids) |
Genes | Forward (5′ → 3′) | Reverse (5′ → 3′) | Reference |
---|---|---|---|
β-actin | AATCCACGAGACCACCTTCAACT | TGATCTCTTTCTGCATTCTGTCG | Present study |
try | CGCTCACTGCTACAAATCTC | CATGATGTCACTGTCCAGGT | [22] |
amy | ATGGAAGGACGTCCATAGTTC | TGCTAAGTACCGCTCACATTC | [23] |
lip | CTCCTGACTGGGACAATGAG | GTAGGCTTCGTACGTGTTCC | [22] |
slc7a8 | GATGCTGGTGCACTTCTTCA | CACTGACGGTTGTGTTCCTG | [23] |
sglt1 | GGTCCTCTTCCACGTCCAT | TCTGTATCGCCTGGTCTGG | [22] |
npc1l1 | ATGTCACATCAGGGTCTTCAA | ATGCCATGAATCTTGAGATGA | [22] |
gap | GCCAGCCAGAACATCATC | GACACGGAAAGCCATACC | Present study |
Temperature (°C) | DO (mg/L) | pH | TAN (mg/L) | NO2−-N (mg/L) | ||
---|---|---|---|---|---|---|
One-way ANOVA | ||||||
* FTS | Paste | 24.4 ± 0.2 c | 6.83 ± 0.35 b | 6.86 ± 0.12 a | 0.530 ± 0.159 c | 0.151 ± 0.102 c |
Pellet | 24.7 ± 0.2 a | 6.80 ± 0.34 b | 6.85 ± 0.13 a | 0.396 ± 0.108 c | 0.146 ± 0.093 c | |
** RAS | Paste | 24.5 ± 0.3 b | 6.85 ± 0.41 b | 6.81 ± 0.22 ab | 1.28 ± 0.78 a | 0.852 ± 0.435 a |
Pellet | 24.7 ± 0.2 a | 7.06 ± 0.30 a | 6.77 ± 0.23 b | 0.806 ± 0.356 b | 0.671 ± 0.386 b | |
p = 0.00 | p = 0.00 | p = 0.032 | p = 0.00 | p = 0.00 | ||
Two-way ANOVA | ||||||
System | p = 0.215 | p = 0.00 | p = 0.00 | p = 0.00 | p = 0.00 | |
FTS | 24.6 ± 0.3 | 6.81 ± 0.40 | 6.86 ± 0.14 | 0.463 ± 0.169 | 0.141 ± 0.105 | |
RAS | 24.6 ± 0.4 | 6.96 ± 0.43 | 6.79 ± 0.27 | 1.00 ± 0.64 | 0.757 ± 0.464 | |
Feed | p = 0.00 | p = 0.005 | p = 0.058 | p = 0.00 | p = 0.025 | |
Paste | 24.5 ± 0.4 | 6.84 ± 0.45 | 6.84 ± 0.20 | 0.859 ± 0.651 | 0.485 ± 0.502 | |
Pellet | 24.7 ± 0.3 | 6.93 ± 0.39 | 6.81 ± 0.23 | 0.599 ± 0.344 | 0.410 ± 0.401 | |
Interaction | p = 0.021 | p = 0.00 | p = 0.415 | p = 0.005 | p = 0.011 |
Parameter | Days (p-Value) | Days × Treatment (p-Value) | Partial η2 (Time) | Partial η2 (Interaction) |
---|---|---|---|---|
Temperature | 0.005 | 0.071 | 0.293 | 0.382 |
DO | 0.000 | 0.137 | 0.749 | 0.436 |
pH | 0.000 | 0.000 | 0.745 | 0.834 |
EC | 0.000 | 0.000 | 0.994 | 0.982 |
TDS | 0.000 | 0.000 | 0.994 | 0.992 |
TAN | 0.000 | 0.000 | 0.732 | 0.768 |
NO2−-N | 0.000 | 0.009 | 0.733 | 0.621 |
NO3−-N | 0.000 | 0.000 | 0.988 | 0.986 |
Final BW (g) | Final TW (kg) | Final Density (kg/m3) | 1 WGR (%) | 2 SGR (%/day) | 3 Survival Rate (%) | Feed Intake (kg) | ||
---|---|---|---|---|---|---|---|---|
One-way ANOVA | ||||||||
* FTS | Paste | 75.4 ± 4.8 | 4.67 ± 0.30 b | 11.7 ± 0.7 b | 134 ± 17 | 1.37 ± 0.11 | 98.9 ± 0.9 | 4.08 ± 0.32 a |
Pellet | 78.9 ± 3.4 | 4.91 ± 0.11 ab | 12.3 ± 0.3 ab | 148 ± 9 | 1.46 ± 0.06 | 98.4 ± 1.6 | 3.46 ± 0.62 b | |
** RAS | Paste | 75.4 ± 5.1 | 4.62 ± 0.19 b | 11.6 ± 0.5 b | 135 ± 12 | 1.38 ± 0.08 | 98.9 ± 1.9 | 4.33 ± 0.08 a |
Pellet | 83.3 ± 1.9 | 5.17 ± 0.20 a | 12.9 ± 0.5 a | 159 ± 9 | 1.54 ± 0.05 | 100 ± 0 | 4.00 ± 0.21 a | |
p = 0.119 | p = 0.045 | p = 0.045 | p = 0.092 | p = 0.111 | p = 0.541 | p = 0.04 | ||
Two-way ANOVA | ||||||||
System | p = 0.358 | p = 0.435 | p = 0.435 | p = 0.410 | p = 0.399 | p = 0.336 | p = 0.009 | |
FTS | 77.1 ± 4.2 | 4.79 ± 0.24 | 12.0 ± 0.6 | 141 ± 14 | 1.42 ± 0.10 | 98.7 ± 1.2 | 3.77 ± 0.40 | |
RAS | 79.4 ± 5.5 | 4.89 ± 0.35 | 12.2 ± 0.9 | 147 ± 16 | 1.46 ± 0.11 | 99.5 ± 1.4 | 4.16 ± 0.23 | |
Feed | p = 0.038 | p = 0.012 | p = 0.012 | p = 0.023 | p = 0.028 | p = 0.721 | p = 0.003 | |
Paste | 75.4 ± 4.4 | 4.65 ± 0.23 | 11.6 ± 0.6 | 135 ± 13 | 1.37 ± 0.09 | 98.9 ± 1.3 | 4.20 ± 0.25 | |
Pellet | 81.1 ± 3.4 | 5.04 ± 0.20 | 12.6 ± 0.5 | 154 ± 10 | 1.5 ± 0.06 | 99.2 ± 1.3 | 3.73 ± 0.33 | |
Interaction | p = 0.367 | p = 0.243 | p = 0.243 | p = 0.489 | p = 0.561 | p = 0.318 | p = 0.235 |
1 CF | 2 VSI (%) | 3 HSI (%) | ||
---|---|---|---|---|
One-way ANOVA | ||||
* FTS | Paste | 0.13 ± 0.01 | 5.41 ± 0.23 | 1.67 ± 0.07 a |
Pellet | 0.13 ± 0.00 | 5.33 ± 0.17 | 1.33 ± 0.13 b | |
** RAS | Paste | 0.13 ± 0.01 | 5.29 ± 0.41 | 1.45 ± 0.14 ab |
Pellet | 0.13 ± 0.01 | 5.95 ± 0.30 | 1.60 ± 0.10 a | |
p = 0.363 | p = 0.078 | p = 0.027 | ||
Two-way ANOVA | ||||
System | p = 0.580 | p = 0.175 | p = 0.699 | |
FTS | 0.13 ± 0.00 | 5.37 ± 0.18 | 1.50 ± 0.21 | |
RAS | 0.13 ± 0.01 | 5.62 ± 0.48 | 1.53 ± 0.14 | |
Feed | p = 0.580 | p = 0.123 | p = 0.171 | |
Paste | 0.13 ± 0.01 | 5.35 ± 0.30 | 1.56 ± 0.16 | |
Pellet | 0.13 ± 0.00 | 5.64 ± 0.40 | 1.46 ± 0.18 | |
Interaction | p = 0.122 | p = 0.061 | p = 0.006 |
Cortisol (ng/mL) | GLU (md/dL) | SOD (ng/mL) | CAT (U/mL) | GOT (U/L) | GPT (U/L) | ||
---|---|---|---|---|---|---|---|
One-way ANOVA | |||||||
* FTS | Paste | 21.1 ± 9.8 a | 114 ± 19 | 150 ± 51 a | 44.6 ± 12.0 | 73.6 ± 18.2 | 7.73 ± 0.80 c |
Pellet | 16.3 ± 9.5 ab | 121 ± 29 | 107 ± 25 b | 36.1 ± 18.3 | 64.6 ± 25.6 | 7.73 ± 1.03 c | |
** RAS | Paste | 12.1 ± 6.5 bc | 127 ± 32 | 85.2 ± 24 b | 41.9 ± 13.5 | 59.4 ± 45.2 | 9.80 ± 1.32 a |
Pellet | 7.92 ± 5.6 c | 130 ± 53 | 82.8 ± 29 b | 49.5 ± 13.9 | 54.3 ± 30.8 | 8.93 ± 1.39 b | |
p = 0.011 | p = 0.594 | p = 0.001 | p = 0.294 | p = 0.391 | p = 0.00 | ||
Two-way ANOVA | |||||||
System | p = 0.003 | p = 0.213 | p = 0.001 | p = 0.290 | p = 0.139 | p = 0.00 | |
FTS | 18.7 ± 9.7 | 117 ± 24 | 129 ± 45 | 40.1 ± 15.8 | 69.1 ± 22.3 | 7.73 ± 0.91 | |
RAS | 10.0 ± 6.3 | 129 ± 43 | 84.0 ± 25.6 | 45.7 ± 13.9 | 56.9 ± 38.1 | 9.37 ± 1.40 | |
Feed | p = 0.103 | p = 0.597 | p = 0.067 | p = 0.938 | p = 0.392 | p = 0.153 | |
Paste | 16.6 ± 9.3 | 121 ± 27 | 120 ± 52 | 43.2 ± 12.5 | 66.5 ± 34.6 | 8.77 ± 1.50 | |
Pellet | 12.1 ± 8.7 | 125 ± 42 | 95.8 ± 29.1 | 42.8 ± 17.2 | 59.5 ± 28.3 | 8.33 ± 1.35 | |
Interaction | p = 0.914 | p = 0.839 | p = 0.099 | p = 0.116 | p = 0.810 | p = 0.153 |
Moisture (%) | Crude Protein (%) | Crude Fat (%) | Crude Ash (%) | ||
---|---|---|---|---|---|
One-way ANOVA | |||||
* FTS | Paste | 65.1 ± 0.2 | 18.8 ± 0.1 b | 13.2 ± 0.3 b | 2.50 ± 0.09 |
Pellet | 65.0 ± 0.2 | 20.1 ± 0.4 a | 11.9 ± 0.2 c | 2.48 ± 0.21 | |
** RAS | Paste | 65.0 ± 0.4 | 18.3 ± 0.2 b | 13.9 ± 0.2 a | 2.41 ± 0.05 |
Pellet | 64.6 ± 0.3 | 19.7 ± 0.5 a | 13.2 ± 0.3 b | 2.21 ± 0.13 | |
p = 0.184 | p = 0.00 | p = 0.00 | p = 0.092 | ||
Two-way ANOVA | |||||
System | p = 0.189 | p = 0.0028 | p = 0.00 | p = 0.045 | |
FTS | 65.1 ± 0.2 | 19.5 ± 0.8 | 12.6 ± 0.8 | 2.49 ± 0.14 | |
RAS | 64.8 ± 0.4 | 19.0 ± 0.8 | 13.6 ± 0.4 | 2.31 ± 0.14 | |
Feed | p = 0.097 | p = 0.00 | p = 0.00 | p = 0.180 | |
Paste | 65.1 ± 0.3 | 18.5 ± 0.3 | 13.6 ± 0.4 | 2.46 ± 0.08 | |
Pellet | 64.8 ± 0.3 | 19.9 ± 0.5 | 12.6 ± 0.7 | 2.34 ± 0.22 | |
Interaction | p = 0.462 | p = 0.863 | p = 0.049 | p = 0.277 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, J.; Hwang, J.-a.; Kim, H.S.; Park, J. Effects of Culture Systems and Feed Types on Water Quality and Growth Performance of Japanese Eel (Anguilla japonica). Animals 2025, 15, 2420. https://doi.org/10.3390/ani15162420
Choi J, Hwang J-a, Kim HS, Park J. Effects of Culture Systems and Feed Types on Water Quality and Growth Performance of Japanese Eel (Anguilla japonica). Animals. 2025; 15(16):2420. https://doi.org/10.3390/ani15162420
Chicago/Turabian StyleChoi, Jimin, Ju-ae Hwang, Hyeong Su Kim, and Jeonghwan Park. 2025. "Effects of Culture Systems and Feed Types on Water Quality and Growth Performance of Japanese Eel (Anguilla japonica)" Animals 15, no. 16: 2420. https://doi.org/10.3390/ani15162420
APA StyleChoi, J., Hwang, J.-a., Kim, H. S., & Park, J. (2025). Effects of Culture Systems and Feed Types on Water Quality and Growth Performance of Japanese Eel (Anguilla japonica). Animals, 15(16), 2420. https://doi.org/10.3390/ani15162420