Sustainable Development of Water Quality, Growth, and Production Efficiency of the Giant Mottled Eel (Anguillamarmorata) at Different Stocking Densities in the Indoor Media-Based Aquaponics System
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Eel Stocking and Rearing
2.3. Chinese Cabbage Saplings and Growing Bed Preparation
2.4. Initiation of Aquaponics
2.5. Sampling and Harvesting of Eel
2.6. Water Sampling of the Eel Tank
2.7. A. marmorata Proximate Composition Analysis
2.8. Sampling and Harversting of B. rapa var. pekinensis
2.9. Data Analysis
3. Results
3.1. Water Quality Parameters
3.2. Growth Performance of A. marmorata
3.3. Proximate composition of A. marmorata
3.4. Growth Performance of B. rapa var. pekinensis
4. Discussion
4.1. Water Quality Responses to Varying Stocking Densities
4.2. Growth Responses of A. marmorata to Different Stocking Densities
4.3. Effect of Different Stocking Densities on the Proximate Composition of A. marmorata
4.4. Growth Performance of B. rapa var. pekinensis to Different Stocking Densities
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
% LG | Percent length gain |
% WG | Percent weight gain |
AOAC | Association of Official Analytical Chemists |
Ca | Calcium |
CO2 | Carbon dioxide |
DMRT | Duncan’s Multiple Range Test |
DO | Dissolved oxygen |
DWG | Daily weight gain |
EA | Eel ash content |
EC | Electrical conductivity |
ECL | Eel crude lipid |
ECP | Eel crude protein |
EM | Eel moisture content |
EP | Eel production |
FCR | Feed conversion ratio |
FE | Feed efficiency |
FI | Feed intake |
FR | Feeding rate |
h | Hour |
HSI | Hepatosomatic index |
K | Potassium |
LG | Length gain |
Mg | Magnesium |
min | Minute |
NH3 | Ammonia |
NH4 | Ammonium |
NO2 | Nitrite |
NO3 | Nitrate |
PER | Protein efficiency ratio |
pH | Potential of hydrogen |
PO4 | Phosphate |
S | Sulfur |
SD | Standard deviation |
SGR | Specific growth rate |
SR | Survival rate |
TAN | Total ammonia nitrogen |
TDS | Total dissolved solids |
WG | Weight gain |
References
- Greenfeld, A.; Becker, N.; Bornman, J.F.; Angel, D.L. Identifying knowledge levels of aquaponics adopters. Environ. Sci. Pollut. Res. 2019, 27, 4536–4540. [Google Scholar] [CrossRef] [PubMed]
- Ani, J.S.; Manyala, J.O.; Masese, F.O.; Fitzsimmons, K. Effect of stocking density on growth performance of monosex Nile tilapia (Oreochromis niloticus) in the aquaponic system integrated with lettuce (Lactuca sativa). Aquac. Fish. 2022, 7, 328–335. [Google Scholar] [CrossRef]
- Goddek, S.; Körner, O. A fully integrated simulation model of multi-loop aquaponics: A case study for system sizing in different environments. Agric. Syst. 2019, 171, 143–154. [Google Scholar] [CrossRef]
- Goddek, S.; Delaide, B.; Mankasingh, U.; Ragnarsdottir, K.; Jijakli, H.; Thorarinsdottir, R. Challenges of sustainable and commercial aquaponics. Sustainability 2015, 7, 4199–4224. [Google Scholar] [CrossRef]
- Gichana, Z.M.; Liti, D.; Waidbacher, H.; Zollitsch, W.; Drexler, S.; Waikibia, J. Waste management in recirculating aquaculture system through bacteria dissimilation and plant assimilation. Aquac. Int. 2018, 26, 1541–1572. [Google Scholar] [CrossRef]
- Gao, X.; Xu, Y.; Shan, J.; Jiang, J.; Zhang, H.; Ni, Q.; Zhang, Y. Effects of different stocking density start-up conditions on water nitrogen and phosphorus use efficiency, production, and microbial composition in aquaponics systems. Aquaculture 2024, 585, 740696. [Google Scholar] [CrossRef]
- Salas-Leiton, E.; Anguis, V.; Martín-Antonio, B.; Crespo, D.; Planas, J.V.; Infante, C.; Cañavate, J.P.; Manchado, M. Effects of stocking density and feed ration on growth and gene expression in the Senegalese sole (Solea senegalensis): Potential effects on the immune response. Fish Shellfish Immunol. 2010, 28, 296–302. [Google Scholar] [CrossRef]
- Baldwin, L. The effects of stocking density on fish welfare. Plymouth Stud. Sci. 2011, 4, 372–383. [Google Scholar]
- Somerville, C.; Cohen, M.; Pantanella, E.; Stankus, A.; Lovatelli, A. Small-Scale Aquaponic Food Production—Integrated Fish and Plant Farming; FAO Fisheries and Aquaculture Technical Paper No. 589; FAO: Rome, Italy, 2014; p. 262. [Google Scholar]
- Endut, A.; Lananan, F.; Hamid, S.H.A.; Jusoh, A.; Nik, W.N.W. Balancing of nutrient uptake by water spinach (Ipomoea aquatica) and mustard green (Brassica juncea) with nutrient production by African catfish (Clarias gariepinus) in scaling aquaponic recirculation system. Desalin. Water Treat. 2016, 57, 29531–29540. [Google Scholar] [CrossRef]
- Yildiz, H.Y.; Robaina, L.; Pirhonen, J.; Mente, E.; Domínguez, D.; Parisi, G. Fish welfare in aquaponic systems: Its relation to water quality with an emphasis on feed and faeces—A review. Water 2017, 9, 13. [Google Scholar] [CrossRef]
- Tan, C.; Sun, D.; Tan, H.; Liu, W.; Luo, G.; Wei, X. Effects of stocking density on growth, body composition, digestive enzyme levels and blood biochemical parameters of Anguilla marmorata in a recirculating aquaculture system. Turk. J. Fish. Aquat. Sci. 2018, 18, 9–16. [Google Scholar] [CrossRef]
- Castle, P.H.J. Anguillidae. In Checklist of the Freshwater Fishes of Africa (CLOFFA); Daget, J., Grosse, J.P., Thys van den Audenaerde, D.F.E., Eds.; ORSTOM: Paris, France, 1984; Volume 1, pp. 34–37. [Google Scholar]
- Ege, V. A Revision of the genus Anguilla Shaw: A systematic, phylogenetic and geographical study. Dana Rep. 1939, 16, 8–256. [Google Scholar]
- Valdez, A.S.M.; Castillo, T.R. Abundance and distribution of freshwater eels in Pangi River, Maitum, Sarangani Province. J. Aquac. Res. Dev. 2016, 7, 2. [Google Scholar] [CrossRef]
- Kumai, Y.; Tsukamoto, K.; Kuroki, M. Growth and habitat use of two anguillid eels, Anguilla marmorata and A. japonica, on Yakushima Island Japan. Ichthyol. Res. 2020, 67, 375–384. [Google Scholar] [CrossRef]
- Shiraishi, H.; Crook, V. Eel Market Dynamics: An Analysis of Anguilla Production, Trade and Consumption in East Asia; TRAFFIC: Tokyo, Japan, 2015. [Google Scholar]
- Kwon, H.; Park, S.Y.; Han, S.Y.; Han, J.E.; Kim, J.H. Complete genome sequence of Edwardsiella anguillarum strain C-5-1 isolated from diseased Giant mottled eel (Anguilla marmorata) cultured in Korea. Korean J. Microbiol. 2023, 59, 30–33. [Google Scholar] [CrossRef]
- Oktafiani, B. Modified Hydroponics Water Culture System in PAKCOI (Brassica chinensis L.) Plant. Master’s Thesis, Lampung University, Lampung, Indonesia, 2009. [Google Scholar]
- Song, C.; Ye, X.; Liu, G.; Zhang, S.; Li, G.; Zhang, H.; Li, F.; Sun, R.; Wang, C.; Xu, D.; et al. Comprehensive evaluation of nutritional qualities of Chinese cabbage (Brassica rapa ssp. pekinensis) varieties based on multivariate statistical analysis. Horticulturae 2023, 9, 1264. [Google Scholar] [CrossRef]
- Hermanto, B.; Habibie, D.; Lubis, A.F.; Syahputra, R.A. Analysis of Pakcoy mustard (Brassica rapa) growth using hydroponic system with AB mix nutrition. J. Phys. Conf. Ser. 2021, 1819, 012059. [Google Scholar] [CrossRef]
- Febriani, N.; Pardi, H.; Yusuf, Y.; Suyani, H. Applications of aquaponics on Pakcoy (Brassica rapa L) and Nila Fish (Oreochromis Niloticus) to the concentration of ammonia, nitrite, and nitrate. Orient. J. Chem. 2018, 34, 2447–2455. [Google Scholar] [CrossRef]
- Rahimi, S.A.E.; Razeky, M.M.; Perdana, A.W.; Putra, D.F. The growth performance of common carp (Cyprinus carpio) co-cultured with different vegetable plants in aquaponics system. Depik J. Ilmu-Ilmu Perair. Pesisir Dan Perikan. 2020, 10, 30–34. [Google Scholar] [CrossRef]
- Roy, P.; Nadia, Z.M.; Hossain, M.M.; Salam, M.A. Tilapia density-dependent cowpea production potential in aquaponics. Egypt. J. Aquat. Biol. Fish. 2021, 25, 973–994. [Google Scholar] [CrossRef]
- Palm, H.W.; Knaus, U.; Appelbaum, S.; Goddek, S.; Strauch, S.M.; Vermeulen, T.; Jijakli, M.H.; Kotzen, B. Towards commercial aquaponics: A review of systems, designs, scales and nomenclature. Aquacult. Int. 2018, 26, 813–842. [Google Scholar] [CrossRef]
- Lee, D.H.; Kim, J.D. Comparative study on growth of leafy vegetables grown in a hybrid BFT-aquaponics using Japanese eel, Anguilla japonica and hydroponics. Fish. Aquat. Sci. 2021, 24, 260–275. [Google Scholar] [CrossRef]
- Rakocy, J.E.; Masser, M.P.; Losordo, T.M. Recirculating Aquaculture Tank Production Systems: Aquaponics—Integrating Fish and Plant Culture; SRAC Publication No. 454; Southern Regional Aquaculture Center: Stoneville, MS, USA, 2006. [Google Scholar]
- Nadia, Z.M.; Akhi, A.R.; Roy, P.; Farhad, F.B.; Hossain, M.M.; Salam, M.A. Yielding of aquaponics using probiotics to grow tomatoes with tilapia. Aquac. Rep. 2023, 33, 101799. [Google Scholar] [CrossRef]
- Salama, K.H.; Henish, S.; Mohamed, K.A.; Nassif, M.G.; Khalil, M.T.; Suloma, A. The effect of dietary protein level and amino acid supplementation on the Nile tilapia (Oreochromis niloticus) nursering performance under biofloc system conditions at cold suboptimal water temperature. Egypt. J. Aquat. Biol. Fish. 2021, 25, 841–859. [Google Scholar] [CrossRef]
- Shahkar, E.; Yun, H.; Lee, S.; Kim, D.J.; Kim, S.K.; Lee, B.I.; Bai, S.C. Evaluation of the optimum dietary arachidonic acid level and its essentiality based on growth and non-specific immune responses in Japanese eel, Anguilla japonica. Aquaculture 2016, 452, 209–216. [Google Scholar] [CrossRef]
- Luo, M.; Guan, R.; Li, Z.; Jin, H. The effects of water temperature on the survival, feeding, and growth of the juveniles of Anguilla marmorata and A. bicolor pacifica. Aquaculture 2013, 400–401, 61–64. [Google Scholar] [CrossRef]
- Aya, F.A.; Garcia, L.M.B. Cage culture of tropical eels, Anguilla bicolor pacifica and A. marmorata juveniles: Comparison of growth, feed utilization, biochemical composition and blood chemistry. Aquac. Res. 2022, 53, 6283–6291. [Google Scholar] [CrossRef]
- AOAC (Association of Official Analytical Chemists). Official Methods of Analysis of Official Analytical Chemists International, 16th ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 1995. [Google Scholar]
- Duncan, D.B. Multiple range and multiple F tests. Biometrics 1995, 11, 1–42. [Google Scholar] [CrossRef]
- M’balaka, M.; Kassam, D.; Rusuwa, B. The effect of stocking density on the growth and survival of improved and unimproved strains of Oreochromis shiranus. Egypt. J. Aquat. Res. 2012, 38, 205–211. [Google Scholar] [CrossRef]
- Al-Zahrani, M.S.; Hassanien, H.A.; Alsaade, F.W.; Wahsheh, H.A.M. Effect of stocking density on sustainable growth performance and water quality of Nile tilapia-Spinach in NFT aquaponic system. Sustainability 2023, 15, 6935. [Google Scholar] [CrossRef]
- Hasan, Z.; Dhahiyat, Y.; Andriani, Y.; Zidni, I. Water quality improvement of Nile tilapia and catfish polyculture in aquaponics system. Nusantara Biosci. 2017, 9, 83–85. [Google Scholar] [CrossRef]
- Maucieri, C.; Nicoletto, C.; Junge, R.; Schmautz, Z.; Sambo, P.; Borin, M. Hydroponic systems and water management in aquaponics: A review. Ital. J. Agron. 2018, 13, 1012. [Google Scholar] [CrossRef]
- Oladimeji, A.; Olufeagba, S.; Ayuba, V.; Sololmon, S.; Okomoda, V. Effects of different growth media on water quality and plant yield in a catfish-pumpkin aquaponics system. J. King Saud Univ. Sci. 2018, 32, 60–66. [Google Scholar] [CrossRef]
- Estim, A.; Saufie, S.; Mustafa, S. Water quality remediation using aquaponics sub-systems as biological and mechanical filters in aquaculture. J. Water Process Eng. 2019, 30, 100566. [Google Scholar] [CrossRef]
- Roosta, H.R.; Hamidpour, M. Effects of foliar application of some macro- and micro-nutrients on tomato plants in aquaponic and hydroponic systems. Sci. Hortic. 2011, 129, 396–402. [Google Scholar] [CrossRef]
- Ajijah, N.; Apriyana, A.Y.; Sriwuryandari, L.; Priantoro, E.A.; Janetasari, S.A.; Pertiwi, T.Y.R.; Suciati, A.M.; Ardeniswan; Sembiring, T. Beneficiary of nitrifying bacteria for enhancing lettuce (Lactuca sativa) and vetiver grass (Chrysopogon zizanioides L.) growths align with carp (Cyprinus carpio) cultivation in an aquaponic system. Environ. Sci. Pollut. Res. 2020, 28, 880–889. [Google Scholar] [CrossRef]
- Sabwa, J.A.; Manyala, J.O.; Masese, F.O.; Fitzsimmons, K.; Achieng, A.O.; Munguti, J.M. Effects of stocking density on the performance of lettuce (Lactuca sativa) in small-scale lettuce-Nile tilapia (Oreochromis niloticus L.) aquaponic system. Aquac. Fish Fish. 2022, 2, 458–469. [Google Scholar] [CrossRef]
- Colt, J. Water quality requirements for reuse systems. Aquacult. Eng. 2006, 34, 143–156. [Google Scholar] [CrossRef]
- Hargreaves, J.A. Photosynthetic suspended-growth systems in aquaculture. Aquacult. Eng. 2006, 34, 344–363. [Google Scholar] [CrossRef]
- Al Tawaha, A.R.; Wahab, P.E.M.; Jaafar, H.B.; Zuan, A.T.K.; Hassan, M.Z. Effects of fish stocking density on water quality, growth performance of tilapia and yield of butterhead Lettuce grown in decoupled recirculation aquaponic systems. J. Ecol. Eng. 2021, 22, 8–19. [Google Scholar] [CrossRef]
- Mugo-Bundi, J.; Manyala, J.O.; Muchiri, M.; Matolla, G. Effects of stocking density and water flow rate on performance, water quality and economic benefits of African catfish larvae (Clarias gariepinus Burchell, 1822) in the aquaponic system integrated with Azolla fern. Aquaculture 2024, 579, 740170. [Google Scholar] [CrossRef]
- Kloas, W.; Groß, R.; Baganz, D.; Graupner, J.; Monsees, H.; Schmidt, U.; Staaks, G.; Suhl, J.; Tschirner, M.; Wittstock, B. A new concept for aquaponic systems to improve sustainability, increase productivity, and reduce environmental impacts. Aquac. Environ. Interact. 2015, 7, 179–192. [Google Scholar] [CrossRef]
- Effendi, H.; Wahyuningsih, S.; Wardiatno, Y. The use of Nile tilapia (Oreochromis niloticus) cultivation wastewater for the production of Romaine lettuce (Lactuca sativa L. var. longifolia) in water recirculation system. Appl. Water Sci. 2017, 7, 3055–3063. [Google Scholar] [CrossRef]
- Princic, A.; Mahne, I.; Megušar, F.; Paul, E.A.; Tiedje, J.M. Effects of pH and oxygen and ammonium concentrations on the community structure of nitrifying bacteria from wastewater. Appl. Environ. Microbiol. 1998, 64, 3584–3590. [Google Scholar] [CrossRef]
- Zou, Y.; Hu, Z.; Zhang, J.; Xie, H.; Guimbaud, C.; Fang, Y. Effects of pH on nitrogen transformations in media-based aquaponics. Bioresour. Technol. 2016, 210, 81–87. [Google Scholar] [CrossRef]
- CABI. Anguilla japonica Datasheet; CABI Compendium: Wallingford, UK, 2022. [Google Scholar] [CrossRef]
- Jellyman, P.G.; Harding, J.S. Variable Survival across Low pH Gradients in Freshwater Fish Species. J. Fish Biol. 2014, 85, 1746–1752. [Google Scholar] [CrossRef]
- Huntingford, F.A.; Adams, C.; Braithwaite, V.A.; Kadri, S.; Pottinger, T.G.; Sandøe, P.; Turnbull, J.F. Current issues in fish welfare. J. Fish Biol. 2006, 68, 332–372. [Google Scholar] [CrossRef]
- Goddek, S.; Joyce, A.; Kotzen, B.; Burnell, G.M. Aquaponics Food Production Systems: Combined Aquaculture and Hydroponic Production Technologies for the Future; Springer Nature: Cham, Switzerland, 2019. [Google Scholar] [CrossRef]
- EU Platform on Animal Welfare. Guidelines on Water Quality and Handling for the Welfare of Farmed Vertebrate Fish; EU Aquaculture Assistance Mechanism, Animal Welfare: Brussel, Belgium, 2020. [Google Scholar]
- Yuhasari, R.; Mardiati, R.; Ismail, N.; Gumilar, S. Fuzzy logic-based electrical conductivity control system in aquaponic cultivation. In Proceedings of the 7th International Conference on Wireless and Telematics (ICWT), Bandung, Indonesia, 19–20 August 2021; pp. 1–4. [Google Scholar] [CrossRef]
- Channa, A.A.; Munir, K.; Hansen, M.; Tariq, M.F. Optimisation of small-scale aquaponics systems using artificial intelligence and the IoT: Current status, challenges, and opportunities. Encyclopedia 2024, 4, 313–336. [Google Scholar] [CrossRef]
- Boyd, C.E. Water Quality: An Introduction; Springer: Berlin, Germany, 2015. [Google Scholar] [CrossRef]
- Cadiz, R.; Traifalgar, R.F. Optimum salinity for growth of Tropical eel Anguilla marmorata Quoy & Gaimard, 1824 in nursery culture. Asian Fish. Sci. 2020, 33, 315–320. [Google Scholar] [CrossRef]
- Aquino, G.A.G.; Cabaitan, P.C.; Secor, D.H. Locomotor activity and growth response of glass eel Anguilla marmorata exposed to different salinity levels. Fish. Sci. 2021, 87, 253–262. [Google Scholar] [CrossRef]
- Endut, A.; Jusoh, A.; Ali, N.; Nik, W.B.W. Nutrient removal from aquaculture wastewater by vegetable production in aquaponics recirculation system. Desal. Water Treat. 2011, 32, 422–430. [Google Scholar] [CrossRef]
- Bittsanszky, A.; Uzinger, N.; Gyulai, G.; Mathis, A.; Junge, R.; Villarroel, M.; Kotzen, B.; Komives, T. Nutrient supply of plants in aquaponic systems. Ecocycles 2016, 2, 17–20. [Google Scholar] [CrossRef]
- Robles-Porchas, G.R.; Gollas-Galv’an, T.; Martínez-Porchas, M.; Martínez-Cordova, L.R.; Miranda-Baeza, A.; Vargas-Albores, F. The nitrification process for nitrogen removal in biofloc system aquaculture. Rev. Aquac. 2020, 12, 2228–2249. [Google Scholar] [CrossRef]
- Graber, A.; Junge, R. Aquaponic Systems: Nutrient Recycling from Fish Wastewater by Vegetable Production. Desalination 2009, 246, 147–156. [Google Scholar] [CrossRef]
- Hu, Z.; Lee, J.W.; Chandran, K.; Kim, S.; Brotto, A.C.; Khanal, S.K. Effect of plant species on nitrogen recovery in aquaponics. Bioresour. Technol. 2015, 188, 92–98. [Google Scholar] [CrossRef]
- Rahmatullah, R.; Das, M.; Rahmatullah, S.M. Suitable stocking density of tilapia in an aquaponic system. Bangladesh J. Fish. Res. 2010, 14, 29–35. [Google Scholar]
- Stone, N.M.; Thomforde, H.K. Understanding Your Fish Pond Water Analysis Report; Cooperative Extension Program; University of Arkansas at Pine Bluff: Pine Bluff, AR, USA; US Department of Agriculture and County Governments Cooperating: Washington, DC, USA, 2004; pp. 1–4.
- Maneepong, S. Nutrient dynamics of an aquaponic system in Southern Thailand. J. Agric. Sci. 2019, 11, 57. [Google Scholar] [CrossRef]
- Roy, L.A.; Davis, D.A.; Saoud, I.P.; Henry, R.P. Supplementation of potassium, magnesium and sodium chloride in practical diets for the Pacific white shrimp, Litopenaeus vannamei, reared in low salinity waters. Aquac. Nutr. 2007, 13, 104–113. [Google Scholar] [CrossRef]
- Duarte, S.F.P.; Cerozi, B.S. Enhancing plant growth in aquaponic systems via potassium manipulation in fish feeds: A pilot study of tailored feeds bridging nutritional gaps in aquaponics. Agric. Syst. 2024, 218, 104001. [Google Scholar] [CrossRef]
- Harika, N.; Reddy, P.R.; Verma, A.K.; Arya, P. Addressing nutrient deficiencies in aquaponic systems for sustainable growth. In Futuristic Trends in Agriculture Engineering & Food Sciences; IIP Series: New Delhi, India, 2024; Volume 3, pp. 610–616. [Google Scholar] [CrossRef]
- Maucieri, C.; Nicoletto, C.; Zanin, G.; Birolo, M.; Trocino, A.; Sambo, P.; Borin, M.; Xiccato, G. Effect of stocking density of fish on water quality and growth performance of European carp and leafy vegetables in a low-tech aquaponic system. PLoS ONE 2019, 14, e0217561. [Google Scholar] [CrossRef]
- Ashley, P.J. Fish welfare: Current issues in aquaculture. Appl. Anim. Behav. Sci. 2007, 104, 199–235. [Google Scholar] [CrossRef]
- Abdel-Tawwab, M.; Hagras, A.E.; Elbaghdady, H.A.M.; Monier, M.N. Dissolved oxygen level and stocking density effects on growth, feed utilization, physiology, and innate immunity of Nile Tilapia, Oreochromis niloticus. J. Appl. Aquac. 2014, 26, 340–355. [Google Scholar] [CrossRef]
- Wang, Y.; Ni, J.; Nie, Z.; Gao, J.; Sun, Y.; Shao, N.; Li, Q.; Hu, J.; Xu, P.; Xu, G. Effects of stocking density on growth, serum parameters, antioxidant status, liver and intestine histology and gene expression of largemouth bass (Micropterus salmoides) farmed in the in-pond raceway system. Aquac. Res. 2020, 51, 5228–5240. [Google Scholar] [CrossRef]
- North, B.P.; Turnbull, J.F.; Ellis, T.; Porter, M.J.; Migaud, H.; Bron, J.; Bromage, N.R. The impact of stocking density on the welfare of Rainbow trout (Oncorhynchus mykiss). Aquaculture 2006, 255, 466–479. [Google Scholar] [CrossRef]
- Sophie, S.; d’Orbcastel, E.R.; Gasset, E.; Lemarié, G.; Breuil, G.; Marino, G.; Coeurdacier, J.-L.; Fivelstad, S.; Blancheton, J.-P. The effect of density on sea bass (Dicentrarchus labrax) performance in a tank-based recirculating system. Aquac. Eng. 2009, 40, 72–78. [Google Scholar] [CrossRef]
- Laiz-Carrión, R.; Viana, I.R.; Cejas, J.R.; Ruiz-Jarabo, I.; Jerez, S.; Martos, J.A.; Eduardo, A.B.; Mancera, J.M. Influence of food deprivation and high stocking density on energetic metabolism and stress response in red porgy, Pagrus pagrus L. Aquac. Int. 2012, 20, 585–599. [Google Scholar] [CrossRef]
- Ellis, T.; North, B.; Scott, A.P.; Bromage, N.R.; Porter, M.; Gadd, D. The relationships between stocking density and welfare in farmed rainbow trout. J. Fish Biol. 2005, 61, 493–531. [Google Scholar] [CrossRef]
- Bolasina, S.; Tagawa, M.; Yamashita, Y.; Tanaka, M. Effect of stocking density on growth, digestive enzyme activity and cortisol level in larvae and juveniles of Japanese flounder, Paralichthys olivaceus. Aquaculture 2006, 259, 432–443. [Google Scholar] [CrossRef]
- Manduca, L.G.; da Silva, M.A.; de Alvarenga, E.R.; de Oliveira Alves, G.F.; de Araújo Fernandes, A.F.; Assumpcao, A.F.; Cardoso, C.C.; de Sales, S.C.M.; de Alencar Teixeira, E.; e Silva, M.D.A. Effects of a zero exchange biofloc system on the growth performance and health of Nile tilapia at different stocking densities. Aquaculture 2020, 521, 735064. [Google Scholar] [CrossRef]
- Zaki, M.A.A.; Alabssawy, A.N.; Nour, A.E.-A.M.; Basuini, M.F.E.; Dawood, M.A.O.; Alkahtani, S.; Abdel-Daim, M.M. The impact of stocking density and dietary carbon sources on the growth, oxidative status and stress markers of Nile tilapia (Oreochromis niloticus) reared under biofloc conditions. Aquacult. Rep. 2020, 16, 100282. [Google Scholar] [CrossRef]
- Xie, Y.X.; Liang, J.N.; Kaneko, G.; Wen, L.T.; Li, Y.J.; Ao, Q.W.; Huang, L.M.; Yang, Q.; Liao, Z.P.; Yang, X.M.; et al. Growth, biochemical indexes, and intestinal microbiota response of red tilapia (Oreochromis spp.) under different densities and feeding frequencies in the land-based aquaculture tank. Aquaculture 2025, 596, 741741. [Google Scholar] [CrossRef]
- Refaey, M.M.; Li, D.; Tian, X.; Zhang, Z.; Zhang, X.; Li, L.; Tang, R. High stocking density alters growth performance, blood biochemistry, intestinal histology, and muscle quality of channel catfish Ictalurus punctatus. Aquaculture 2018, 492, 73–81. [Google Scholar] [CrossRef]
- de Oliveira, E.G.; Pinheiro, A.B.; de Oliveira, V.Q.; da Silva Júnior, A.R.M.; de Moraes, M.G.; Rocha, I.R.C.B.; de Sousa, R.R.; Costa, F.H.F. Effects of stocking density on the performance of juvenile pirarucu (Arapaima gigas) in cages. Aquaculture 2012, 370, 96–101. [Google Scholar] [CrossRef]
- Marchand, F.; Boisclair, D. Influence of fish density on the energy allocation pattern of juvenile brook trout (Salvelinus fontinalis). Can. J. Fish. Aquat. Sci. 1998, 55, 796–805. [Google Scholar] [CrossRef]
- Trenzado, C.E.; Morales, A.E.; Higuera, M.D.L. Physiological effects of crowding in rainbow trout, Oncorhynchus mykiss, selected for low and high stress responsiveness. Aquaculture 2006, 258, 583–593. [Google Scholar] [CrossRef]
- Endut, A.; Jusoh, A.; Ali, N.; Nik, W.B.W.; Hassan, A. A study on the optimal hydraulic loading rate and plant ratios in recirculation aquaponic system. Bioresour. Technol. 2010, 101, 1511–1517. [Google Scholar] [CrossRef]
- Wongkiew, S.; Hu, Z.; Chandran, K.; Lee, J.W.; Khanal, S.K. Nitrogen transformations in aquaponic systems: A review. Aquac. Eng. 2017, 76, 9–19. [Google Scholar] [CrossRef]
- Schmautz, Z.; Graber, A.; Jaenicke, S.; Goesmann, A.; Junge, R.; Smits, T.H.M. Microbial diversity in different compartments of an aquaponics system. Arch. Microbiol. 2017, 199, 613–620. [Google Scholar] [CrossRef]
- Yep, B.; Zheng, Y. Aquaponic trends and challenges e A review. J. Clean. Prod. 2019, 228, 1586–1599. [Google Scholar] [CrossRef]
Traits | T1 | T2 | T3 | Significance |
---|---|---|---|---|
Initial body length (cm) | 43.53 ± 0.33 a | 42.98 ± 0.13 b | 42.93 ± 0.08 b | ** |
Middle body length (cm) | 44.04 ± 0.16 ab | 44.32 ± 0.24 a | 43.62 ± 0.30 b | * |
Final body length (cm) | 46.27 ± 0.18 a | 45.62 ± 0.14 b | 46.19 ± 0.19 a | * |
Length gain (cm) | 2.74 ± 0.15 b | 2.64 ± 0.27 b | 3.26 ± 0.17 a | * |
Percent length gain (%) | 6.30 ± 0.38 b | 6.15 ± 0.64 b | 7.58 ± 0.40 a | * |
Initial body weight (g) | 195.86 ± 0.21 a | 190.46 ± 0.13 b | 187.44 ± 0.20 c | ** |
Middle body weight (g) | 219.78 ± 1.14 a | 215.71 ± 1.08 b | 211.86 ± 2.18 c | ** |
Final body weight (g) | 267.61 ± 4.68 a | 274.44 ± 3.41 a | 237.22 ± 7.16 b | ** |
Weight gain (g) | 71.75 ± 4.65 b | 83.98 ± 3.54 a | 49.78 ± 6.97 c | ** |
Percent weight gain (%) | 36.63 ± 2.37 b | 44.09 ± 1.89 a | 26.56 ± 3.69 c | ** |
Specific growth rate (% day−1) | 0.56 ± 0.03 b | 0.65 ± 0.02 a | 0.42 ± 0.05 c | ** |
Daily weight gain (g day−1) | 1.28 ± 0.08 b | 1.50 ± 0.07 a | 0.89 ± 1.26 c | ** |
Feed conversion ratio | 3.40 ± 0.22 a | 2.52 ± 0.11 b | 3.96 ± 0.56 a | ** |
Feed efficiency (%) | 29.49 ± 1.98 b | 39.73 ± 1.66 a | 25.55 ± 3.56 b | ** |
Protein efficiency ratio (%) | 6.14 ± 0.41 a | 5.52 ± 0.23 a | 2.66 ± 0.37 b | ** |
Feeding rate (% day−1) | 1.88 ± 0.03 a | 1.62 ± 0.01 b | 1.64 ± 0.03 b | ** |
Feed intake (g fish−1) | 243.39 ± 0.68 a | 211.35 ± 0.51 b | 194.80 ± 0.97 c | ** |
Hepatosomatic index (%) | 1.49 ± 0.07 | 1.56 ± 0.05 | 1.60 ± 0.06 | NS |
Survival rate (%) | 100 | 100 | 100 | - |
Eel production (kg m−3) | 10.71 ± 0.19 c | 16.47 ± 0.21 b | 18.98 ± 0.57 a | ** |
Component | T1 | T2 | T3 | Significance |
---|---|---|---|---|
Moisture (%) | 62.14 ± 0.51 c | 64.37 ± 0.85 b | 67.97 ± 0.69 a | ** |
Crude protein (%) | 16.77 ± 0.61 b | 17.53 ± 0.31 ab | 18.24 ± 0.18 a | ** |
Crude lipid (%) | 9.26 ± 0.15 a | 8.53 ± 0.36 a | 4.94 ± 0.74 b | ** |
Ash (%) | 1.93 ± 0.05 b | 2.42 ± 0.12 a | 2.30 ± 0.11 a | ** |
Traits | T1 | T2 | T3 | Significance |
---|---|---|---|---|
Initial plant length (cm) | 22.36 ± 0.68 | 22.93 ± 0.48 | 22.37 ± 0.70 | NS |
Final plant length (cm) | 28.33 ± 1.68 a | 29.64 ± 1.67 a | 24.39 ± 2.32 b | * |
Initial shoot length (cm) | 10.99 ± 0.31 | 11.42 ± 0.06 | 11.59 ± 0.57 | NS |
Final shoot length (cm) | 12.85 ± 1.09 | 13.27 ± 2.58 | 11.78 ± 0.39 | NS |
Initial root length (cm) | 11.43 ± 0.99 | 11.51 ± 0.51 | 10.78 ± 0.40 | NS |
Final root length (cm) | 15.48 ± 1.18 | 16.36 ± 1.29 | 12.62 ± 1.99 | NS |
Leaf number | 10.25 ± 4.10 | 10.65 ± 4.29 | 8.65 ± 2.27 | NS |
Chlorophyll (SPAD) | 38.96 ± 9.65 | 42.18 ± 10.73 | 37.37 ± 9.00 | NS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roy, P.; Lee, D.H.; Choi, S.M.; An, Y.K.; Choi, S.D. Sustainable Development of Water Quality, Growth, and Production Efficiency of the Giant Mottled Eel (Anguillamarmorata) at Different Stocking Densities in the Indoor Media-Based Aquaponics System. Animals 2025, 15, 2705. https://doi.org/10.3390/ani15182705
Roy P, Lee DH, Choi SM, An YK, Choi SD. Sustainable Development of Water Quality, Growth, and Production Efficiency of the Giant Mottled Eel (Anguillamarmorata) at Different Stocking Densities in the Indoor Media-Based Aquaponics System. Animals. 2025; 15(18):2705. https://doi.org/10.3390/ani15182705
Chicago/Turabian StyleRoy, Prosun, Dae Hwan Lee, Sung Min Choi, Yun Keun An, and Sang Duk Choi. 2025. "Sustainable Development of Water Quality, Growth, and Production Efficiency of the Giant Mottled Eel (Anguillamarmorata) at Different Stocking Densities in the Indoor Media-Based Aquaponics System" Animals 15, no. 18: 2705. https://doi.org/10.3390/ani15182705
APA StyleRoy, P., Lee, D. H., Choi, S. M., An, Y. K., & Choi, S. D. (2025). Sustainable Development of Water Quality, Growth, and Production Efficiency of the Giant Mottled Eel (Anguillamarmorata) at Different Stocking Densities in the Indoor Media-Based Aquaponics System. Animals, 15(18), 2705. https://doi.org/10.3390/ani15182705