Effects of Dietary Lipid Levels on Growth Performance, Hematological Parameters, and Muscle Fatty Acid Composition of Juvenile Arapaima gigas
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Diets
2.2. Feeding Trial
2.3. Whole-Blood and Plasma Analysis
2.4. Proximate Composition of Diets and Fish
2.5. Fatty Acid Composition Diets and Muscle
2.6. Data Analysis
3. Results
3.1. Fish Growth Performance
3.2. Whole-Blood and Plasma Analysis
3.3. Proximate Composition of the Whole Body and Muscle
3.4. Fatty Acid Composition of Muscle
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- FAO [Food and Agriculture Organization of the United Nations]. The State of World Fisheries and Aquaculture 2024. Blue Transformation in Action; Food and Agriculture Organization of the United Nations: Rome, Italy, 2024. [Google Scholar]
- Fontenele, O. Contribuição para o conhecimento da biologia do pirarucu Arapaima gigas (Cuvier) em cativeiro (Actinopterygi, Osteoglossidae). Rev. Bras. Biol. 1948, 8, 445–449. [Google Scholar]
- Cortegano, C.A.A.; Godoy, L.C.; Petenuci, M.E.; Visentainer, J.V.; Affonso, E.G.; Gonçalves, L.U. Nutritional and lipid profiles of the dorsal and ventral muscles of wild pirarucu. Pesq. Agropec. Bras. 2017, 52, 271–276. [Google Scholar] [CrossRef]
- Nobre, A.D.; Mendoça, R.V.; Farias, A.B.S.; Yamamoto, F.Y.; Gonçalves, L.U. Dietary Schizochytrium sp. meal enhances the fatty acid profile in pirarucu (Arapaima gigas) fillets with no effect on growth performance and health status. Animals 2025, 15, 712. [Google Scholar] [CrossRef] [PubMed]
- Tocher, D.R. Fatty acid requirements in ontogeny of marine and freshwater fish. Aquac. Res. 2010, 41, 717–732. [Google Scholar] [CrossRef]
- NRC [National Research Council]. Nutrient Requirements of Fish and Shrimp; National Academies Press: Washington, DC, USA, 2011. [Google Scholar]
- Cortegano, C.A.A.; Alcântara, A.M.; Silva, A.F.; Epifânio, C.M.F.; Bentes, S.P.C.; Santos, V.J.; Visentainer, J.V.; Gonçalves, L.U. Finishing plant diet supplemented with microalgae meal increases the docosahexaenoic acid content in Colossoma macropomum flesh. Aquac. Res. 2019, 50, 1291–1299. [Google Scholar] [CrossRef]
- Boujard, T.; Gélineau, A.; Covès, D.; Corraze, G.; Dutto, G.; Gasset, E.; Kaushik, S. Regulation of feed intake, growth, nutrient and energy utilisation in European sea bass (Dicentrarchus labrax) fed high fat diets. Aquaculture 2004, 231, 529–545. [Google Scholar] [CrossRef]
- Zhou, Y.L.; Guo, J.L.; Tang, R.-J.; Ma, H.-J.; Chen, Y.-J.; Lin, S.-M. High dietary lipid level alters the growth, hepatic metabolism enzyme, and anti-oxidative capacity in juvenile largemouth bass Micropterus salmoides. Fish Physiol. Biochem. 2019, 46, 125–134. [Google Scholar] [CrossRef]
- Naiel, M.A.E.; Negm, S.S.; Ghazanfar, S.; Shukry, M.; Abdelnour, S.A. The risk assessment of high-fat diet in farmed fish and its mitigation approaches: A review. J Anim. Physiol. Anim. Nutr. 2023, 107, 948–969. [Google Scholar] [CrossRef]
- Cowey, C.B.; Sargent, J.R. Nutrition. In Fish Physiology; Hoar, W.S., Randall, D.J., Brett, J.R., Eds.; Academic Press: New York, NY, USA, 1979; pp. 1–70. [Google Scholar]
- Sargent, J.R.; Henderson, R.J.; Tocher, D.R. The lipids. In Fish Nutrition; Halver, J.E., Ed.; Academic Press: San Diego, CA, USA, 1989; pp. 152–218. [Google Scholar]
- Cho, C.Y.; Hynes, J.D.; Wood, K.R.; Yoshida, H.K. Development of high-nutrient-dense, low-pollution diets and prediction of aquaculture waste using biological approaches. Aquaculture 1994, 124, 293–305. [Google Scholar] [CrossRef]
- Chou, R.L.; Su, M.S.; Chen, H.Y. Optimal dietary protein and lipid levels for juvenile cobia (Rachycentron canadum). Aquaculture 2001, 193, 81–89. [Google Scholar] [CrossRef]
- Martino, R.C.; Cyrino, J.E.P.; Portz, L.; Trugo, L.C. Effect of dietary lipid level on nutritional performance of the surubim, Pseudoplatystoma coruscans. Aquaculture 2002, 209, 209–218. [Google Scholar] [CrossRef]
- Hemre, G.I.; Sandnes, K. Effect of dietary lipid level on muscle composition in Atlantic salmon Salmo salar. Aquac. Nutr. 1999, 5, 9–16. [Google Scholar] [CrossRef]
- Cladis, D.P.; Kleiner, A.C.; Freiser, H.H.; Santerre, C.R. Fatty acid profiles of commercially available finfish fillets in the United States. Lipids 2014, 49, 1005–1018. [Google Scholar] [CrossRef]
- Sushchik, N.N.; Makhutova, O.N.; Rudchenko, A.E.; Glushchenko, L.A.; Shulepina, S.P.; Kolmakova, A.A.; Gladyshev, M.I. Comparison of fatty acid contents in major lipid classes of seven salmonid species from Siberian Arctic lakes. Biomolecules 2020, 10, 419. [Google Scholar] [CrossRef]
- Gladyshev, M.I.; Makhrov, A.A.; Sushchik, N.N.; Makhutova, O.N.; Rudchenko, A.E.; Balashov, D.A.; Vinogradov, E.V.; Artamonova, V.S. Differences in composition and fatty acid contents of different rainbow trout (Oncorhynchus mykiss) strains in similar and contrasting rearing conditions. Aquaculture 2022, 556, 738265. [Google Scholar] [CrossRef]
- Ramos, A.R.P.; López, F.J.M. Digestive Physiology, Nutrition and Feeding of Arapaima gigas: A Review. Fishes 2024, 9, 507. [Google Scholar] [CrossRef]
- Ituassú, D.R.; Filho, M.P.; Roubach, R.; Crescêncio, R.; Cavero, B.A.S.; Gandra, A.L. Níveis de proteína bruta para juvenis de pirarucu. Pesq. Agropec. Bras. 2005, 40, 255–259. [Google Scholar] [CrossRef]
- Cyrino, J.E.P.; Roubach, R.; Fracalossi, D.M. Avanços na alimentação e nutrição de peixes carnívoros de água doce. In Nutrição e Alimentação de Espécies de Interesse Para a Aquicultura Brasileira, 1st ed.; Fracalossi, D.M., Cyrino, J.E.P., Eds.; Nutriaqua: Aquabio, Brazil, 2013; Volume 1, pp. 283–294. [Google Scholar]
- Rondón, J.; Villanueva, C.; Del Águila, R.; Sandoval, N.C. Frecuencia y carga parasitaria en branquias de alevinos de gamitana (Colossoma macropomum) mediante exámenes directos en tres establecimientos piscícolas de Ucayali, Perú. Rev. Inv. Vet. Perú 2021, 32, e20010. [Google Scholar] [CrossRef]
- Santana, T.M.; Elias, A.H.; Fonseca, F.A.L.; Freitas, O.R.; Kojima, J.T.; Gonçalves, L.U. Stocking density for arapaima larviculture. Aquaculture 2020, 528, 735565. [Google Scholar] [CrossRef]
- Verdouw, H.; Van Echteld, C.J.A.; Dekkers, E.M.J. Ammonia determination based on indophenol formation with sodium salicylate. Water Res. 1978, 12, 399–402. [Google Scholar] [CrossRef]
- Boyd, C.E.; Tucker, C.S. Water Quality and Pond Soil Analyses for Aquaculture; Alabama Agricultural Experiment Station: Auburn, AL, USA, 1992. [Google Scholar]
- Chu-Koo, F.; Mendez, C.F.; Alfaro, C.R.; Darias, M.J.; Dávila, C.G.; Vásquez, A.G.; Martin, S.T.; Baca, L.C.; Alvan-Aguilar, M.; Rengifo, J.A.; et al. El Cultivo del Paiche: Biología, Procesos Productivos Tecnologías y Estadísticas; Instituto de Investigaciones de la Amazonía Peruana—IIAP: Iquitos, Peru, 2017. [Google Scholar]
- Epifânio, C.M.; Silva, T.B.A.; Dantas, F.M.; Fonseca, F.A.L.; Belém-Costa, A.; Conceição, L.E.C.; Gonçalves, L.U. Growth performance, hematology parameters and Aeromonas hydrophila challenge of pirarucu (Arapaima gigas) in response to dietary protein levels. Trop. Anim. Health Prod. 2023, 55, 289. [Google Scholar] [CrossRef] [PubMed]
- Groff, J.M. Cutaneous Biology and Diseases of Fish. Vet. Clin. North Am. Exot. Anim. Pract. 2001, 4, 321–411. [Google Scholar] [CrossRef] [PubMed]
- Fletcher, G.L.; Kao, M.H.; Dempson, B. Lethal freezing temperatures of arctic char and other salmonids in the presence of ice. Aquaculture 1988, 71, 369–378. [Google Scholar] [CrossRef]
- Kampen, E.J.; Zijlstra, W.G. Erythrocytometric methods and their standardization. Clin. Chim. Acta 1964, 6, 538–542. [Google Scholar]
- Goldenfarb, P.B.; Bowyer, E.P.; Hall, E. Reproducibility in the Hematology Laboratory: The Microhematocrit Determination. Am. J. Clin. Pathol. 1971, 56, 35–39. [Google Scholar] [CrossRef]
- Brown, B.A. Hematology: Principles and Procedures; Lea & Febiger: Philadelphia, PA, USA, 1976. [Google Scholar]
- Hrubec, T.C.; Smith, S.A. Hematology of fish. In Schalm’s Veterinary Hematology, 5th ed.; Weiss, D.J., Wardrop, K.J., Eds.; Wiley-Blackwell: Hoboken, NJ, USA, 1998; pp. 1120–1125. [Google Scholar]
- Rosenfeld, G. Corante pancrômico para hematologia e citologia clínica. Nova combinação dos componentes do may-grunwald e do giemsa num só corante de emprego rápido. Mem. Inst. Butantan 1947, 20, 329–335. [Google Scholar]
- Ribeiro, M.S.; Fonseca, F.A.L.; Queiroz, M.N.; Affonso, E.G.; Conceição, L.E.C.; Gonçalves, L.U. Fish protein hydrolysate as an ingredient in diets for Arapaima gigas juveniles. Bol. Inst. Pesca 2017, 4, 85–92. [Google Scholar] [CrossRef]
- AOAC [Association of Official Agricultural Chemists]. Official Methods of Analysis of the Association Analytical Chemists, 18th ed.; AOAC International: Gaithersburg, MD, USA, 2010. [Google Scholar]
- Bligh, E.G.; Dyer, W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef]
- Santos-Júnior, O.O.; Montanher, P.F.; Bonafé, E.G.; Prado, I.N.D.; Maruyama, S.A.; Matsushita, M.; Visentainer, J.V. A simple, fast and efficient method for transesterification of fatty acids in foods assisted by ultrasound energy. J. Braz. Chem. Soc. 2014, 25, 1712–1719. [Google Scholar] [CrossRef]
- Joseph, J.D.; Ackman, R.G. Capillary column gas chromatographic method for analysis of encapsulated fish oils and fish oil ethyl esters: Collaborative study. J. AOAC Int. 1992, 75, 488–506. [Google Scholar] [CrossRef]
- Visentainer, J.V. Analytical aspects of the flame ionization detector response of fatty acid esters in biodiesels and foods. Quim. Nova 2012, 35, 274–279. [Google Scholar] [CrossRef]
- StatSoft Inc. Electronic Statistics Textbook; StatSoft: Tulsa, OK, USA, 2011. [Google Scholar]
- Yin, P.; Xie, S.; Zhuang, Z.; He, X.; Tang, X.; Tian, L.; Liu, Y.; Niu, J. Dietary supplementation of bile acid attenuate adverse effects of high-fat diet on growth performance, antioxidant ability, lipid accumulation and intestinal health in juvenile largemouth bass (Micropterus salmoides). Aquaculture 2021, 531, 735864. [Google Scholar] [CrossRef]
- Du, Z.-Y.; Liu, Y.-J.; Tian, L.-X.; Wang, J.-T.; Wang, Y.; Liang, G.-Y. Effect of dietary lipid level on growth, feed utilization and body composition by juvenile grass carp (Ctenopharyngodon idella). Aquac. Nutr. 2005, 11, 139–146. [Google Scholar] [CrossRef]
- Yong, A.S.K.; Ooil, S.Y.; Shapawi, R.; Biswas, A.K.; Kenji, T. Effects of Dietary Lipid Increments on Growth Performance, Feed Utilization, Carcass Composition and Intraperitoneal Fat of Marble Goby, Oxyeleotris marmorata, Juveniles. TrJFAS 2015, 15, 653–660. [Google Scholar]
- Arévalo-Hernández, C.; Arévalo, E.; Arévalo-Gardini, J.; Navas-Vásquez, M. Efecto de extractos vegetales en el crecimiento y desarrollo del paiche (Arapaima gigas) en etapa de pre-cría en la región San Martín. Rev. Peru. Investig. Agropecu. 2023, 2, e31. [Google Scholar] [CrossRef]
- Lin, Y.-H.; Shiau, S.-Y. Dietary lipid requirement of grouper, Epinephelus malabaricus, and effects on immune responses. Aquaculture 2003, 225, 243–250. [Google Scholar] [CrossRef]
- Sevgili, H.; Kurtoğlu, A.; Oikawa, M.; Öztürk, E.; Dedebali, N.; Emre, N.; Pak, F. High dietary lipids elevate carbon loss without sparing protein in adequate protein-fed juvenile turbot (Psetta maxima). Aquacult. Int. 2014, 22, 797–810. [Google Scholar] [CrossRef]
- De Andrade, J.I.A.; Ono, E.A.; Menezes, G.C.; Brasil, E.M.; Roubach, R.; Urbinati, E.C.; Tavares-Dias, M.; Marcon, J.L.; Affonso, E.G. Influence of diets supplemented with vitamins C and E on pirarucu (Arapaima gigas) blood parameters. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2007, 146, 576–580. [Google Scholar] [CrossRef]
- Rodrigues, A.P.O.; Silva, M.C.N.; Beretta, E.S.; Fonseca, F.A.L.; Parisi, G.; Conceição, L.E.C.; Gonçalves, L.U. Effect of dietary taurine supplementation on the growth and blood physiological parameters of juvenile pirarucu. Acta Amazon. 2020, 50, 289–294. [Google Scholar] [CrossRef]
- Tavares-Dias, M.; Barcellos, J.F.M.; Marcon, J.L.; Menezes, G.C.; Ono, E.A.; Affonso, E.G. Hematological and biochemical parameters for the pirarucu Arapaima gigas Schinz, 1822 (Osteoglossiformes, Arapaimatidae) in net cage culture. Electron. J. Ichthyol. 2007, 2, 61–68. [Google Scholar]
- An, W.; Xu, J.; Cheng, F.; Ma, Y.; Su, Z.; Guang, J.; Su, N.; Zhang, G.; Xu, C.; Li, Y.; et al. Effects of dietary n-3 LC-PUFA levels on the growth, immunity, and lipid metabolism of freshwater carnivorous teleost largemouth bass (Micropterus salmoides) juveniles. Aquac. Rep. 2023, 32, 101704. [Google Scholar] [CrossRef]
- Bandarra, N.M.; Rema, P.; Batista, I.; Pousão-Ferreira, P.; Valente, L.M.P.; Batista, S.M.G.; Ozório, R.O.A. Effects of dietary n-3/n-6 ratio on lipid metabolism of gilthead seabream (Sparus aurata). Eur. J. Lipid Sci. Technol. 2011, 113, 1332–1341. [Google Scholar] [CrossRef]
Diets 1 | |||||
---|---|---|---|---|---|
6DL | 10DL | 14DL | 18DL | 22DL | |
Ingredients (g kg−1) | |||||
Fishmeal 2 | 560.0 | 565.0 | 568.0 | 580.0 | 585.0 |
Soybean meal | 180.0 | 180.0 | 180.0 | 180.0 | 180.0 |
Corn grain | 156.0 | 110.0 | 65.0 | 12.0 | 0.0 |
Wheat flour | 90.0 | 90.0 | 90.0 | 90.0 | 56.0 |
Fish oil 3 | 0.0 | 41.0 | 83.0 | 124.0 | 165.0 |
Premix 4 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 |
Antifungal 5 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 |
BHT 6 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 |
Proximate composition (g kg−1) | |||||
Dry matter | 945.1 | 926.2 | 927.0 | 955.1 | 951.6 |
Crude protein–CP | 452.9 | 452.0 | 450.0 | 452.9 | 450.9 |
Gross energy–GE (kcal kg−1) 7 | 4406.0 | 4574.0 | 4756.1 | 4950.9 | 5137.7 |
Crude fiber | 23.2 | 22.5 | 21.8 | 21.0 | 16.7 |
Ash | 153.0 | 163.5 | 171.4 | 177.3 | 187.6 |
Carbohydrates 8 | 309.5 | 261.3 | 215.8 | 168.1 | 123.9 |
Total lipids | 61.4 | 100.7 | 141.0 | 180.7 | 220.9 |
GE:CP (kcal g−1) | 9.7 | 10.1 | 10.6 | 10.9 | 11.4 |
Fatty acid composition (mg g of total lipids−1) | |||||
∑SFA 9 | 356.0 | 377.7 | 388.9 | 447.8 | 460.0 |
14:0 | 35.0 | 39.6 | 40.4 | 48.9 | 46.9 |
16:0 | 230.6 | 239.7 | 245.9 | 280.0 | 292.5 |
18:0 | 63.9 | 67.9 | 70.9 | 83.0 | 85.8 |
∑MUFA 10 | 283.2 | 281.1 | 264.3 | 260.0 | 241.5 |
18:1n-9c | 197.6 | 182.6 | 178.3 | 174.5 | 170.9 |
∑PUFA 11 | 290.7 | 284.1 | 285.0 | 290.0 | 290.0 |
18:2n-6 | 152.8 | 86.2 | 70.9 | 46.6 | 43.4 |
18:3n-3 | 11.7 | 8.7 | 8.5 | 6.4 | 6.1 |
20:5n-3 | 28.5 | 32.3 | 33.9 | 42.0 | 42.9 |
22:6n-3 | 68.8 | 83.8 | 101.6 | 127.3 | 128.3 |
∑n-3 | 132.3 | 153.2 | 173.0 | 196.3 | 200.9 |
∑n-6 | 153.9 | 87.5 | 72.3 | 47.7 | 44.6 |
N-3:n-6 | 0.9 | 1.8 | 2.4 | 4.1 | 4.5 |
Parameters | % Dietary Lipids (DL) | One-Way ANOVA p-Value | Regression (Regr.) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
6DL | 10DL | 14DL | 18DL | 22DL | p-Value | R2 | Regr. | Opt. DL | Max. DL | ||
S (%) | 97.5a | 98.8a | 95.0a | 82.5b | 90.0b | 0.003 | 0.006 | 0.31 | L | - | - |
FW (g) | 389.1 ± 12.0a | 375.7 ± 20.3a | 313.9 ± 33.5b | 211.6 ± 14.3c | 174.9 ± 16.9c | <0.001 | <0.001 | 0.90 | SP | 6.0 | 10.26 |
FL (cm) | 37.9 ± 0.2a | 36.8 ± 0.4ab | 35.6 ± 1.0b | 32.2 ± 0.6c | 30.4 ± 0.9d | <0.001 | <0.001 | 0.91 | L | - | - |
WG (g) | 309.1 ± 12.0a | 295.7 ± 20.3a | 233.9 ± 33.5b | 131.6 ± 14.3c | 94.9 ± 16.9c | <0.001 | <0.001 | 0.92 | SP | 6.0 | 10.26 |
LG (cm) | 16.1 ± 0.2a | 15.0 ± 0.4ab | 13.8 ± 1.0b | 10.3 ± 0.6c | 8.5 ± 0.9d | <0.001 | <0.001 | 0.91 | L | - | - |
FI (g) | 618.1 ± 8.1a | 618.1 ± 23.1a | 565.8 ± 9.9b | 540.5 ± 42.9b | 526.2 ± 23.2b | <0.001 | <0.001 | 0.69 | SP | 6.0 | 10.77 |
FCR | 2.0 ± 0.1c | 2.1 ± 0.2c | 2.5 ± 0.4c | 4.1 ± 0.4b | 5.7 ± 0.9a | <0.001 | <0.001 | 0.79 | SP | 6.0 | 10.62 |
PCR (%) | 36.5 ± 0.5a | 35.6 ± 1.5a | 33.8 ± 2.1b | 28.0 ± 0.9b | 25.9 ± 1.1b | <0.001 | <0.001 | 0.85 | L | - | - |
RGR (% day−1) | 2.7 ± 0.1a | 2.6 ± 0.1a | 2.3 ± 0.1b | 1.6 ± 0.1c | 1.3 ± 0.2d | <0.001 | <0.001 | 0.89 | L | - | - |
CF | 0.7 ± 0.03a | 0.8 ± 0.04a | 0.7 ± 0.03a | 0.6 ± 0.02b | 0.6 ± 0.01b | <0.001 | <0.001 | 0.58 | L | - | - |
HIS | 1.5 ± 0.1 | 1.7 ± 0.1 | 1.6 ± 0.3 | 1.5 ± 0.1 | 1.4 ± 0.2 | 0.164 | 0.297 | - | - | - | - |
LSI | 0.05 ± 0.03 | 0.07 ± 0.01 | 0.09 ± 0.05 | 0.09 ± 0.02 | 0.10 ± 0.02 | 0.154 | 0.015 | 0.25 | L | - | - |
Parameters | % Dietary Lipids (DL) | One-Way ANOVA p-Value | ||||
---|---|---|---|---|---|---|
6DL | 10DL | 14DL | 18DL | 22DL | ||
Hematological parameters | ||||||
HEM (g dL−1) | 7.8 ± 0.5 | 8.7 ± 1.1 | 7.1 ± 0.6 | 7.2 ± 2.4 | 8.8 ± 0.4 | 0.212 |
HT (%) | 19.4 ± 1.93b | 34.3 ± 8.9a | 30.8 ± 4.8a | 27.4 ± 5.8a | 32.3 ± 2.2a | 0.011 |
ERY (×106 dL−1) | 1.9 ± 0.3 | 2.8 ± 0.5 | 2.9 ± 0.6 | 2.4 ± 0.5 | 2.9 ± 0.5 | 0.051 |
MCHC (%) | 40.1 ± 2.2a | 26.1 ± 4.4b | 26.7 ± 9.2b | 25.7 ± 3.4b | 26.8 ± 1.2b | 0.006 |
MCV (fL) | 102.0 ± 14.8 | 121.5 ± 26.4 | 104.9 ± 14.6 | 116.8 ± 25.9 | 114.6 ± 22.9 | 0.679 |
MCH (g dL−1) | 40.6 ± 4.1 | 31.4 ± 6.4 | 28.0 ± 10.4 | 30.2 ± 8.4 | 31.1 ± 4.8 | 0.176 |
LEU (×105 µL−1) | 0.1 ± 0.01 | 0.1 ± 0.02 | 0.1 ± 0.02 | 0.1 ± 0.02 | 0.1 ± 0.03 | 0.054 |
NEU (%) | 78.8 ± 10.7 | 84.0 ± 5.7 | 71.8 ± 3.8 | 84.5 ± 7.5 | 82.8 ± 8.0 | 0.144 |
LYM (%) | 21.3 ± 10.7 | 16.0 ± 5.7 | 25.8 ± 8.6 | 15.5 ± 7.5 | 17.3 ± 8.0 | 0.393 |
Biochemical parameters | ||||||
GLU (mg dL−1) | 32.3 ± 5.7a | 44.3 ± 9.8a | 36.0 ± 5.5a | 23.3 ± 3.2b | 22.5 ± 3.1b | 0.042 |
TRI (mg dL−1) | 48.3 ± 17.5 | 33.5 ± 8.4 | 53.3 ± 15.2 | 35.0 ± 11.1 | 44.0 ± 23.6 | 0.385 |
CLS (mg dL−1) | 72.0 ± 13.7 | 72.8 ± 19.1 | 74.8 ± 16.1 | 58.3 ± 28.9 | 62.3 ± 7.5 | 0.114 |
PRO (g dL−1) | 1.8 ± 0.2ab | 2.2 ± 0.4a | 2.1 ± 0.2a | 1.5 ± 0.1b | 1.8 ± 0.3ab | 0.018 |
Parameters (g kg−1) | % Dietary Lipids (DL) | One-Way ANOVA p-Value | ||||
---|---|---|---|---|---|---|
6DL | 10DL | 14DL | 18DL | 22DL | ||
Whole body | ||||||
Moisture | 744.9 ± 17.6 | 742.1 ± 16.6 | 743.4 ± 14.8 | 743.5 ± 18.5 | 745.4 ± 17.8 | 0.850 |
Crude Protein | 149.1 ± 7.5 | 149.5 ± 7.6 | 150.6 ± 9.0 | 152.6 ± 6.1 | 150.0 ± 4.9 | 0.081 |
Lipids | 44.6 ± 1.8a | 45.1 ± 1.7a | 41.5 ± 0.5b | 40.4 ± 1.5b | 41.6 ± 0.8b | <0.001 |
Ash | 42.2 ± 1.5 | 42.5 ± 1.5 | 43.7 ± 1.6 | 43.0 ± 1.5 | 42.4 ± 1.6 | 0.054 |
Muscle | ||||||
Moisture | 771.0 ± 16.8 | 776.6 ± 19.4 | 771.5 ± 17.5 | 778.2 ± 12.0 | 778.5 ± 18.5 | 0.430 |
Crude Protein | 152.4 ± 5.1 | 154.7 ± 6.7 | 151.8 ± 4.6 | 153.7 ± 7.5 | 151.4 ± 6.6 | 0.120 |
Lipids | 32.4 ± 2.3a | 28.5 ± 2.5a | 32.8 ± 2.0a | 23.3 ± 2.8b | 24.1 ± 1.7b | <0.001 |
Ash | 30.2 ± 1.1 | 29.0 ± 1.5 | 29.4 ± 2.8 | 30.4 ± 1.4 | 32.1 ± 1.6 | 0.061 |
Parameters | % Dietary Lipids (DL) | One-Way ANOVA p-Value | ||||
---|---|---|---|---|---|---|
6DL | 10DL | 14DL | 18DL | 22DL | ||
∑SFA | 281.8 ± 2.9a | 267.5 ± 1.6b | 260.5 ± 0.8c | 262.2 ± 1.0c | 257.7 ± 1.7d | <0.001 |
14:0 | 16.2 ± 0.2a | 14.2 ± 0.1b | 10.2 ± 0.4c | 10.5 ± 0.1c | 9.7 ± 0.1d | <0.001 |
16:0 | 164.0 ± 2.3a | 154.0 ± 1.1b | 152.3 ± 0.6c | 159.0 ± 0.6c | 149.3 ± 0.9d | <0.001 |
18:0 | 89.6 ± 2.9 | 87.6 ± 3.5 | 86.1 ± 3.3 | 85.1 ± 2.3 | 88.3 ± 6.7 | 0.080 |
∑MUFA | 227.4 ± 1.0a | 216.3 ± 1.1b | 209.1 ± 1.0c | 212.6 ± 2.7c | 208.7 ± 0.9c | <0.001 |
16:1n-7 | 20.6 ± 1.4a | 17.0 ± 0.4b | 13.4 ± 0.2c | 14.0 ± 0.2c | 13.3 ± 0.1c | <0.001 |
18:1n-9c | 154.0 ± 2.6a | 143.0 ± 2.8b | 135.7 ± 4.5c | 138.6 ± 1.8c | 134.7 ± 4.8c | <0.001 |
∑PUFA | 432.2 ± 7.8c | 449.8 ± 6.1b | 455.8 ± 4.6b | 448.0 ± 6.6b | 466.4 ± 7.9a | <0.001 |
18:2n-6 | 169.9 ± 7.8a | 148.4 ± 6.9b | 107.5 ± 9.0c | 110.4 ± 8.4c | 152.3 ± 8.7b | <0.001 |
18:3n-3 | 12.6 ± 0.1a | 11.4 ± 0.2b | 8.0 ± 0.1c | 8.0 ± 0.2c | 10.9 ± 0.9b | <0.001 |
20:4n-6 | 4.2 ± 0.2a | 3.7 ± 0.3ab | 3.4 ± 0.1b | 3.4 ± 0.3b | 3.3 ± 0.1b | <0.001 |
20:5n-3 | 46.0 ± 0.4d | 52.5 ± 0.4c | 54.9 ± 0.5b | 56.6 ± 0.7a | 56.3 ± 0.5a | <0.001 |
22:6n-3 | 134.5 ± 0.4c | 164.4 ± 1.0b | 204.7 ± 0.5a | 192.8 ± 1.4a | 166.3 ± 2.2b | <0.001 |
∑n-3 | 242.4 ± 4.8c | 284.1 ± 6.0b | 331.5 ± 1.3a | 331.5 ± 2.1a | 296.6 ± 8.1b | <0.001 |
∑n-6 | 189.8 ± 3.3a | 165.7 ± 4.7b | 124.3 ± 6.9c | 126.7 ± 5.0c | 169.9 ± 5.8b | <0.001 |
n-3:n-6 | 1.3 ± 0.01c | 1.7 ± 0.01b | 2.7 ± 0.02a | 2.5 ± 0.03a | 1.8 ± 0.02b | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cortegano, C.A.A.; Panaifo-García, L.A.; Llapapasca, N.; Sandoval, N.; Valera, A.; Espinoza, J.R.; Orihuela, G.; Carhuallanqui, A.; Ramos-Delgado, D.D.; Chu-Koo, F.W.; et al. Effects of Dietary Lipid Levels on Growth Performance, Hematological Parameters, and Muscle Fatty Acid Composition of Juvenile Arapaima gigas. Animals 2025, 15, 2027. https://doi.org/10.3390/ani15142027
Cortegano CAA, Panaifo-García LA, Llapapasca N, Sandoval N, Valera A, Espinoza JR, Orihuela G, Carhuallanqui A, Ramos-Delgado DD, Chu-Koo FW, et al. Effects of Dietary Lipid Levels on Growth Performance, Hematological Parameters, and Muscle Fatty Acid Composition of Juvenile Arapaima gigas. Animals. 2025; 15(14):2027. https://doi.org/10.3390/ani15142027
Chicago/Turabian StyleCortegano, Carlos Andre Amaringo, Luz Angélica Panaifo-García, Nidia Llapapasca, Nieves Sandoval, Adhemir Valera, Juan Rondón Espinoza, Gonzalo Orihuela, Andrea Carhuallanqui, Daphne D. Ramos-Delgado, Fred W. Chu-Koo, and et al. 2025. "Effects of Dietary Lipid Levels on Growth Performance, Hematological Parameters, and Muscle Fatty Acid Composition of Juvenile Arapaima gigas" Animals 15, no. 14: 2027. https://doi.org/10.3390/ani15142027
APA StyleCortegano, C. A. A., Panaifo-García, L. A., Llapapasca, N., Sandoval, N., Valera, A., Espinoza, J. R., Orihuela, G., Carhuallanqui, A., Ramos-Delgado, D. D., Chu-Koo, F. W., & Gonçalves, L. U. (2025). Effects of Dietary Lipid Levels on Growth Performance, Hematological Parameters, and Muscle Fatty Acid Composition of Juvenile Arapaima gigas. Animals, 15(14), 2027. https://doi.org/10.3390/ani15142027