Medicated Meloxicam Pellets Reduce Some Indicators of Pain in Disbudded Dairy Calves
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Housing
2.2. Experimental Design and Treatments
- (1)
- POS, n = 10: Sham disbudding/manual bud palpation;
- (2)
- NEG, n = 10: Disbudding and no NSAID administered;
- (3)
- MET, n = 10: Disbudding with conventional meloxicam (Metacam20®, Boehringer Ingelheim, North Ryde, NSW, Australia) subcutaneously injected into the neck at a dose rate of 0.5 mg/kg 2 h prior to disbudding;
- (4)
- MMP, n = 10: Disbudding with provision of medicated meloxicam pellets (MMP) 1 day prior to disbudding, on the day of disbudding, and for 6 days following disbudding. Calves were fed MMP whilst enclosed in individual pens for a 2 h period. During this time, calves had access to water. If the medicated pellets were not entirely consumed after the 2 h period, calves were released from the individual pens and the remaining MMP were left in a shared trough for all calves to access ad libitum.
2.3. Disbudding and Analgesic Treatment
2.4. Data Collection
2.4.1. Plasma Meloxicam
2.4.2. Behavioural Observations
2.4.3. Accelerometer-Derived Behaviour States
2.4.4. Mechanical Nociceptive Threshold Testing
2.4.5. Horn Site Temperature
2.5. Statistical Analysis
2.5.1. Plasma Meloxicam
2.5.2. Behavioural Observations
2.5.3. Accelerometer-Derived Behaviour States
2.5.4. Mechanical Nociceptive Threshold Testing
2.5.5. Horn Site Temperature
2.5.6. Association Between Algometer Force and Behaviours
2.5.7. Miscellaneous Analyses
3. Results
3.1. Plasma Meloxicam Concentrations
3.2. Horn Site Temperature
3.3. Accelerometer-Derived Lying Time
3.4. Mechanical Nociceptive Threshold
3.5. Behaviour
4. Discussion
4.1. Sustained Meloxicam Concentrations in MMP Treatment
4.2. Less Prolonged Wound Inflammation in MMP Treatment
4.3. Higher Sociality in MMP Treatment
4.4. Need for Sustained Disbudding Treatment
4.5. Minor Insights
4.6. Welfare Value Judgment
4.7. Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Treatment Group | Calf ID | Day 0 | Day 1 | Day 2 | Day 3 | Day 6 | Day 9 | Day 12 |
---|---|---|---|---|---|---|---|---|
MMP | 1 | 1.818 | 2.201 | 2.136 | 2.784 | 3.734 | 0.739 | 0.066 |
MMP | 2 | 2.653 | 4.604 | 5.742 | 5.214 | 5.057 | 1.367 | 0.105 |
MMP | 3 | 3.272 | 5.166 | 5.959 | 5.224 | 5.017 | 2.221 | 0.238 |
MMP | 4 | 2.775 | 2.365 | 3.528 | 3.659 | 3.999 | 0.959 | 0.106 |
MMP | 5 | 4.293 | 3.338 | 3.386 | 3.825 | 5.069 | 0.863 | 0.069 |
MMP | 7 | 2.648 | 3.594 | 4.455 | 5.778 | 5.518 | 1.147 | 0.114 |
MMP | 8 | 1.847 | 1.681 | 2.232 | 2.333 | 2.728 | 0.374 | 0 |
MMP | 13 | 2.134 | 2.619 | 3.350 | 3.94 | 3.272 | 1.017 | 0.106 |
MMP | 16 | 2.629 | 3.109 | 4.129 | 4.562 | 4.448 | 1.073 | 0.066 |
MMP | 19 | 1.314 | 2.140 | 3.143 | 3.502 | 3.477 | 1.063 | 0.121 |
Treatment Mean | 2.538 | 3.082 | 3.806 | 4.082 | 4.232 | 1.082 | 0.099 | |
MET | 11 | 1.742 | 1.119 | 0.709 | 0.513 | 0.154 | 0 | 0 |
MET | 12 | 1.444 | 0.599 | 0.224 | 0.054 | 0 | 0 | 0 |
MET | 13 | 1.902 | 1.009 | 0.394 | 0.201 | 0 | 0 | 0 |
MET | 14 | 2.007 | 1.097 | 0.431 | 0.157 | 0 | 0 | 0 |
MET | 15 | 2.004 | 1.427 | 1.035 | 0.57 | 0.059 | 0 | 0 |
MET | 1 | 1.528 | 0.749 | 0.483 | 0.257 | 0.064 | 0 | 0 |
MET | 4 | 1.787 | 0.986 | 0.544 | 0.273 | 0 | 0 | 0 |
MET | 5 | 1.307 | 0.312 | 0.08 | 0 | 0 | 0 | 0 |
MET | 6 | 1.429 | 0.441 | 0.0847 | 0 | 0 | 0 | 0 |
MET | 18 | 1.702 | 0.838 | 0.356 | 0.145 | 0 | 0 | 0 |
Treatment Mean | 1.685 | 0.858 | 0.434 | 0.217 | 0.028 | 0 | 0 |
MET | NEG | MMP | POS | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Day | Mean | SE | Group | Mean | SE | Group | Mean | SE | Group | Mean | SE | Group |
−1 | 0.673 | 0.029 | a | 0.652 | 0.031 | a | 0.552 | 0.029 | b | 0.462 | 0.031 | c |
0 | 0.570 | 0.029 | a | 0.613 | 0.031 | a | 0.604 | 0.029 | a | 0.560 | 0.031 | a |
1 | 0.626 | 0.031 | a | 0.623 | 0.031 | a | 0.597 | 0.029 | a | 0.557 | 0.031 | a |
2 | 0.590 | 0.031 | a | 0.613 | 0.031 | a | 0.575 | 0.029 | a | 0.559 | 0.032 | a |
3 | 0.597 | 0.031 | a | 0.624 | 0.031 | a | 0.619 | 0.029 | a | 0.540 | 0.032 | a |
4 | 0.667 | 0.031 | a | 0.643 | 0.031 | ab | 0.606 | 0.029 | ab | 0.555 | 0.032 | b |
5 | 0.621 | 0.031 | a | 0.643 | 0.031 | a | 0.638 | 0.029 | a | 0.596 | 0.032 | a |
6 | 0.654 | 0.029 | ab | 0.690 | 0.031 | a | 0.597 | 0.031 | b | 0.671 | 0.033 | ab |
7 | 0.649 | 0.029 | a | 0.626 | 0.031 | a | 0.620 | 0.031 | a | 0.609 | 0.033 | a |
8 | 0.651 | 0.029 | a | 0.627 | 0.031 | a | 0.615 | 0.031 | a | 0.663 | 0.033 | a |
9 | 0.596 | 0.029 | a | 0.574 | 0.031 | a | 0.577 | 0.031 | a | 0.593 | 0.033 | a |
10 | 0.636 | 0.029 | a | 0.601 | 0.031 | a | 0.601 | 0.031 | a | 0.604 | 0.033 | a |
11 | 0.631 | 0.029 | a | 0.624 | 0.031 | a | 0.650 | 0.031 | a | 0.678 | 0.033 | a |
12 | 0.702 | 0.029 | a | 0.702 | 0.031 | a | 0.726 | 0.031 | a | 0.681 | 0.033 | a |
Day | Treatment | Mean | SE | Group |
---|---|---|---|---|
−1 | POS | 3.190 | 0.639 | a |
NEG | 4.034 | 0.815 | a | |
MET | 3.843 | 0.802 | a | |
MMP | 3.260 | 0.648 | a | |
0 | POS | 2.630 | 0.523 | a |
NEG | 2.065 | 0.411 | ab | |
MET | 1.958 | 0.401 | ab | |
MMP | 1.401 | 0.278 | b | |
1 | POS | 2.813 | 0.559 | a |
NEG | 1.373 | 0.273 | b | |
MET | 0.839 | 0.167 | bc | |
MMP | 0.792 | 0.158 | c | |
2 | POS | 4.208 | 0.844 | a |
NEG | 1.383 | 0.276 | b | |
MET | 1.493 | 0.297 | b | |
MMP | 1.667 | 0.331 | b | |
3 | POS | 2.774 | 0.551 | a |
NEG | 0.692 | 0.138 | b | |
MET | 0.471 | 0.094 | b | |
MMP | 0.564 | 0.112 | b | |
6 | POS | 2.529 | 0.503 | a |
NEG | 0.886 | 0.176 | b | |
MET | 0.685 | 0.136 | b | |
MMP | 0.644 | 0.128 | b | |
9 | POS | 1.942 | 0.386 | a |
NEG | 0.596 | 0.118 | b | |
MET | 0.589 | 0.117 | b | |
MMP | 0.511 | 0.102 | b | |
12 | POS | 2.347 | 0.467 | a |
NEG | 0.635 | 0.126 | b | |
MET | 0.697 | 0.139 | b | |
MMP | 0.636 | 0.126 | b |
Behaviour | Treatment | Day | Treatment × Day |
---|---|---|---|
EF | 2.4 × 10−9 | 4.5 × 10−12 | <2.2 × 10−16 |
HS | 1.5 × 10−4 | 5.2 × 10−5 | <2.2 × 10−16 |
HR | 0.82 | 3.0 × 10−7 | 2.0 × 10−3 |
TF | 0.045 | <2.2 × 10−16 | <2.2 × 10−16 |
FS | 0.16 | 6.6 × 10−4 | 3.5 × 10−16 |
G | 0.012 | 0.026 | 0.64 |
D | 0.59 | 0.44 | 0.151 |
E | 0.41 | <2.2 × 10−16 | 6.0 × 10−7 |
L | 0.052 | 1.00 | 2.9 × 10−6 |
NS | 9.0 × 10−5 | 5.2 × 10−5 | 2.0 × 10−5 |
NL | 3.6 × 10−4 | 7.1 × 10−7 | 5.5 × 10−6 |
HHI | 0.011 | 1.6 × 10−3 | 0.13 |
HBI | 0.074 | 1.8 × 10−3 | 0.013 |
I | 2.9 × 10−5 | 2.3 × 10−4 | 7.2 × 10−9 |
References
- Weaver, A. Bovine Surgery and Lameness; Blackwell Scientific Publishing: Hoboken, NJ, USA, 1986. [Google Scholar]
- Gottardo, F.; Nalon, E.; Contiero, B.; Normando, S.; Dalvit, P.; Cozzi, G. The dehorning of dairy calves: Practices and opinions of 639 farmers. J. Dairy Sci. 2011, 94, 5724–5734. [Google Scholar] [CrossRef] [PubMed]
- Faulkner, P.; Weary, D.M. Reducing Pain After Dehorning in Dairy Calves. J. Dairy Sci. 2000, 83, 2037–2041. [Google Scholar] [CrossRef]
- Gleerup, K.; Andersen, P.; Munksgaard, L.; Forkman, B. Pain evaluation in dairy cattle. Appl. Anim. Behav. Sci. 2015, 171, 25–32. [Google Scholar] [CrossRef]
- Ede, T.; von Keyserlingk, M.; Weary, D.M. Assessing the affective component of pain, and the efficacy of pain control, using conditioned place aversion in calves. Biol. Lett. 2019, 15, 20190642. [Google Scholar] [CrossRef] [PubMed]
- Anderson, D.; Muir, M. Pain Management in Ruminants. Vet. Clin. N. Am.—Food Anim. Pract. 2005, 21, 19–31. [Google Scholar] [CrossRef]
- Graf, B.; Senn, M. Behavioural and physiological responses of calves to dehorning by heat cauterization with or without local anaesthesia. Appl. Anim. Behav. Sci. 1995, 62, 153–171. [Google Scholar] [CrossRef]
- Heinrich, A.; Duffield, T.; Lissemore, K.; Millman, S. The effect of meloxicam on behaviour and pain sensitivity of dairy calves following cautery dehorning with a local anaesthetic. J. Dairy Sci. 2010, 93, 2450–2457. [Google Scholar] [CrossRef]
- Stafford, K.; Mellor, D. Dehorning and disbudding distress and its alleviation in calves. Vet. J. 2005, 169, 337–349. [Google Scholar] [CrossRef]
- Winder, C.; Miltenburg, C.; Sargeant, J.; LeBlanc, S.; Haley, D.; Lissemore, K.; Ann Godkin, M.; Duffield, T. Effects of local anesthetic or systemic analgesia on pain associated with cautery disbudding in calves: A systematic review and meta-analysis. J. Dairy Sci. 2018, 101, 5411–5427. [Google Scholar] [CrossRef]
- Adcock, S.; Cruz, D.; Tucker, C. Behavioural changes in calves 11 days after cautery disbudding: Effect of local anaesthesia. J. Dairy Sci. 2020, 103, 8518–8525. [Google Scholar] [CrossRef]
- Casoni, D.; Mirra, A.; Suter, M.; Gutzwiller, A.; Spadavecchia, C. Can disbudding of calves (one versus four weeks of age) induce chronic pain? Physiol. Behav. 2019, 199, 47–55. [Google Scholar] [CrossRef]
- Lecorps, B.; Nogues, E.; von Keyserlingk, M.A.G.; Weary, D.M. Pessimistic dairy calves are more vulnerable to pain-induced anhedonia. PLoS ONE 2020, 15, e0242100. [Google Scholar] [CrossRef] [PubMed]
- Adcock, S.; Tucker, C. Injury alters motivational trade-offs in calves during the healing period. Sci. Rep. 2021, 11, 6888. [Google Scholar] [CrossRef]
- Adcock, S.; Tucker, C. The effect of disbudding age on healing and pain sensitivity in dairy calves. J. Dairy Sci. 2018, 101, 10361–10373. [Google Scholar] [CrossRef]
- Weary, D.M.; Niel, L.; Flower, F.C.; Fraser, D. Identifying and preventing pain in animals. Appl. Anim. Behav. Sci. 2006, 100, 64–76. [Google Scholar] [CrossRef]
- Meijboom, F.; Stafleu, F. Farming ethics in practice: From freedom to professional moral autonomy for farmers. Agric. Hum. Values 2015, 33, 403–414. [Google Scholar] [CrossRef]
- Cherney, D. Dairy Production: Ethical Issues. In Encyclopedia of Food and Agricultural Ethics; Kaplan, D.M., Ed.; Springer: Dordrecht, The Netherlands, 2019. [Google Scholar]
- Vasseur, E.; Rushen, J.; de Passille, A. Short communication: Calf body temperature following chemical disbudding with sedation: Effects of milk allowance and supplemental heat. J. Dairy Sci. 2014, 97, 5185–5190. [Google Scholar] [CrossRef]
- Stilwell, G.; Lima, M.; Carvalho, R.; Broom, D. Effects of hot-iron disbudding, using regional anaesthesia with and without carprofen, on cortisol and behaviour of calves. Res. Vet. Sci. 2012, 92, 338–341. [Google Scholar] [CrossRef]
- Adcock, S.; Vieira, S.; Alvarez, L.; Tucker, C. Iron and laterality effects on healing of cautery disbudding wounds in dairy calves. J. Dairy Sci. 2019, 102, 10163–10172. [Google Scholar] [CrossRef]
- Reedman, C.N.; Duffield, T.F.; DeVries, T.J.; Lissemore, K.D.; Winder, C.B. Graduate Student Literature Review: Role of pain mitigation on the welfare of dairy calves undergoing disbudding. J. Dairy Sci. 2022, 105, 6809–6819. [Google Scholar] [CrossRef]
- Herskin, M.; Nielsen, B. Welfare Effects of the Use of a Combination of Local Anesthesia and NSAID for Disbudding Analgesia in Dairy Calves—Reviewed Across Different Welfare Concerns. Front. Vet. Sci. 2018, 5, 117. [Google Scholar] [CrossRef]
- Bates, A.; Eder, P.; Laven, R. Effect of analgesia and anti-inflammatory treatment on weight gain and milk intake of dairy calves after disbudding. N. Z. Vet. J. 2015, 63, 153–157. [Google Scholar] [CrossRef] [PubMed]
- Del Tacca, M.; Colucci, R.; Fornai, M.; Blandizzi, C. Efficacy and Tolerability of Meloxicam, a COX-2 Preferential Nonsteroidal Anti-Inflammatory Drug: A Review. Clin. Drug Investig. 2002, 22, 799–818. [Google Scholar] [CrossRef]
- Adcock, S.; Dwney, B.C.; Owens, C.; Tucker, C.B. Behavioral changes in the first 3 weeks after disbudding in dairy calves. J. Dairy Sci. 2023, 106, 6365–6374. [Google Scholar] [CrossRef] [PubMed]
- Reiche, A. Long-Term Effects of Disbudding: Stress Reactivity, Behaviour and Meat Quality in Young Fattening Cattle. Ph.D. Thesis, ETH, Zurich, Switzerland, 2020. [Google Scholar]
- Wilson, C.; Van der Saag, D.; Kimble, B.; Lomax, S. Pharmacokinetics of a sustained release meloxicam formulation for extended pain mitigation in calves. Animals, 2025; submitted. [Google Scholar]
- Mosher, R.; Coetzee, J.; Cull, C.; Gehring, R.; KuKanic, B. Pharmacokinetics of oral meloxicam in ruminant and preruminant calves. J. Vet. Pharmacol. Ther. 2011, 35, 373–381. [Google Scholar] [CrossRef]
- Dunbar, M.L.; Walkowiak, K.J.; Faustich, J.S.; Rendahl, A.K.; Graham, M.L. Preliminary Evaluation of Sustained-release Compared with Conventional Formulations of Meloxicam in Sheep (Ovis aries). J. Am. Assoc. Lab. Anim. Sci. 2019, 58, 339–345. [Google Scholar] [CrossRef] [PubMed]
- Marquette, G.A.; Ronan, S.; Earley, B. Calf disbudding—Animal welfare considerations. J. Appl. Anim. Res. 2023, 51, 616–623. [Google Scholar] [CrossRef]
- Woodland, A.N.; Van der Saag, D.; Kimble, B.; White, P.J.; Govendir, M.; Lomax, S. Plasma pharmacokinetic profile and efficacy of meloxicam administered subcutaneously and intramuscularly to sheep. PLoS ONE 2019, 14, e0215842. [Google Scholar] [CrossRef]
- Plummer, C.; White, P.J.; Kimble, B.; Govendir, M.; Van der Saag, D. Preliminary investigation into a novel sustained-release formulation of meloxicam in sheep (Ovis aries)—Pharmacokinetic profile. Animals 2021, 11, 2484. [Google Scholar] [CrossRef]
- Malacarne, B.D.; Cota, L.O.; Neto, A.C.P.; Paz, C.F.R.; Dias, L.A.; Correa, M.G.; Carvalho, A.M.; Faleiros, R.R.; Xavier, A.B.S. Mechanical nociceptive assessment of the equine hoof following distal interphalangeal joint intra-articular anesthesia. PeerJ. 2020, 8, e9469. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020; Available online: https://www.R-project.org/ (accessed on 27 May 2025).
- Jokela, A.; Nyrhilä, A.; Adam, M.; Salla, K.; Raekallio, M.; Aho, R.; Norring, M.; Hokkanen, A.-H. Pharmacokinetics of meloxicam in pre-ruminant calves after intravenous, oral, and subcutaneous administration. J. Veteirnary Pharmacol. Ther. 2024, 47, 143–149. [Google Scholar] [CrossRef] [PubMed]
- Shock, D.; Roche, S.; Olson, M. Comparative Pharmacokinetic Analysis of Oral and Subcutaneous Meloxicam Administered to Postpartum Dairy Cows. Vet. Sci. 2019, 6, 73. [Google Scholar] [CrossRef] [PubMed]
- Algra, M.; de Keijzer, L.; Arndt, S.S.; van Eerdenburg, F.J.C.M.; Goerlich, V.C. Evaluation of the Thermal Response of the Horns in Dairy Cattle. Animals 2023, 13, 500. [Google Scholar] [CrossRef] [PubMed]
- Bakony, M.; Kovács, L.; Kézér, L.F.; Jurkovich, V. The use of body surface temperatures in assessing thermal status of hutch-reared dairy calves in shaded and unshaded conditions. Front. Vet. Sci. 2023, 3, 1162708. [Google Scholar] [CrossRef]
- Cantor, M.C.; Goetz, H.M.; Beattie, K.; Renaud, D.L. Evaluation of an infrared thermography camera for measuring body temperature in dairy calves. JDS Commun. 2022, 3, 357–361. [Google Scholar] [CrossRef]
- Juffinger, A.; Schoiswohl, J.; Stanitznig, A.; Krametter-Frotscher, R.; Wittek, T.; Waiblinger, S. Mechanical Nociceptive Threshold, Tissue Alterations and Horn Growth in Calves after Injection of Isoeugenol or Clove Oil under the Horn Bud. Animals 2021, 11, 828. [Google Scholar] [CrossRef]
- Muralidharan, A.; Smith, M.T. Pain, analgesia and genetics. J. Pharm. Pharmacol. 2011, 63, 1387–1400. [Google Scholar] [CrossRef]
- Zoltick, A.H.; Mann, S.; Coetzee, J.F. Pain pathophysiology and pharmacology of cattle: How improved understanding can enhance pain prevention, mitigation, and welfare. Front. Pain Res. 2024, 5, 1396992. [Google Scholar] [CrossRef]
- Ede, T.; Lecorps, B.; von Keyserlingk, M.A.G.; Weary, D.M. Symposium review: Scientific assessment of affective states in dairy cattle. J. Dairy Sci. 2019, 102, 10677–10694. [Google Scholar] [CrossRef]
- Mintline, E.; Stewart, M.; Rogers, A.; Cox, N.; Verkerk, G.; Stookey, J.; Webster, J.; Tucker, C. Play behavior as an indicator of animal welfare: Disbudding in dairy calves. Appl. Anim. Behav. Sci. 2013, 144, 22–30. [Google Scholar] [CrossRef]
- Lee, V.E.; Arnott, G.; Turner, S.P. Social behavior in farm animals: Applying fundamental theory to improve animal welfare. Front. Vet. Sci. 2022, 9, 932217. [Google Scholar] [CrossRef]
- Sutherland, M.A.; Larive, J.; Cave, V.; Zobel, G. Behavioural and physiological responses to clove oil injected under the horn bud of calves. Appl. Anim. Behav. Sci. 2018, 204, 29–36. [Google Scholar] [CrossRef]
- Cui, W.; Liu, M.; Gu, T.; Zhao, S.; Yin, G. Multi-dimensional evaluation of pain response in low day-age calves to two types of dehorning. Front. Vet. Sci. 2024, 11, 1406576. [Google Scholar] [CrossRef]
- Winder, C.B.; LeBlanc, S.J.; Haley, D.B.; Lissemore, K.D.; Godkin, M.A.; Duffield, T.F. Clinical trial of local anesthetic protocols for acute pain associated with caustic paste disbudding in dairy calves. J. Dairy Sci. 2017, 100, 6429–6441. [Google Scholar] [CrossRef] [PubMed]
- Martin, M.S.; Kleinhenz, M.D.; Viscardi, A.V.; Curtis, A.K.; Johnson, B.T.; Montgomery, S.R.; Lou, M.E.; Coetzee, J.F. Effect of bupivacaine liposome suspension administered as a cornual nerve block on indicators of pain and distress during and after cautery dehorning in dairy calves. J. Dairy Sci. 2022, 105, 1603–1617. [Google Scholar] [CrossRef]
- Camiloti, T.V.; Fregonesi, J.A.; von Keyserlingk, M.A.G.; Weary, D.M. Short communication: Effects of bedding quality on the lying behavior of dairy calves. J. Dairy Sci. 2012, 95, 3380–3383. [Google Scholar] [CrossRef]
- Kovács, L.; Kézér, F.L.; Bakony, M.; Jurkovich, V.; Szenci, O. Lying down frequency as a discomfort index in heat stressed Holstein bull calves. Sci. Rep. 2018, 8, 15065. [Google Scholar] [CrossRef]
- Duve, L.R.; Jensen, M.B. Social behavior of young dairy calves housed with limited or full social contact with a peer. J. Dairy Sci. 2012, 95, 5936–5945. [Google Scholar] [CrossRef]
- Whalin, L.; Weary, D.M.; von Keyserlingk, M.A.G. Understanding Behavioural Development of Calves in Natural Settings to Inform Calf Management. Animals 2021, 11, 2446. [Google Scholar] [CrossRef]
- Pearson, J.M.; Pajor, E.A.; Campbell, J.R.; Caulkett, N.A.; Levy, M.; Dorin, C.; Windeyer, M.C. Clinical impacts of administering a nonsteroidal anti-inflammatory drug to beef calves after assisted calving on pain and inflammation, passive immunity, health, and growth. J. Anim. Sci. 2019, 97, 1996–2008. [Google Scholar] [CrossRef] [PubMed]
- Rudd, S.; Lomax, S.; White, P.J.; Van der Saag, D. Self-Administration of Meloxicam via Medicated Molasses Lick Blocks May Improve Welfare of Castrated Calves. Animals 2025, 15, 442. [Google Scholar] [CrossRef] [PubMed]
- Sutherland, M.A.; Lowe, G.L.; Huddart, F.J.; Waas, J.R.; Stewart, M. Measurement of dairy calf behavior prior to onset of clinical disease and in response to disbudding using automated calf feeders and accelerometers. J. Dairy Sci. 2018, 101, 8208–8216. [Google Scholar] [CrossRef] [PubMed]
BEHAVIOUR | DEFINITION |
---|---|
Pain-Specific | |
Ear flicking (EF) | Calf rapidly moves one or both ears independent of head movement or external stimuli, e.g., flies. |
Head shaking (HS) | Calf rapidly moves whole head side to side or up and down independent of external stimuli. |
Rearing (R) | Transfer of calf bodyweight to hind legs with both fore legs raised simultaneously. |
Tripping (T) | Rapid alternate lifting of two or more fore or hind legs independent of other motive, e.g., regaining balance. Event noted each time calf starts lifting legs from having all four on the ground. |
Pawing (P) | Calf lifts hind leg and arches neck to scratch or attempt to scratch top of their head with foot. |
General | |
Head rubbing (HR) | Calf rubs head against another object, e.g., pen wall, feeder. |
Tail flicking (TF) | Calf rapidly moves tail from side to side ~2–3 times. |
Foot stamping (FS) | Calf raises hoof and firmly brings it back down. |
Vocalisation (V) | Pronounced vocal noises by calf independent of external stimuli, e.g., vocalisation in response to other calf vocalisation does not count. Signs include constricted sides, extended neck, etc. |
Grooming (G) | Calf licks any part of self for more than 1 s. |
Drinking (D) | Uptake of water from provided trough/container, where licking the surface does not count. |
Eating (E) | Feed uptake from provided container. |
Standing/lying transition (S/LT) | Transition of calf from being upright on all four limbs to lying with lower flank in contact with floor. Vice versa applies. |
Locomotion (L) | General walking activity around pen, including walking around the feeder and trough. |
Standing: normal (NS) | Calf is stationary and upright on all four limbs with relaxed features and head level with topline. |
Standing: abnormal (AS) | Calf independently assumes standing position that deviates from normal calf posture for more than 10 s, e.g., extremely raised head. Note nature of abnormal posture. |
Lying: normal (NL) | Calf is stationary with lower flank in contact with floor. Limbs may or may not be tucked in under or close to flank. |
Lying: abnormal (AL) | Calf independently assumes lying position that deviates from normal calf posture for more than 10 s, e.g., lying on whole side flank with limbs extended. Note the nature of abnormal posture. |
Social | |
Running (Rn) | Any gait faster than a walk, e.g., trot. |
Head–head interaction (HHI) | Heads and/or neck of two calves touch for 1+ s. Includes sniffing and licking. |
Head–body interaction (HBI) | Any part of the calf’s head contacts part of another calf for 1+ s. Includes sniffing and licking. |
Bucking (B) | Calf’s bodyweight shifted from front to back, with both hind hooves lifted off the ground. |
Aggression (A) | Interaction with other calves that involves pushing/shoving and attempts to ram another calf with their head. |
Isolation (I) | Calf avoids main group independent of external factors. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scerri, T.; Lomax, S.; Thomson, P.; Kimble, B.; White, P.; Govendir, M.; Clark, C.; Van der Saag, D. Medicated Meloxicam Pellets Reduce Some Indicators of Pain in Disbudded Dairy Calves. Animals 2025, 15, 1641. https://doi.org/10.3390/ani15111641
Scerri T, Lomax S, Thomson P, Kimble B, White P, Govendir M, Clark C, Van der Saag D. Medicated Meloxicam Pellets Reduce Some Indicators of Pain in Disbudded Dairy Calves. Animals. 2025; 15(11):1641. https://doi.org/10.3390/ani15111641
Chicago/Turabian StyleScerri, Tiarna, Sabrina Lomax, Peter Thomson, Benjamin Kimble, Peter White, Merran Govendir, Cameron Clark, and Dominique Van der Saag. 2025. "Medicated Meloxicam Pellets Reduce Some Indicators of Pain in Disbudded Dairy Calves" Animals 15, no. 11: 1641. https://doi.org/10.3390/ani15111641
APA StyleScerri, T., Lomax, S., Thomson, P., Kimble, B., White, P., Govendir, M., Clark, C., & Van der Saag, D. (2025). Medicated Meloxicam Pellets Reduce Some Indicators of Pain in Disbudded Dairy Calves. Animals, 15(11), 1641. https://doi.org/10.3390/ani15111641