Exploration of Toxins from a Marine Annelid: An Analysis of Phyllotoxins and Accompanying Bioactives
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Transcriptome Analysis
2.2. Selection of Toxin Transcripts
2.3. RNA Collection
2.3.1. Animal Collection
2.3.2. RNA Extraction
2.4. Sequence Isolation and Expression Analysis
Individual-Gene Phylogenetic Analysis
2.5. Sequences Analysis for Biotechnology Potential
3. Results
3.1. Identification of Putative Toxins
3.2. Human Homology Matching
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Casewell, N.R.; Wüster, W.; Vonk, F.J.; Harrison, R.A.; Fry, B.G. Complex cocktails: The evolutionary novelty of venoms. Trends Ecol. Evol. 2013, 28, 219–229. [Google Scholar] [CrossRef] [PubMed]
- Rotter, A.; Barbier, M.; Bertoni, F.; Bones, A.M.; Cancela, M.L.; Carlsson, J.; Carvalho, M.F.; Cegłowska, M.; Chirivella-Martorell, J.; Conk Dalay, M.; et al. The Essentials of Marine Biotechnology. Front. Mar. Sci. 2021, 8, 629629. [Google Scholar] [CrossRef]
- McMahon, K.D.; Martin, H.G.; Hugenholtz, P. Integrating ecology into biotechnology. Curr. Opin. Biotechnol. 2007, 18, 287–292. [Google Scholar] [CrossRef] [PubMed]
- Sunagar, K.; Morgenstern, D.; Reitzel, A.M.; Moran, Y. Ecological venomics: How genomics, transcriptomics and proteomics can shed new light on the ecology and evolution of venom. J. Proteom. 2016, 135, 62–72. [Google Scholar] [CrossRef] [PubMed]
- Giordano, D.; Costantini, M.; Coppola, D.; Lauritano, C.; Núñez Pons, L.; Ruocco, N.; di Prisco, G.; Ianora, A.; Verde, C. Biotechnological applications of bioactive peptides from marine sources. Adv. Microb. Physiol. 2018, 73, 171–220. [Google Scholar] [CrossRef]
- Martins, A.; Vieira, H.; Gaspar, H.; Santos, S. Marketed marine natural products in the pharmaceutical and cosmeceutical industries: Tips for success. Mar. Drugs 2014, 12, 1066–1101. [Google Scholar] [CrossRef]
- Rodrigo, A.P.; Costa, P.M. The hidden biotechnological potential of marine invertebrates: The Polychaeta case study. Environ. Res. 2019, 173, 270–280. [Google Scholar] [CrossRef]
- Mayer, A.M.S.; Rodríguez, A.D.; Taglialatela-Scafati, O.; Fusetani, N. Marine pharmacology in 2009–2011: Marine compounds with antibacterial, antidiabetic, antifungal, anti-inflammatory, antiprotozoal, antituberculosis, and antiviral activities; affecting the immune and nervous systems, and other miscellaneous mechanisms of action. Mar. Drugs 2013, 11, 2510–2573. [Google Scholar] [CrossRef]
- Pennington, M.W.; Czerwinski, A.; Norton, R.S. Peptide therapeutics from venom: Current status and potential. Bioorganic Med. Chem. 2018, 26, 2738–2758. [Google Scholar] [CrossRef]
- Fusetani, N.; Kem, W. Marine Toxins as Research Tools; Springer: Berlin/Heidelberg, Germany, 2009; ISBN 9783540878926. [Google Scholar]
- Castellano, I.; Seebeck, F.P. On ovothiol biosynthesis and biological roles: From life in the ocean to therapeutic potential. Nat. Prod. Rep. 2018, 35, 1241–1250. [Google Scholar] [CrossRef]
- Batool, F.; Delpy, E.; Zal, F.; Leize-Zal, E.; Huck, O. Therapeutic potential of hemoglobin derived from the marine worm Arenicola marina (M101): A literature review of a breakthrough innovation. Mar. Drugs 2021, 19, 376. [Google Scholar] [CrossRef]
- Richter, S.; Helm, C.; Meunier, F.A.; Hering, L.; Campbell, L.I.; Drukewitz, S.H.; Undheim, E.A.B.; Jenner, R.A.; Schiavo, G.; Bleidorn, C. Comparative analyses of glycerotoxin expression unveil a novel structural organization of the bloodworm venom system. BMC Evol. Biol. 2017, 17, 64. [Google Scholar] [CrossRef]
- Moutinho Cabral, I.; Costa, P.M.; Madeira, C.; Grosso, A.R. A drug discovery approach based on comparative transcriptomics between two toxin-secreting marine annelids: Glycera alba and Hediste diversicolor. Mol. Omics 2022, 18, 731–744. [Google Scholar] [CrossRef]
- Bonse, S.; Schmidt, H.; Eibye-jacobsen, D.; Westheide, W. Eulalia viridis (Polychaeta: Phyllodocidae) is a complex of two species in northern Europe: Results from biochemical and morphological analyses. Cah. Biol. Mar. 1996, 37, 33–48. [Google Scholar]
- Teixeira, M.A.L.; Vieira, P.E.; Fenwick, D.; Langeneck, J.; Pleijel, F.; Sampieri, B.R.; Hernández, J.C.; Ravara, A.; Costa, F.O.; Nygren, A. Revealing the diversity of the green Eulalia (Annelida, Phyllodocidae) species complex along the European coast, with description of three new species. Org. Divers. Evol. 2023, 23, 477–503. [Google Scholar] [CrossRef]
- Emson, R.H. The feeding and consequent role of Eulalia viridis (O. F. Muller) (Polychaeta) in intertidal communities. J. Mar. Biol. Assoc. UK 1977, 57, 93–96. [Google Scholar] [CrossRef]
- Morton, B. Predator-prey-scavenging interactions between Nucella lapillus, Carcinus maenas and Eulalia viridis all exploiting Mytilus galloprovincialis on a rocky shore recovering from tributyl-tin (TBT) pollution. J. Nat. Hist. 2011, 45, 2397–2417. [Google Scholar] [CrossRef]
- Michel, C. Histologie, histochimie et innervation de la trompe d’Eulalia viridis (Muller), (Polychètes Errantes Phyllodocidae). Bull. Lab. Mar. Dinard 1964, 49–50, 62–95. [Google Scholar]
- Tzetlin, A.; Purschke, G. Pharynx and intestine. Hydrobiologia 2005, 535, 199–225. [Google Scholar]
- Rodrigo, A.P.; Grosso, A.R.; Baptista, P.V.; Fernandes, A.R.; Costa, P.M. A transcriptomic approach to the recruitment of venom proteins in a marine annelid. Toxins 2021, 13, 97. [Google Scholar] [CrossRef]
- Cuevas, N.; Martins, M.; Rodrigo, A.P.; Martins, C.; Costa, P.M. Explorations on the ecological role of toxin secretion and delivery in jawless predatory Polychaeta. Sci. Rep. 2018, 8, 7635. [Google Scholar] [CrossRef]
- Finn, R.D.; Bateman, A.; Clements, J.; Coggill, P.; Eberhardt, R.Y.; Eddy, S.R.; Heger, A.; Hetherington, K.; Holm, L.; Mistry, J.; et al. Pfam: The protein families database. Nucleic Acids Res. 2014, 42, 138–141. [Google Scholar] [CrossRef]
- Eddy, S.R. A new generation of homology search tools based on probabilistic inference. Genome Inform. 2009, 23, 205–211. [Google Scholar] [CrossRef]
- Camacho, C.; Coulouris, G.; Avagyan, V.; Ma, N.; Papadopoulos, J.; Bealer, K.; Madden, T.L. BLAST+: Architecture and applications. BMC Bioinform. 2009, 10, 421. [Google Scholar] [CrossRef]
- Ye, J.; Coulouris, G.; Zaretskaya, I.; Cutcutache, I.; Rozen, S.; Madden, T.L. Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction. BMC Bioinform. 2012, 13, 134. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef] [PubMed]
- Tamura, K.; Nei, M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol. Biol. Evol. 1993, 10, 512–526. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef] [PubMed]
- Luck, K.; Kim, D.-K.; Lambourne, L.; Spirohn, K.; Begg, B.E.; Bian, W.; Brignall, R.; Cafarelli, T. A reference map of the human binary protein interactome. Nature 2020, 580, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Szklarczyk, D.; Kirsch, R.; Koutrouli, M.; Nastou, K.; Mehryary, F.; Hachilif, R.; Gable, A.L.; Fang, T.; Doncheva, N.T.; Pyysalo, S.; et al. The STRING database in 2023: Protein-protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res. 2023, 51, D638–D646. [Google Scholar] [CrossRef]
- Szklarczyk, D.; Gable, A.L.; Lyon, D.; Junge, A.; Wyder, S.; Huerta-Cepas, J.; Simonovic, M.; Doncheva, N.T.; Morris, J.H.; Bork, P.; et al. STRING v11: Protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019, 47, D607–D613. [Google Scholar] [CrossRef]
- Rodrigo, A.P.; Martins, C.; Costa, M.H.; Alves de Matos, A.P.; Costa, P.M. A morphoanatomical approach to the adaptive features of the epidermis and proboscis of a marine Polychaeta: Eulalia viridis (Phyllodocida: Phyllodocidae). J. Anat. 2018, 233, 567–579. [Google Scholar] [CrossRef] [PubMed]
- Marino-Puertas, L.; Goulas, T.; Gomis-Rüth, F.X. Matrix metalloproteinases outside vertebrates. Biochim. Biophys. Acta Mol. Cell Res. 2017, 1864, 2026–2035. [Google Scholar] [CrossRef]
- Kim, H.J.; Shim, K.H.; Yeon, S.J.; Shin, H.S. A novel thrombolytic and anticoagulant serine protease from Polychaeta, Diopatra sugokai. J. Microbiol. Biotechnol. 2018, 28, 275–283. [Google Scholar] [CrossRef]
- Kemparaju, K.; Girish, K.S. Snake venom hyaluronidase: A therapeutic target. Cell Biochem. Funct. 2006, 24, 7–12. [Google Scholar] [CrossRef]
- Tadokoro, T.; Modahl, C.M.; Maenaka, K.; Aoki-Shioi, N. Cysteine-Rich Secretory Proteins (CRISPs) from Venomous Snakes: An Overview of the Functional Diversity in a Large and Underappreciated Superfamily. Toxins 2020, 12, 175. [Google Scholar] [CrossRef] [PubMed]
- Möller, C.; Vanderweit, N.; Bubis, J.; Marí, F. Comparative analysis of proteases in the injected and dissected venom of cone snail species. Toxicon 2013, 65, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Milne, T.J.; Abbenante, G.; Tyndall, J.D.A.; Halliday, J.; Lewis, R.J. Isolation and characterization of a cone snail protease with homology to CRISP proteins of the pathogenesis-related protein superfamily. J. Biol. Chem. 2003, 278, 31105–31110. [Google Scholar] [CrossRef]
- Modica, M.V.; Lombardo, F.; Franchini, P.; Oliverio, M. The venomous cocktail of the vampire snail Colubraria reticulata (Mollusca, Gastropoda). BMC Genom. 2015, 16, 441. [Google Scholar] [CrossRef]
- Whitelaw, B.L.; Strugnell, J.M.; Faou, P.; Da Fonseca, R.R.; Hall, N.E.; Norman, M.; Finn, J.; Cooke, I.R. Combined transcriptomic and proteomic analysis of the posterior salivary gland from the southern blue-ringed octopus and the southern sand octopus. J. Proteome Res. 2016, 15, 3284–3297. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, S.N.; Sulzyk, V.; Weigel Muñoz, M.; Cuasnicu, P.S. Cysteine-Rich Secretory Proteins (CRISP) are key players in mammalian fertilization and fertility. Front. Cell Dev. Biol. 2021, 9, 800351. [Google Scholar] [CrossRef] [PubMed]
- Udby, L.; Calafat, J.; Sørensen, O.E.; Borregaard, N.; Kjeldsen, L. Identification of human cysteine-rich secretory protein 3 (CRISP-3) as a matrix protein in a subset of peroxidase-negative granules of neutrophils and in the granules of eosinophils. J. Leukoc. Biol. 2002, 72, 462–469. [Google Scholar] [CrossRef]
- Silva de França, F.; Tambourgi, D.V. Hyaluronan breakdown by snake venom hyaluronidases: From toxins delivery to immunopathology. Front. Immunol. 2023, 14, 1125899. [Google Scholar] [CrossRef]
- Fry, B.G.; Roelants, K.; Champagne, D.E.; Scheib, H.; Tyndall, J.D.A.; King, G.F.; Nevalainen, T.J.; Norman, J.A.; Lewis, R.J.; Norton, R.S.; et al. The toxicogenomic multiverse: Convergent recruitment of proteins into animal venoms. Annu. Rev. Genom. Hum. Genet. 2009, 10, 483–511. [Google Scholar] [CrossRef]
- Bookbinder, L.H.; Hofer, A.; Haller, M.F.; Zepeda, M.L.; Keller, G.A.; Lim, J.E.; Edgington, T.S.; Shepard, H.M.; Patton, J.S.; Frost, G.I. A recombinant human enzyme for enhanced interstitial transport of therapeutics. J. Control. Release 2006, 114, 230–241. [Google Scholar] [CrossRef]
- Csoka, A.B.; Frost, G.I.; Stern, R. The six hyaluronidase-like genes in the human and mouse genomes. Matrix Biol. 2001, 20, 499–508. [Google Scholar] [CrossRef]
- Kaneiwa, T.; Mizumoto, S.; Sugahara, K.; Yamada, S. Identification of human hyaluronidase-4 as a novel chondroitin sulfate hydrolase that preferentially cleaves the galactosaminidic linkage in the trisulfated tetrasaccharide sequence. Glycobiology 2010, 20, 300–309. [Google Scholar] [CrossRef]
- Maciej-Hulme, M.L. New Insights into Human Hyaluronidase 4/Chondroitin Sulphate Hydrolase. Front. Cell Dev. Biol. 2021, 9, 767924. [Google Scholar] [CrossRef] [PubMed]
- Bordon, K.C.F.; Wiezel, G.A.; Amorim, F.G.; Arantes, E.C. Arthropod venom Hyaluronidases: Biochemical properties and potential applications in medicine and biotechnology. J. Venom. Anim. Toxins Incl. Trop. Dis. 2015, 21, 43. [Google Scholar] [CrossRef] [PubMed]
- Padavattan, S.; Schirmer, T.; Schmidt, M.; Akdis, C.; Valenta, R.; Mittermann, I.; Soldatova, L.; Slater, J.; Mueller, U.; Markovic-Housley, Z. Identification of a B-cell epitope of hyaluronidase, a major bee venom allergen, from its crystal structure in complex with a specific fab. J. Mol. Biol. 2007, 368, 742–752. [Google Scholar] [CrossRef]
- Xie, Z.; Li, Z.; Shao, Y.; Liao, C. Discovery and development of plasma kallikrein inhibitors for multiple diseases. Eur. J. Med. Chem. 2020, 190, 112137. [Google Scholar] [CrossRef]
- Bryant, J.W.; Shariat-Madar, Z. Human plasma kallikrein-kinin system: Physiological and biochemical parameters. Cardiovasc. Hematol. Agents Med. Chem. 2009, 7, 234–250. [Google Scholar] [CrossRef] [PubMed]
- Ottaiano, T.F.; Andrade, S.S.; De Oliveira, C.; Silva, M.C.C.; Buri, M.V.; Juliano, M.A.; Gir, M.J.B.C.; Schmaier, A.H.; Wlodawer, A.; Maffei, F.H.A.; et al. Plasma kallikrein enhances platelet aggregation response by subthreshold doses of ADP. Biochimie 2017, 135, 72–81. [Google Scholar] [CrossRef] [PubMed]
- Kolte, D.; Shariat-Madar, Z. Plasma Kallikrein Inhibitors in Cardiovascular Disease. Cardiol. Rev. 2016, 24, 99–109. [Google Scholar] [CrossRef] [PubMed]
- Sanchez, E.F.; Gabriel, L.M.; Gontijo, S.; Gremski, L.H.; Veiga, S.S.; Evangelista, K.S.; Eble, J.A.; Richardson, M. Structural and functional characterization of a P-III metalloproteinase, leucurolysin-B, from Bothrops leucurus venom. Arch. Biochem. Biophys. 2007, 468, 193–204. [Google Scholar] [CrossRef]
- Sterchi, E.E.; Stöcker, W.; Bond, J.S. Meprins, membrane-bound and secreted astacin metalloproteinases. Mol. Asp. Med. 2008, 29, 309–328. [Google Scholar] [CrossRef] [PubMed]
- Scott, I.C.; Blitz, I.L.; Pappano, W.N.; Imamura, Y.; Clark, T.G.; Steiglitz, B.M.; Thomas, C.L.; Maas, S.A.; Takahara, K.; Cho, K.W.Y.; et al. Mammalian BMP-1/Tolloid-related metalloproteinases, including novel family member mammalian Tolloid-like 2, have differential enzymatic activities and distributions of expression relevant to patterning and skeletogenesis. Dev. Biol. 1999, 213, 283–300. [Google Scholar] [CrossRef] [PubMed]
- Rivera, S.; Khrestchatisky, M.; Kaczmarek, L.; Rosenberg, G.A.; Jaworski, D.M. Metzincin proteases and their inhibitors: Foes or friends in nervous system physiology? J. Neurosci. 2010, 30, 15337–15357. [Google Scholar] [CrossRef]
- Sosa, E.; De Robertis, E.M. The developmental gene Chordin is amplified and expressed in human cancers. Mol. Cell. Oncol. 2023, 10, 2218147. [Google Scholar] [CrossRef]
- Deng, B.; Chen, X.; Xu, L.; Zheng, L.; Zhu, X.; Shi, J.; Yang, L.; Wang, D.; Jiang, D. Chordin-like 1 is a novel prognostic biomarker and correlative with immune cell infiltration in lung adenocarcinoma. Aging 2022, 14, 389–409. [Google Scholar] [CrossRef]
- Wang, L.; Xu, W.; Mei, Y.; Wang, X.; Liu, W.; Zhu, Z.; Ni, Z. CHRDL2 promotes cell proliferation by activating the YAP/TAZ signaling pathway in gastric cancer. Free Radic. Biol. Med. 2022, 193, 158–170. [Google Scholar] [CrossRef]
- Ruiz-ortega, M.; Bustos, C.; Herna, M.A.; Lorenzo, O. Angiotensin II Participates in Mononuclear Cell Recruitment in Experimental Immune Complex Nephritis Through Nuclear Factor-κB Activation and Monocyte Chemoattractant Protein-1 Synthesis. J. Immunol. 1998, 161, 430–439. [Google Scholar] [CrossRef]
- Gräfe, M.; Auch-schwelk, W.; Zakrzewicz, A.; Regitz-zagrosek, V.; Graf, K.; Loebe, M.; Gaehtgens, P.; Fleck, E. Angiotensin II–Induced Leukocyte Adhesion on Human Coronary Endothelial Cells is Mediated by E-Selectin. Circ. Res. 1997, 81, 804–811. [Google Scholar] [CrossRef]
- Cao, D.; Saito, S.; Veiras, L.C.; Okwan-duodu, D.; Bernstein, E.A.; Giani, J.F.; Bernstein, K.E.; Khan, Z. Role of angiotensin-converting enzyme in myeloid cell immune responses. Cell. Mol. Biol. Lett. 2020, 25, 31. [Google Scholar] [CrossRef] [PubMed]
- Goyal, A.; Cusick, A.S.; Thielemier, B. ACE Inhibitors; StatPearls: Treasure Island, FL, USA, 2023; ISBN 9781437717204. [Google Scholar]
- Roux, K.J.; Crisp, M.L.; Liu, Q.; Kim, D.; Kozlov, S.; Stewart, C.L.; Burke, B. Nesprin 4 is an outer nuclear membrane protein that can induce kinesin-mediated cell polarization. Proc. Natl. Acad. Sci. USA 2009, 106, 2194–2199. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.-C.; Zha, X.-H.; Faralli, H.; Yin, H.; Louis-Jeune, C.; Perdiguero, E.; Pranckeviciene, E.; Muñoz-Cànoves, P.; Rudnicki, M.A.; Brand, M.; et al. Comparative expression profiling identifies differential roles for Myogenin and p38α MAPK signaling in myogenesis. J. Mol. Cell Biol. 2012, 4, 386–397. [Google Scholar] [CrossRef] [PubMed]
- Eckman, E.A.; Watson, M.; Marlow, L.; Sambamurti, K.; Eckman, C.B. Alzheimer’s disease β-amyloid peptide is increased in mice deficient in endothelin-converting enzyme. J. Biol. Chem. 2003, 278, 2081–2084. [Google Scholar] [CrossRef] [PubMed]
- Fry, B.G.; Koludarov, I.; Jackson, T.N.W.; Holford, M.; Terrat, Y.; Casewell, N.R.; Undheim, E.A.B.; Vetterb, I.; Alia, S.A.; Low, D.H.W.; et al. Seeing the Woods for the Trees: Understanding Venom Evolution as a Guide for Biodiscovery; In Venoms to Drugs: Venom as a Source for the Development of Human Terapeutics, 1–36; Royal Society of Chemistry: Washington, DC, USA, 2015; Volume 2015. [Google Scholar] [CrossRef]
- von Reumont, B.M.; Campbell, L.I.; Richter, S.; Hering, L.; Sykes, D.; Hetmank, J.; Jenner, R.A.; Bleidorn, C. A polychaete’s powerful punch: Venom gland transcriptomics of Glycera reveals a complex cocktail of toxin homologs. Genome Biol. Evol. 2014, 6, 2406–2423. [Google Scholar] [CrossRef]
- Kamiguti, A.S. Platelets as targets of snake venom metalloproteinases. Toxicon 2005, 45, 1041–1049. [Google Scholar] [CrossRef] [PubMed]
- Somerville, R.P.T.; Longpre, J.M.; Jungers, K.A.; Engle, J.M.; Ross, M.; Evanko, S.; Wight, T.N.; Leduc, R.; Aptell, S.S. Characterization of ADAMTS-9 and ADAMTS-20 as a distinct ADAMTS subfamily related to Caenorhabditis elegans GON-1. J. Biol. Chem. 2003, 278, 9503–9513. [Google Scholar] [CrossRef] [PubMed]
- Huxley-Jones, J.; Apte, S.S.; Robertson, D.L.; Boot-Handford, R.P. The characterisation of six ADAMTS proteases in the basal chordate Ciona intestinalis provides new insights into the vertebrate ADAMTS family. Int. J. Biochem. Cell Biol. 2005, 37, 1838–1845. [Google Scholar] [CrossRef] [PubMed]
- Tsai, H.M.; Sussman, I.I.; Nagel, R.L. Shear stress enhances the proteolysis of von Willebrand factor in normal plasma. Blood 1994, 83, 2171–2179. [Google Scholar] [CrossRef] [PubMed]
- Fujikawa, K.; Suzuki, H.; McMullen, B.; Chung, D. Purification of human von Willebrand factor-cleaving protease and its identification as a new member of the metalloproteinase family. Blood 2001, 98, 1662–1666. [Google Scholar] [CrossRef] [PubMed]
- Levy, G.G.; Nichols, W.C.; Lian, E.C.; Foroud, T.; McClintick, J.N.; McGee, B.M.; Yang, A.Y.; Siemieniak, D.R.; Stark, K.R.; Gruppo, R.; et al. Mutations in a member of the ADAMTS gene family cause thrombotic thrombocytopenic purpura. Nature 2001, 413, 488–494. [Google Scholar] [CrossRef]
- Zheng, X.L. ADAMTS13 and von Willebrand Factor in Thrombotic Thrombocytopenic Purpura. Annu. Rev. Med. 2015, 66, 211–225. [Google Scholar] [CrossRef]
- Tsai, H.-M.; Lian, E.C.-Y. Antibodies to Von Willebrand factor–cleaving protease in acute thrombotic thrombocytopenic purpura. N. Engl. J. Med. 1998, 339, 1585–1594. [Google Scholar] [CrossRef]
- Mead, T.J.; Apte, S.S. ADAMTS proteins in human disorders. Matrix Biol. 2018, 71–72, 225–239. [Google Scholar] [CrossRef]
Toxin | Swiss-Prot Annotated Entries–Best Annotated Matches | ||||||
---|---|---|---|---|---|---|---|
Protein | Gene | Species | Accession | e-Value | % ID | Subcellular Location_Uniprot Annotation | |
Crisp | Cysteine-rich venom protein TX31 | NA | Conus textile | Q7YT83 | 4 × 10−26 | 32.28 | Secreted |
Cysteine-rich venom protein Mr30 | NA | Conus marmoreus | A1BQQ5 | 9 × 10−26 | 33.06 | Secreted | |
Cysteine-rich secretory protein 3 | CRISP3 | Homo sapiens | P54108 | 8 × 10−21 | 40.88 | Secreted | |
Hyal | Hyaluronidase | NA | Crotalus adamanteus | J3S820 | 2 × 10−53 | 29.40 | Secreted |
Hyaluronidase-2 | NA | Bitis arietans | A3QVP0 | 1 × 10−52 | 28.31 | Secreted | |
Hyaluronidase-1 | NA | Bitis arietans | A3QVN9 | 2 × 10−52 | 28.31 | Secreted | |
SePr | Plasma kallikrein | KLKB1 | Bos taurus | Q2KJ63 | 7 × 10−51 | 39.93 | Secreted |
Plasma kallikrein | KLKB1 | Homo sapiens | P03952 | 2 × 10−47 | 38.78 | Secreted | |
Plasma kallikrein | Klkb1 | Mus musculus | P26262 | 3 × 10−46 | 36.74 | Secreted | |
Pep M12A | Zinc MP nas-13 | nas-13 | Caenorhabditis elegans | Q20191 | 9 × 10−42 | 27.90 | Secreted |
Zinc MP nas-15 | nas-15 | Caenorhabditis elegans | P55115 | 2 × 10−29 | 30.35 | Secreted | |
Blastula protease 10 | BP10 | Paracentrotus lividus | P42674 | 5 × 10−39 | 37.66 | Cytoplasm; perinuclear region; cell cortex; secreted; ext space | |
Pep M13 | Endothelin-converting enzyme 2 | Ece2 | Mus musculus | B2RQR8 | 6 × 10−123 | 32.44 | Golgi apparatus mb; cytoplasmic vesicle; secretory vesicle mb |
Neprilysin-1 | nep-1 | Caenorhabditis elegans | Q18673 | 1 × 10−122 | 33.48 | Mb | |
Endothelin-converting enzyme 2 | ECE2 | Homo sapiens | P0DPD6 | 1 × 10−121 | 32.59 | Golgi apparatus mb; cytoplasmic vesicle; secretory vesicle mb | |
Pep M12B | Zinc MP/D | NA | Bothrops jararaca | Q98SP2 | 7 × 10−12 | 23.49 | Secreted |
ADAMTS 13 | ADAMTS13 | Homo sapiens | Q76LX8 | 2 × 10−10 | 32.89 | Secreted | |
ADAMTS 20 | ADAMTS20 | Homo sapiens | P59510 | 2 × 10−09 | 29.05 | Secreted; ext space; ext matrix |
Toxin | Swiss-Prot Annotated Entries-Homo sapiens | |||||
---|---|---|---|---|---|---|
Protein | Gene | Accession | e-Value | % ID | Subcellular Location_Uniprot Annotation | |
Crisp | Cysteine-rich secretory protein 3 | CRISP3 * | P54108 | 5 × 10−22 | 40.88 | Secreted |
Cysteine-rich secretory protein 2 | CRISP2 | P16562 | 8 × 10−21 | 37.09 | Secreted | |
GLIPR1-like protein 1 | GLIPR1L1 | Q6UWM5 | 1 × 10−15 | 32.39 | Cytoplasmic vesicle, secretory vesicle, acrosome; cell mb | |
Hyal | Hyaluronidase-2 | HYAL2 * | Q12891 | 2 × 10−47 | 27.09 | Cell mb: Lipid-anchor, GPI-anchor |
Hyaluronidase-4 | HYAL4 | Q2M3T9 | 2 × 10−46 | 26.54 | Mb: Multi-pass mb protein | |
Hyaluronidase-1 | HYAL1 | Q12794 | 1 × 10−44 | 26.34 | Secreted, lysosome | |
SePr | Plasma kallikrein | KLKB1 | P03952 | 1 × 10−48 | 38.78 | Secreted |
Transmembrane protease serine 3 | TMPRSS3 | P57727 | 9 × 10−46 | 37.59 | Endoplasmic reticulum mb | |
Prostasin | PRSS8 | Q16651 | 8 × 10−44 | 34.69 | Cell membrane | |
Pep M12A | Tolloid-like protein 1 | TLL1 | O43897 | 3 × 10−33 | 28.84 | Secreted |
Tolloid-like protein 2 | TLL2 | Q9Y6L7 | 8 × 10−31 | 29.67 | Secreted | |
Bone morphogenetic protein 1 | BMP1 | P13497 | 1 × 10−30 | 33.00 | Golgi apparatus; secreted, ext space, ext matrix; secreted | |
Pep M13 | Endothelin-converting enzyme 2 | ECE2 * | P0DPD6 | 7 × 10−123 | 32.59 | Golgi apparatus mb, cytoplasmic vesicle, secretory vesicle mb |
EEF1AKMT4-ECE2 transcript protein | EEF1AKMT4-ECE2 | P0DPD8 | 4 × 10−122 | 32.59 | Golgi apparatus mb, cytoplasmic vesicle, secretory vesicle mb | |
Neprilysin | MME | P08473 | 2 × 10−115 | 30.76 | Cell mb | |
Pep M12B | ADAMTS 13 | ADAMTS13 * | Q76LX8 | 1 × 10−11 | 32.89 | Secreted |
ADAMTS 20 | ADAMTS20 | P59510 | 1 × 10−10 | 29.05 | Secreted, ext space, extmatrix | |
ADAMTS 1 | ADAMTS1 | Q9UHI8 | 2 × 10−09 | 27.01 | Secreted, ext space, ext matrix |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodrigo, A.P.; Moutinho Cabral, I.; Alexandre, A.; Costa, P.M. Exploration of Toxins from a Marine Annelid: An Analysis of Phyllotoxins and Accompanying Bioactives. Animals 2024, 14, 635. https://doi.org/10.3390/ani14040635
Rodrigo AP, Moutinho Cabral I, Alexandre A, Costa PM. Exploration of Toxins from a Marine Annelid: An Analysis of Phyllotoxins and Accompanying Bioactives. Animals. 2024; 14(4):635. https://doi.org/10.3390/ani14040635
Chicago/Turabian StyleRodrigo, Ana P., Inês Moutinho Cabral, António Alexandre, and Pedro M. Costa. 2024. "Exploration of Toxins from a Marine Annelid: An Analysis of Phyllotoxins and Accompanying Bioactives" Animals 14, no. 4: 635. https://doi.org/10.3390/ani14040635