Salmonella and Salmonellosis: An Update on Public Health Implications and Control Strategies
Abstract
:Simple Summary
Abstract
1. Introduction
2. Salmonella and Its Relationship with Foodborne Outbreaks: Update in the EU
2.1. EFSA Fact Sheet
2.2. Foodborne Outbreak Dashboard in the EU
2.3. Salmonella Occurrence in the EU
3. An Update on Environmental Stresses Affecting Salmonella in Foods
3.1. Acid Resistance of Salmonella in Foods
3.2. Survival of Salmonella in Low-Water-Activity Foods
3.3. The Biofilm Formation of Salmonella in Food-Processing Environments
3.4. Predictive Microbiology Models for Estimation of the Microbial Behavior of Salmonella in Foods
4. Antimicrobial Resistance
4.1. Salmonella and Antimicrobial Resistance: Preface
4.2. Key Findings
5. Control Strategies in Animal Health
5.1. Feeding Strategies
5.2. Non-Feeding Strategies
5.2.1. Bacteriophages or Phages
5.2.2. Vaccines
5.2.3. Biosecurity
Salmonella Cleaning and Disinfection Protocols
Other Aspects Related to Biosecurity
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization (WHO). Critically Important Antimicrobials for Human Medicine, 6th Revision; World Health Organization: Geneva, Switzerland, 2018. [Google Scholar]
- Majowicz, S.E.; Musto, J.; Scallan, E.; Angulo, F.J.; Kirk, M.; O’Brien, S.J.; Jones, T.F.; Fazil, A.; Hoekstra, R.M. The global burden of nontyphoidal Salmonella gastroenteritis. Clin. Infect. Dis. 2010, 50, 882–889. [Google Scholar] [CrossRef]
- Astorga, R.J. Sanidad Animal y Salud Pública: El Paradigma de Salmonella; Editorial Amazing Books: Zaragoza, Spain, 2020; pp. 1–282. ISBN 978-84-17403-70-6. [Google Scholar]
- EFSA (European Food Safety Authority); ECDC (European Centre for Disease Prevention and Control). The European Union One Health 2021 Zoonoses Report. EFSA J. 2022, 20, 7666. [Google Scholar] [CrossRef]
- Gosling, R.J.; Mueller-Doblies, D.; Martelli, F.; Nunez-García, J.; Kell, N.; Rabie, A.; Wales, A.D.; Davies, R.H. Observations on the distribution and persistence of monophasic Salmonella Typhimurium on infected pig and cattle farms. Vet. Microbiol. 2018, 227, 90–96. [Google Scholar] [CrossRef]
- Meneguzzi, M.; Pissetti, C.; Rebelatto, R.; Trachsel, J.; Kuchiishi, S.S.; Reis, A.T.; Guedes, R.M.C.; Leão, J.A.; Reichen, C.; Kich, J.D. Re-Emergence of Salmonellosis in Hog Farms: Outbreak and Bacteriological Characterization. Microorganisms 2021, 9, 947. [Google Scholar] [CrossRef]
- Bonifait, L.; Thépault, A.; Baugé, L.; Rouxel, S.; Le Gall, F.; Chemaly, M. Occurrence of Salmonella in the Cattle Production in France. Microorganisms 2021, 9, 872. [Google Scholar] [CrossRef]
- Wei, L.; Yang, C.; Shao, W.; Sun, T.; Wang, J.; Zhou, Z.; Chen, C.; Zhu, A.; Pan, Z. Prevalence, and drug resistance of Salmonella in dogs and cats in Xuzhou, China. J. Vet. Res. 2020, 64, 263. [Google Scholar] [CrossRef]
- Rosario, I.; Calcines, M.I.; Rodríguez-Ponce, E.; Déniz, S.; Real, F.; Vega, S.; Marín, C.; Padilla, D.; Martín, J.L.; Acosta-Hernández, B. Salmonella enterica subsp. enterica serotypes isolated for the first time in feral cats: The impact on public health. Comp. Immunol. Microbiol. Infect. Dis. 2022, 84, 101792. [Google Scholar] [CrossRef]
- Zajac, M.; Skarzynska, M.; Lalak, A.; Kwit, R.; Smialowska-Weglinska, A.; Pasim, P.; Szulowski, K.; Wasyl, D. Salmonella in Captive Reptiles and Their Environment—Can We Tame the Dragon? Microorganisms 2021, 9, 1012. [Google Scholar] [CrossRef]
- Marin, C.; Martín-Maldonado, B.; Cerdà-Cuéllar, M.; Sevilla-Navarro, S.; Lorenzo-Rebenaque, L.; Montoro-Dasi, L.; Manzanares, A.; Ayats, T.; Mencía-Gutiérrez, A.; Jordá, J.; et al. Antimicrobial Resistant Salmonella in Chelonians: Assessing Its Potential Risk in Zoological Institutions in Spain. Vet. Sci. 2022, 9, 264. [Google Scholar] [CrossRef]
- Santana-Hernández, K.M.; Rodríguez-Ponce, E.; Rosario Medina, I.; Acosta-Hernández, B.; Priestnall, S.L.; Vega, S.; Marin, C.; Cerdà-Cuéllar, M.; Marco-Fuertes, A.; Ayats, T.; et al. One Health Approach: Invasive California Kingsnake (Lampropeltis californiae) as an Important Source of Antimicrobial Drug-Resistant Salmonella Clones on Gran Canary Island. Animals 2023, 13, 1790. [Google Scholar] [CrossRef]
- Graziani, C.; Losasso, C.; Luzzi, I.; Ricci, A.; Scavia, G.; Pasquali, P. Salmonella. In Foodborne Diseases, 3rd ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2017; pp. 133–169. [Google Scholar]
- Hernández, M.; Gómez-Laguna, J.; Luque, I.; Herrera-León, S.; Maldonado, A.; Reguillo, L.; Astorga, R.J. Salmonella prevalence and characterization in a free-range pig processing plant: Tracking in trucks, lairage, slaughter line and quartering. Int. J. Food Microbiol. 2013, 162, 48–54. [Google Scholar] [CrossRef] [PubMed]
- Valdezate, S.; Astorga, R.; Herrera-León, S.; Usera, M.A.; Huerta, B.; Echeita, A. Epidemiological tracing of Salmonella enterica serotype Abortusovis from Spanish ovine flocks by PFGE fingerprinting. Epidemiol. Infect. 2007, 135, 695–702. [Google Scholar] [CrossRef] [PubMed]
- Luque, I.; Echeita, A.; León, J.; Herrera-León, S.; Tarradas, C.; González-Sanz, R.; Huerta, B.; Astorga, R.J. Salmonella Indiana as a cause of abortion in ewes: Genetic diversity and resistance patterns. I. Vet. Microbiol. 2009, 134, 396–399. [Google Scholar] [CrossRef] [PubMed]
- Chui, L.; Ferrato, C.; Li, V.; Christianson, S. Comparison of Molecular and In Silico Salmonella Serotyping for Salmonella Surveillance. Microorganisms 2021, 9, 955. [Google Scholar] [CrossRef] [PubMed]
- Didelot, X.; Fraser, C.; Gardy, J.; Colijn, C. Genomic Infectious Disease Epidemiology in Partially Sampled and Ongoing Outbreaks. Mol. Biol. Evol. 2017, 34, 997–1007. [Google Scholar] [CrossRef] [PubMed]
- Arrieta-Gisasoa, A.; Atxaerandio-Landa, A.; Garrido, V.; Grilló, M.J.; Martínez-Ballesteros, I.; Laorden, L.; Garaizar, J.; Bikandi, J. Genotyping Study of Salmonella 4,[5],12:i:- Monophasic Variant of Serovar Typhimurium and Characterization of the Second-Phase Flagellar Deletion by Whole Genome Sequencing. Microorganisms 2020, 8, 2049. [Google Scholar] [CrossRef] [PubMed]
- Wan Makhtar, W.R.; Bharudin, I.; Samsulrizal, N.H.; Yusof, N.Y. Whole Genome Sequencing Analysis of Salmonella enterica Serovar Typhi: History and Current Approaches. Microorganisms 2021, 9, 2155. [Google Scholar] [CrossRef]
- EFSA Fact Sheet. Available online: https://www.efsa.europa.eu/sites/default/files/corporate_publications/files/factsheetsalmonella.pdf (accessed on 15 August 2023).
- EC (European Commission). Regulation (EC) Nº 2160/2003 of the European Parliament and of the Council of 17 November 2003 on the Control of Salmonella and Other Specified Food-Borne Zoonotic Agents; EC (European Commission): Brussels, Belgium, 2003. [Google Scholar]
- EFSA. FBO Dashboard. Available online: https://www.efsa.europa.eu/en/microstrategy/FBO-dashboard (accessed on 15 August 2023).
- Álvarez-Ordóñez, A.; Broussolle, V.; Colin, P.; Nguyen-The, C.; Prieto, M. The adaptive response of bacterial food-borne pathogens in the environment, host, and food: Implications for food safety. Int. J. Food Microbiol. 2015, 213, 99–109. [Google Scholar] [CrossRef]
- Silva, F.V.M.; Gibbs, P.A. Thermal pasteurization requirements for the inactivation of Salmonella in foods. Food Res. Int. 2012, 45, 695–699. [Google Scholar] [CrossRef]
- Dimakopoulou-Papazoglou, D.; Lianou, A.; Koutsoumanis, K.P. Modelling biofilm formation of Salmonella enterica ser. Newport as a function of pH and water activity. Food Microbiol. 2016, 53, 76–81. [Google Scholar] [CrossRef]
- He, S.; Ye, B.; Zhang, Z.; Cui, Y.; Wang, S.; Shi, X. Cross-protective effect of acid adaptation on ethanol tolerance in Salmonella Enteritidis. Food Sci. Hum. Wellness 2023, 12, 1402–1407. [Google Scholar] [CrossRef]
- Pye, H.V.; Thilliez, G.; Acton, L.; Kolenda, R.; Al-Khanaq, H.A.; Grove, S.; Kingsley, R.A. Strain and serovar variants of Salmonella enterica exhibit diverse tolerance to food chain-related stress. Food Microbiol. 2023, 112, 104237. [Google Scholar] [CrossRef] [PubMed]
- Lianou, A.; Nychas, G.J.E.; Koutsoumanis, K.P. Variability in the adaptive acid tolerance response phenotype of Salmonella enterica strains. Food Microbiol. 2017, 62, 99–105. [Google Scholar] [CrossRef] [PubMed]
- Álvarez-Ordóñez, A.; Fernández, A.; Bernardo, A.; López, M. Acid tolerance in Salmonella typhimurium induced by culturing in the presence of organic acids at different growth temperatures. Food Microbiol. 2010, 27, 44–49. [Google Scholar] [CrossRef] [PubMed]
- Acuff, J.C.; Dickson, J.S.; Farber, J.M.; Grasso-Kelley, E.M.; Hedberg, C.; Lee, A.; Zhu, M. Practice and Progress: Updates on Outbreaks, Advances in Research, and Processing Technologies for Low-moisture Food Safety. J. Food Prot. 2023, 86, 100018. [Google Scholar] [CrossRef]
- Beuchat, L.R.; Komitopoulou, E.; Beckers, H.; Betts, R.P.; Bourdichon, F.; Fanning, S.; Joosten, H.M.; Kuile, B.H.T. Low-water activity foods: Increased concern as vehicles of foodborne pathogens. J. Food Prot. 2013, 76, 150–172. [Google Scholar] [CrossRef]
- Hiramatsu, R.; Matsumoto, M.; Sakae, K.; Miyazaki, Y. Ability of Shiga toxin-producing Escherichia coli and Salmonella spp. to survive in a desiccation model system and in dry foods. Appl. Environ. Microbiol. 2005, 71, 6657–6663. [Google Scholar] [CrossRef]
- Podolak, R.; Enache, E.; Stone, W.; Black, D.G.; Elliot, P.H. Sources and risk factors for contamination, survival, persistence, and heat resistance of Salmonella in low-moisture foods. J. Food Prot. 2010, 73, 1919–1936. [Google Scholar] [CrossRef]
- Liu, S.; Keller, S.E.; Anderson, N.M. Transfer of Salmonella from Inert Food Contact Surfaces to Wheat Flour, Cornmeal, and NaCl. J. Food Prot. 2022, 85, 231–237. [Google Scholar] [CrossRef]
- Burgess, C.M.; Gianotti, A.; Gruzdev, N.; Holah, J.; Knochel, S.; Lehner, A.; Marges, E.; Esser, S.S.; Sela, S.; Tresse, O. The response of foodborne pathogens to osmotic and desiccation stresses in the food chain. Int. J. Food Microbiol. 2016, 221, 37–53. [Google Scholar] [CrossRef]
- Finn, S.; Condell, O.; McClure, P.; Amezquita, A.; Fanning, S. Mechanisms of survival, responses, and sources of Salmonella in low-moisture environments. Front. Microbiol. 2013, 4, 331. [Google Scholar] [CrossRef] [PubMed]
- Bremer, E.; Krämer, R. Responses of microorganisms to osmotic stress. Annu. Rev. Microbiol. 2019, 73, 313–334. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Roopesh, M.S.; Tang, J.; Wu, Q.; Qin, W. Recent development in low-moisture foods: Microbial safety and thermal process. Food Res. Int. 2022, 155, 111072. [Google Scholar] [CrossRef] [PubMed]
- Santillana-Farakos, S.M.; Schaffner, D.W.; Frank, J.F. Predicting survival of Salmonella in low-water activity foods: An analysis of literature data. J. Food Prot. 2014, 77, 1448–1461. [Google Scholar] [CrossRef] [PubMed]
- Hsu, H.; Sheen, S.; Sites, J.; Huang, L.; Wu, J.S.B. Effect of high-pressure treatment on the survival of Shiga toxin-producing Escherichia coli in strawberry puree. Food Microbiol. 2014, 40, 25–30. [Google Scholar] [CrossRef]
- Gautam, B.; Govindan, B.N.; Ganzle, M.; Roopesh, M.S. Influence of water activity on the heat resistance of Salmonella enterica in selected low-moisture foods. Int. J. Food Microbiol. 2020, 334, 108813. [Google Scholar] [CrossRef]
- Garcés-Vega, F.J.; Ryser, E.T.; Marks, B.P. Relationships of Water Activity and Moisture Content to the Thermal Inactivation Kinetics of Salmonella in Low-Moisture Foods. J. Food Prot. 2019, 82, 963–970. [Google Scholar] [CrossRef]
- Steinbrunner, P.J.; Limcharoenchat, P.; Suehr, Q.J.; Ryser, E.T.; Marks, B.P.; Jeong, S. Effect of Food Structure, Water Activity, and Long-Term Storage on X-Ray Irradiation for Inactivating Salmonella Enteritidis PT30 in Low-Moisture Foods. J. Food Prot. 2019, 82, 1405–1411. [Google Scholar] [CrossRef]
- Tadapaneni, R.K.; Syamaladevi, R.M.; Villa-Rojas, R.; Tang, J. Design of a novel test cell to study the influence of water activity on the thermal resistance of Salmonella in low-moisture foods. J. Food Eng. 2017, 208, 48–56. [Google Scholar] [CrossRef]
- Fu, Y.; Deering, A.J.; Bhunia, A.K.; Yao, Y. Pathogen biofilm formation on cantaloupe rface and its impact on the antibacterial effect of lauryl arginate ethyl. Food Microbiol. 2017, 64, 139–144. [Google Scholar] [CrossRef]
- Lee, K.H.; Lee, J.Y.; Roy, P.K.; Mizan, M.F.R.; Hossain, M.I.; Park, S.H.; Ha, S.D. Viability of Salmonella typhimurium biofilms on major food-contact surfaces and eggshell treated during 35 days with and without water storage at room temperature. Poult. Sci. 2020, 99, 4558–4565. [Google Scholar] [CrossRef] [PubMed]
- Tadielo, L.E.; Bellé, T.H.; Dos Santos, E.A.R.; Schmiedt, J.A.; Cerqueira-Cézar, C.K.; Nero, L.A.; Yamatogi, R.S.; Pereira, J.G.; Bersot, L.S. Pure and mixed biofilms formation of Listeria monocytogenes and Salmonella Typhimurium on polypropylene surfaces. LWT 2022, 162, 113469. [Google Scholar] [CrossRef]
- Solomon, E.B.; Niemira, B.A.; Sapers, G.M.; Annous, B.A. Biofilm Formation, Cellulose Production, and Curli Biosynthesis by Salmonella Originating from Produce, Animal, and Clinical Sources. J. Food Prot. 2005, 68, 906–912. [Google Scholar] [CrossRef] [PubMed]
- Speranza, B.; Corbo, M.R.; Sinigaglia, M. Effects of nutritional and environmental conditions on Salmonella sp. biofilm formation. J. Food Sci. 2011, 76, 12–16. [Google Scholar] [CrossRef] [PubMed]
- Merino, L.; Procura, F.; Trejo, F.M.; Bueno, D.J.; Golowcyc, M.A. Biofilm formation by Salmonella sp. in the poultry industry: Detection, control, and eradication strategies. Food Res. Int. 2019, 119, 530–540. [Google Scholar] [CrossRef] [PubMed]
- Brackman, G.; Coenye, T. Quorum sensing inhibitors as anti-biofilm agents. Curr. Pharm. Des. 2015, 21, 5–11. [Google Scholar] [CrossRef] [PubMed]
- Gao, F.; Lyu, C.; Ning, Z.; Zhao, S.; Shao, L.; Xu, X.; Wang, H. Inactivation of Salmonella biofilms formed on stainless steel surfaces by pulsed light. Food Control 2023, 153, 109955. [Google Scholar] [CrossRef]
- Byun, K.H.; Na, K.W.; Ashrafudoulla, M.; Choi, M.W.; Ha Han, S.; Kang, I.; Park, S.H.; Ha, S.D. Combination treatment of peroxyacetic acid or lactic acid with UV-C to control Salmonella Enteritidis biofilms on food contact surface and chicken skin. Food Microbiol. 2022, 102, 103906. [Google Scholar] [CrossRef]
- Ashrafudoulla, M.; Kim, H.J.; Her, E.; Shaila, S.; Park, S.D.; Ha, S.D. Characterization of Salmonella Thompson-specific bacteriophages, and their preventive application against Salmonella Thompson biofilm on eggshell as a promising antimicrobial agent in the food industry. Food Control 2023, 154, 110008. [Google Scholar] [CrossRef]
- Wang, S.; Mirmiran, S.D.; Li, X.; Li, X.; Zhang, F.; Duan, X.; Gao, D.; Chen, Y.; Chen, H.; Qian, P. Temperate phage influence virulence and biofilm-forming of Salmonella Typhimurium and enhance the ability to contaminate food product. Int. J. Food Microbiol. 2023, 398, 110223. [Google Scholar] [CrossRef]
- Asma, S.T.; Imre, K.; Morar, A.; Imre, M.; Acaroz, U.; Ali Shad, S.R.; Hussain, S.Z.; Arslan-Acaroz, D.; Istanbullugil, F.R.; Madani, K.; et al. Natural strategies as potential weapons against bacterial biofilms. Life 2022, 12, 1618. [Google Scholar] [CrossRef] [PubMed]
- Mgomi, F.C.; Yang, Y.; Cheng, G.; Yang, Z. Lactic acid bacteria biofilms and their antimicrobial potential against pathogenic microorganisms. Biofilm 2023, 5, 110118. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Rodríguez, F.; Valero, A. Predictive Microbiology in Foods. In Predictive Microbiology in Foods. SpringerBriefs in Food, Health, and Nutrition; Springer: New York, NY, USA, 2015; Volume 5, 128p. [Google Scholar] [CrossRef]
- Lobacz, A.; Zulewska, J.; Kowalik, J. Chapter 3—Predictive microbiology and risk analysis. In Dairy Foods. Processing, Quality and Analytical Techniques; Elsevier Inc.: Amsterdam, The Netherlands, 2022; pp. 47–68. [Google Scholar] [CrossRef]
- McQuestin, O.J.; Musgrove, M.T.; Tamplin, M.L. Kinetics of growth and inactivation of Salmonella enterica serotype Typhimurium DT104 in pasteurised liquid egg products. Food Microbiol. 2010, 27, 396–402. [Google Scholar] [CrossRef] [PubMed]
- Pasquali, F.; Klein, G.; Reich, F.; Manfreda, G.; Valero, A. Modelling survival behaviour of Salmonella enterica ser. Enteritidis, Typhimurium and Tennessee on table eggs during storage at different temperatures. Food Control 2016, 59, 314–319. [Google Scholar] [CrossRef]
- Bermúdez-Aguirre, D.; Niemira, B.A. Effect of nisin, EDTA, and abuse temperature on the growth of Salmonella Typhimurium in liquid whole egg during refrigerated storage. Food Res. Int. 2023, 174, 113568. [Google Scholar] [CrossRef] [PubMed]
- Oscar, T.P. Neural network model for survival and growth of Salmonella enterica serotype 8, 20:–:z6 in ground chicken thigh meat during cold storage: Extrapolation to other serotypes. J. Food Prot. 2015, 78, 1819–1827. [Google Scholar] [CrossRef] [PubMed]
- Coroller, L.; Jeuge, S.; Couvert, O.; Christieans, S.; Ellouze, M. Extending the gamma concept to non-thermal inactivation: A dynamic model to predict the fate of Salmonella during the dried sausages process. Food Microbiol. 2015, 45, 266–275. [Google Scholar] [CrossRef]
- Milkievicz, T.; Badia, V.; Souza, V.B.; Longhi, D.A.; Galvao, A.C.; Robazza, W.S. Modeling Salmonella spp. inactivation in chicken meat subjected to isothermal and non-isothermal temperature profiles. Int. J. Food Microbiol. 2021, 344, 109110. [Google Scholar] [CrossRef]
- Li, D.; Friedrich, L.M.; Danyluk, M.D.; Harris, L.J.; Schaffner, D.W. Development and validation of a mathematical model for growth of pathogens in cut melons. J. Food Prot. 2013, 76, 953–958. [Google Scholar] [CrossRef]
- Ma, C.; Li, J.; Zhang, Q. Behavior of Salmonella spp. on fresh-cut tropical fruits. Food Microbiol. 2016, 54, 133–141. [Google Scholar] [CrossRef]
- Saha, J.; Topalcengiz, Z.; Sharma, V.; Friedrich, L.M.; Danyluk, M.D. Fate and growth kinetics of Salmonella and Listeria monocytogenes on mangoes during storage. J. Food Prot. 2023, 86, 100151. [Google Scholar] [CrossRef]
- Santillana-Farakos, S.M.; Frank, J.F.; Schaffner, D.W. Modeling the influence of temperature, water activity and water mobility on the persistence of Salmonella in low-moisture foods. Int. J. Food Microbiol. 2013, 166, 280–293. [Google Scholar] [CrossRef]
- Santillana-Farakos, S.M.; Pouillot, R.; Keller, S.E. Salmonella survival kinetics on pecans, hazelnuts, and pine nuts at various water activities and temperatures. J. Food Prot. 2017, 80, 879–885. [Google Scholar] [CrossRef] [PubMed]
- Igo, M.J.; Schaffner, D.W. Models for factors influencing pathogen survival in low water activity foods from literature data are highly significant but show large unexplained variance. Food Microbiol. 2021, 98, 103783. [Google Scholar] [CrossRef] [PubMed]
- Dhaliwal, H.K.; Gänzle, M.; Roopesh, M.S. Influence of drying conditions, food composition, and water activity on the thermal resistance of Salmonella enterica. Food Res. Int. 2021, 147, 110548. [Google Scholar] [CrossRef] [PubMed]
- Mishra, A.; Guo, M.; Buchanan, R.L.; Schaffner, D.W.; Pradhan, A.K. Development of growth and survival models for Salmonella and Listeria monocytogenes during non-isothermal time-temperature profiles in leafy greens. Food Control 2017, 71, 32–41. [Google Scholar] [CrossRef]
- Possas, A.; Posada-Izquierdo, G.D.; Tarlak, F.; Jiménez-Jiménez, F.; Pérez-Rodríguez, F. Inactivation of Salmonella Typhimurium in fresh-cut lettuce during chlorine washing: Assessing the impacts of free chlorine concentrations and exposure times. LWT 2023, 184, 115069. [Google Scholar] [CrossRef]
- Carrasco, E.; Del Rosal, S.; Racero, J.C.; García-Gimeno, R.M. A review on growth/no growth Salmonella models. Food Res. Int. 2012, 47, 90–99. [Google Scholar] [CrossRef]
- 2012b: Carrasco, E.; Morales-Rueda, A.; García-Gimeno, R.M. Cross-contamination and recontamination by Salmonella in foods: A review. Food Res. Int. 2012, 45, 545–556. [Google Scholar] [CrossRef]
- Possas, A.; Carrasco, E.; García-Gimeno, R.M.; Valero, A. Models of microbial cross-contamination dynamics. Curr. Opin. Food Sci. 2017, 14, 43–49. [Google Scholar] [CrossRef]
- Shahdadi, M.; Safarirad, M.; Berizi, E.; Mazloomi, S.M.; Hosseinzadeh, S.; Zare, M.; Derakhshan, Z.; Rajabi, S. A systematic review and modeling of the effect of bacteriophages on Salmonella spp. Reduction in chicken meat. Heliyon 2023, 9, e14870. [Google Scholar] [CrossRef] [PubMed]
- Austrich-Comas, A.; Jofré, A.; Gou, P.; Bover-Cid, S. Assessing the impact of different technological strategies on the fate of Salmonella in chicken dry-fermented sausages by means of challenge testing and predictive models. Microorganisms 2023, 11, 432. [Google Scholar] [CrossRef] [PubMed]
- Bermúdez-Aguirre, D.; Niemira, B.A. Microbial inactivation models of Salmonella Typhimurium in radio frequency treated eggs. Food Control 2023, 148, 109634. [Google Scholar] [CrossRef]
- Alvarenga, V.O.; Brito, L.M.; Lacerda, I.C.A. Application of mathematical models to validate emerging processing technologies in food. Curr. Opin. Food Sci. 2022, 48, 100928. [Google Scholar] [CrossRef]
- Karanth, S.; Tanui, C.K.; Meng, J.; Pradhan, A. Exploring the predictive capability of advanced machine learning in identifying severe disease phenotype in Salmonella enterica. Food Res. 2022, 151, 110817. [Google Scholar] [CrossRef] [PubMed]
- Munck, N.; Njage, P.M.K.; Leekitcharoenphon, P.; Litrup, E.; Hald, T. Application of Whole-Genome Sequences and Machine Learning in Source Attribution of Salmonella Typhimurium. Risk Anal. 2020, 40, 1693–1705. [Google Scholar] [CrossRef]
- Fritsch, L.; Guillier, L.; Augustin, J.C. Next generation quantitative microbiological risk assessment: Refinement of the cold smoked salmon-related listeriosis risk model by integrating genomic data. Microb. Risk Anal. 2018, 10, 20–27. [Google Scholar] [CrossRef]
- Karanth, S.; Patel, J.; Shirmohammadi, A.; Pradhan, A.K. Machine learning to predict foodborne salmonellosis outbreaks based on genome characteristics and meteorological trends. Curr. Res. Food Sci. 2023, 6, 100525. [Google Scholar] [CrossRef]
- Possas, A.; Valero, A.; Pérez-Rodríguez, F. New software solutions for microbiological food safety assessment and management. Curr. Opin. Food Sci. 2022, 44, 100814. [Google Scholar] [CrossRef]
- MicroHibro 3.0. Available online: www.microhibro.com (accessed on 30 August 2023).
- Cubero González, S.; Possas, A.; Carrasco, E.; Valero, A.; Bolivar, A.; Posada-Izquierdo, G.D.; García-Gimeno, R.M.; Zurera, G.; Pérez-Rodríguez, F. ‘Micro-Hibro’: A software tool for predicitive microbiology and microbial risk assessment in foods. Int. J. Food Microbiol. 2019, 290, 226–236. [Google Scholar] [CrossRef]
- Pin, C.; Avendaño-Pérez, G.; Cosciani-Cunico, E.; Gómez, N.; Gounadakic, A.; Nychas, G.J.; Skandamis, P.; Barker, G. Modelling Salmonella concentration throughout the pork supply chain by considering growth and survival in fluctuating conditions of temperature, pH, and a(w). Int. J. Food Microbiol. 2011, 145, S96–S102. [Google Scholar] [CrossRef] [PubMed]
- Ross, T. Indices for performance evaluation of predictive models in food microbiology. J. Appl. Microbiol. 1996, 81, 501–508. [Google Scholar] [CrossRef]
- Gumudavelli, V.; Subbiah, J.; Thippareddi, H.; Velugoti, P.R.; Froning, G. Dynamic predictive model for growth of Salmonella enteritidis in egg yolk. J. Food Sci. 2007, 72, M254–M262. [Google Scholar] [CrossRef] [PubMed]
- Foley, S.L.; Lynne, A.M. Food animal-associated Salmonella challenges: Pathogenicity and antimicrobial resistance. J. Anim. Sci. 2008, 86, 173–187. [Google Scholar] [CrossRef] [PubMed]
- Switt, A.I.M.; Soyer, Y.; Warnick, L.D.; Wiedmann, M. Emergence, distribution and molecular and phenotypic characteristics of Salmonella enterica serotype 4,5,12:i:-. Foodborne Pathog. Dis. 2009, 6, 407–415. [Google Scholar] [CrossRef]
- Martins da Costa, P.; Oliveira, M.; Bica, A.; Vaz-Pires, P.; Bernardo, F. Antimicrobial resistance in Enterococcus spp. and Escherichia coli isolated from poultry feed and feed ingredients. Vet. Microbiol. 2007, 120, 122–131. [Google Scholar] [CrossRef]
- European Centre for Disease Prevention and Control (ECDC). Assessing the Health Burden of Infections with Antibiotic-Resistant Bacteria in the EU/EEA, 2016–2020; ECDC: Stockholm, Sweden, 2022. [Google Scholar]
- Sayah, R.S.; Kaneene, J.B.; Johnson, Y.; Miller, R.A. Patterns of antimicrobial resistance observed in Escherichia coli isolates obtained from domestic- and wild-animal fecal samples, human septage, and surface water. Appl. Environ. Microbiol. 2005, 71, 1394–1404. [Google Scholar] [CrossRef]
- Gargano, V.; Gambino, D.; Migliore, S.; Vitale, M.; Sciortino, S.; Costa, A.; Vicari, D. Can Human Handling Increase the Presence of Multidrug Resistance (MDR) in Salmonella spp. Isolated from Food Sources? Microorganisms 2021, 9, 2018. [Google Scholar] [CrossRef]
- Astorga Márquez, R.J.; Echeita Salaberria, A.; Maldonado García, A.; Valdezate-Jiménez, S.; Carbonero Martínez, A.; Aladueña García, A.; Arenas Casas, A. Surveillance and Antimicrobial Resistance of Salmonella Strains Isolated from Slaughtered Pigs in Spain. J. Food Protec. 2007, 70, 1502–1506. [Google Scholar] [CrossRef]
- Gómez-Laguna, J.; Hernández, M.; Creus, E.; Echeita, A.; Otal, J.; Herrera-Léon, S.; Astorga, R. Prevalence and antimicrobial susceptibility of Salmonella infections in free-range pigs. Vet. J. 2011, 190, 176–178. [Google Scholar] [CrossRef]
- Galán-Relaño, A.; Sánchez-Carvajal, J.M.; Gómez-Gascón, L.; Vera Salmoral, E.; Huerta Lorenzo, B.; Cardoso-Toset, F.; Gómez-Laguna, J.; Astorga, R.J. Phenotypic and genotypic antibiotic resitance patterns in Salmonella Typhimurium and its monophasic variant form pigs in southern Spain. Res. Vet. Sci. 2022, 152, 596–603. [Google Scholar] [CrossRef]
- Montoro-Dasi, L.; Lorenzo-Rebenaque, L.; Marco-Fuertes, A.; Vega, S.; Marín, C. Holistic Strategies to Control Salmonella Infantis: An Emerging Challenge in the European Broiler Sector. Microorganisms 2023, 11, 1765. [Google Scholar] [CrossRef] [PubMed]
- Moretro, T.; Heir, E.; Nesse, L.L.; Vestby, L.K.; Langsrud, S. Control of Salmonella in food related environments by chemical disinfection. Food Res. Int. 2012, 45, 532–544. [Google Scholar] [CrossRef]
- The European Food Safety Authority (EFSA); European Centre for Disease Prevention and Control (ECDC). The European Union Summary Report on Antimicrobial Resistance in zoonotic and indicator bacteria from humans, animals, and food in 2020/2021. EFSA J. 2023, 21, 7867. [Google Scholar] [CrossRef]
- Ruvalcaba-Gómez, J.M.; Villagrán, Z.; Valdez-Alarcón, J.J.; Martínez-Núñez, M.; Gomez-Godínez, L.J.; Ruesga-Gutiérrez, E.; Anaya-Esparza, L.M.; Arteaga-Garibay, R.I.; Villarruel-López, A. Non-Antibiotics Strategies to Control Salmonella Infection in Poultry. Animals 2022, 12, 102. [Google Scholar] [CrossRef] [PubMed]
- Raut, R.; Maharjan, P.; Foudladkhah, A.C. Practical preventive considerations for reducing the public health burden of poultry-related salmonellosis. Int. J. Environ. Res. Public Health 2023, 20, 6654. [Google Scholar] [CrossRef] [PubMed]
- Solarte, A.L.; Astorga, R.J.; de Aguiar, F.C.; Tarradas, C.; Luque, I.; Gómez-Gascón, L.; Huerta, B. Reduced Susceptibility of Salmonella Typhimurium Strains to Oregano Essential Oil and Enrofloxacin: An In Vitro Assay. Foodborne Pathog. Dis. 2020, 17, 29–34. [Google Scholar] [CrossRef]
- Rochín-Medina, J.J.; Mendoza-López, I.A.; Campo, N.C.-D.; Bastidas-Bastidas, P.J.; Ramírez, K. Activity of plant essential oils against clinically and environmentally isolated Salmonella enterica serotypes: In vitro assays and molecular docking. Lett. Appl. Microbiol. 2023, 3, ovad045. [Google Scholar] [CrossRef]
- Solarte, A.L.; Astorga, R.J.; de Aguiar, F.C.; De Frutos, C.; Barrero-Domínguez, B.; Huerta, B. Susceptibility Distribution to Essential Oils of Salmonella enterica Strains Involved in Animal and Public Health and Comparison of the Typhimurium and Enteritidis Serotypes. J. Med. Food. 2018, 21, 946–950. [Google Scholar] [CrossRef]
- Čabarkapa, I.; Čolović, R.; Đuragić, O.; Popović, S.; Kokić, B.; Milanov, D.; Pezo, L. Anti-biofilm activities of essential oils rich in carvacrol and thymol against Salmonella Enteritidis. Biofouling 2019, 35, 361–375. [Google Scholar] [CrossRef]
- Al-Nabulsi, A.A.; Osaili, T.M.; Olaimat, A.N.; Almasri, W.E.; Ayyash, M.; Al-Holy, M.A.; Jaradat, Z.W.; Obaid, R.S.; Holley, R.A. Inactivation of Salmonella spp. in tahini using plant essential oil extracts. Food Microbiol. 2020, 86, 103338. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, J.P.L.; de Souza, E.F.; Della Modesta, R.C.; Gomes, I.A.; Freitas-Silva, O.; de Melo Franco, B.D.G. Antibacterial activity of nisin, oregano essential oil, EDTA, and their combination against Salmonella Enteritidis for application in mayonnaise. Vigil. Sanit. Debate Soc. Cienc. Tecnol. 2016, 4, 83–91. [Google Scholar] [CrossRef]
- Solarte, A.L.; Astorga, R.J.; Aguiar, F.; Galán-Relaño, Á.; Maldonado, A.; Huerta, B. Combination of antimicrobials and essential oils as an alternative for the control of Salmonella enterica multiresistant strains related to foodborne disease. Foodborne Pathog. Dis. 2017, 14, 558–563. [Google Scholar] [CrossRef] [PubMed]
- Abedon, S.T.; Loc-Carrillo, C. Pros, and cons of phage therapy. Bacteriophage 2011, 1, 111–114. [Google Scholar]
- Nilsson, A.S. Phage therapy—Constraints and possibilities. Upsala J. Med. Sci. 2014, 119, 192–198. [Google Scholar] [CrossRef] [PubMed]
- Wong, C.L.; Sieo, C.C.; Tan, W.S.; Abdullah, N.; Hair-Bejo, M.; Abu, J.; Ho, Y.W. Evaluation of a lytic bacteriophage, Φ st1, for biocontrol of Salmonella enterica serovar Typhimurium in chickens. Int. J. Food Microbiol. 2014, 172, 92–101. [Google Scholar] [CrossRef]
- Sevilla-Navarro, S.; Catalá-Gregori, P.; García, C.; Cortés, V.; Marin, C. Salmonella Infantis and Salmonella Enteritidis specific bacteriophages isolated form poultry faeces as a complementary tool for cleaning and disinfection against Salmonella. Comp. Immunol. Microbiol. Infect. Dis. 2019, 68, 101405. [Google Scholar] [CrossRef]
- Sevilla-Navarro, S.; Catalá-Gregori, P.; Marin, C. Salmonella Bacteriophage Diversity According to Most Prevalent Salmonella Serovars in Layer and Broiler Poultry Farms from Eastern Spain. Animals 2020, 10, 1456. [Google Scholar] [CrossRef]
- Lorenzo-Rebenaque, L.; Malik, D.J.; Catalá-Gregori, P.; Marin, C.; Sevilla-Navarro, S. In Vitro and In Vivo Gastrointestinal Survival of Non-Encapsulated and Microencapsulated Salmonella Bacteriophages: Implications for Bacteriophage Therapy in Poultry. Pharmaceuticals 2021, 6, 434. [Google Scholar] [CrossRef]
- Lorenzo-Rebenaque, L.; Malik, D.J.; Catalá-Gregori, P.; Torres-Boncompte, J.; Marin, C.; Sevilla-Navarro, S. Microencapsulated bacteriophages incorporated in feed for Salmonella control in broilers. Vet. Microbiol. 2022, 274, 109579. [Google Scholar] [CrossRef]
- Sáez, A.C.; Zhang, J.; Rostagno, M.H.; Ebner, P.D. Direct feeding of microencapsulated bacteriophages to reduce Salmonella colonization in pigs. Foodborne Pathog. Dis. 2011, 8, 1269–1274. [Google Scholar] [CrossRef] [PubMed]
- Renu, S.; Han, Y.; Dhakal, S.; Lakshmanappa, Y.S.; Ghimire, S.; Feliciano-Ruiz, N.; Senapati, S.; Narasimhan, B.; Selvaraj, R.; Renukaradhya, G.J. Chitosan-adjuvanted Salmonella subunit nanoparticle vaccine for poultry delivered through drinking water and feed. Carbohydr. Polym. 2020, 243, 116434. [Google Scholar] [CrossRef] [PubMed]
- Rabie, N.S.; Amin Girh, Z.M.S. Bacterial vaccines in poultry. Bull. Natl. Res. Cent. 2020, 44, 15. [Google Scholar] [CrossRef] [PubMed]
- Jia, S.; McWhorter, A.R.; Andrews, D.M.; Underwood, G.J.; Chousalkar, K.K. Challenges in Vaccinating Layer Hens against Salmonella Typhimurium. Vaccines 2020, 8, 696. [Google Scholar] [CrossRef]
- Conan, A.; Goutard, F.L.; Sorn, S.; Vong, S. Biosecurity measures for backyard poultry in developing countries: A systematic review. BMC Vet. Res. 2012, 8, 240. [Google Scholar] [CrossRef]
- Astorga, R.J.; Vega, S.; Argüello, H. Bioseguridad en Producción Porcina; Editorial SERVET; Grupo Asís Biomedia SL: Zaragoza, Spain, 2021; pp. 1–82. ISBN 978-84-18498-98-5. [Google Scholar]
- Walia, K.; Argüello, H.; Lynch, H.; Grant, J.; Leonard, F.C.; Lawlor, P.G.; Gardiner, G.E.; Duffy, G. The efficacy of different cleaning and disinfection proce- dures to reduce Salmonella and Enterobacteriaceae in the lairage environment of a pig abattoir. Int. J. Food Microbiol. 2017, 4, 64–71. [Google Scholar] [CrossRef]
Serovar | 2021 | 2020 | 2019 | ||||||
---|---|---|---|---|---|---|---|---|---|
Cases | MSs | % | Cases | MSs | % | Cases | MSs | % | |
Enteritidis | 23,634 | 23 | 64.6 | 21,203 | 23 | 63.1 | 32,010 | 24 | 61.6 |
Typhimurium | 4027 | 23 | 11.0 | 3702 | 22 | 11.0 | 6044 | 24 | 11.6 |
Monophasic Typhimurium 1,4,[5],12:i:- | 1269 | 14 | 3.5 | 1530 | 16 | 4.6 | 2668 | 17 | 5.2 |
Infantis | 633 | 23 | 1.7 | 716 | 21 | 2.1 | 1215 | 24 | 2.3 |
Derby | 239 | 16 | 0.7 | 260 | 17 | 0.8 | 396 | 20 | 0.8 |
Coeln | 315 | 14 | 0.9 | 201 | 17 | 0.6 | 270 | 15 | 0.5 |
Other | 6462 | - | 17.7 | 6009 | - | 17.9 | 9378 | - | 18.0 |
Total | 36,579 | 23 | 100 | 33,621 | 23 | 100 | 52,001 | 24 | 100 |
T (°C) | pH | aw | µmax |
---|---|---|---|
5 | 5.2 | 0.970 | 0.005 |
8 | 5.7 | 0.970 | 0.010 |
10 | 5.7 | 0.976 | 0.030 |
15 | 5.9 | 0.980 | 0.080 |
20 | 6.0 | 0.990 | 0.200 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galán-Relaño, Á.; Valero Díaz, A.; Huerta Lorenzo, B.; Gómez-Gascón, L.; Mena Rodríguez, M.ª.Á.; Carrasco Jiménez, E.; Pérez Rodríguez, F.; Astorga Márquez, R.J. Salmonella and Salmonellosis: An Update on Public Health Implications and Control Strategies. Animals 2023, 13, 3666. https://doi.org/10.3390/ani13233666
Galán-Relaño Á, Valero Díaz A, Huerta Lorenzo B, Gómez-Gascón L, Mena Rodríguez MªÁ, Carrasco Jiménez E, Pérez Rodríguez F, Astorga Márquez RJ. Salmonella and Salmonellosis: An Update on Public Health Implications and Control Strategies. Animals. 2023; 13(23):3666. https://doi.org/10.3390/ani13233666
Chicago/Turabian StyleGalán-Relaño, Ángela, Antonio Valero Díaz, Belén Huerta Lorenzo, Lidia Gómez-Gascón, M.ª Ángeles Mena Rodríguez, Elena Carrasco Jiménez, Fernando Pérez Rodríguez, and Rafael J. Astorga Márquez. 2023. "Salmonella and Salmonellosis: An Update on Public Health Implications and Control Strategies" Animals 13, no. 23: 3666. https://doi.org/10.3390/ani13233666