Effects of Different Dietary Starch Sources and Digestible Lysine Levels on Carcass Traits, Serum Metabolites, Liver Lipid and Breast Muscle Protein Metabolism in Broiler Chickens
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Experimental Diets and Treatments
2.3. Bird Husbandry
2.4. Sampling Procedures
2.5. Carcass Characteristics Determination
2.6. Blood Metabolite Analysis
2.7. Quantitative Real-Time PCR Analysis
2.8. Statistical Analysis
3. Results
3.1. Carcass Traits
3.2. Postprandial Blood Glucose and Insulin Responses
3.3. Serum Metabolites
3.4. Breast Muscle Protein Metabolism
3.5. Liver Lipid Metabolism
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- FAO (Food and Agriculture Organization of the United Nations). Crop Prospects and Food Situation, No. 4, December 2011. Available online: http://www.fao.org/documents/card/en/c/38b53d45-6c93-5b5a-a8d3-3d3e2f549d96/ (accessed on 9 April 2023).
- Yin, F.; Zhang, Z.; Huang, J.; Yin, Y. Digestion rate of dietary starch affects systemic circulation of amino acids in weaned pigs. Br. J. Nutr. 2010, 103, 1404–1412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, X.; Yu, B.; Yu, J.; Mao, X.; Huang, Z.; Luo, Y.; Luo, J.; Zheng, P.; He, J.; Chen, D. Effects of Dietary Starch Structure on Growth Performance, Serum Glucose-Insulin Response, and Intestinal Health in Weaned Piglets. Animals 2020, 10, 543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Selle, P.; Liu, S.Y. The Relevance of Starch and Protein Digestive Dynamics in Poultry. J. Appl. Poult. Res. 2019, 28, 531–545. [Google Scholar] [CrossRef]
- Yin, D.; Selle, P.H.; Moss, A.F.; Wang, Y.; Dong, X.; Xiao, Z.; Guo, Y.; Yuan, J. Influence of starch sources and dietary protein levels on intestinal functionality and intestinal mucosal amino acids catabolism in broiler chickens. J. Anim. Sci. Biotechno. 2019, 10, 26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nogueira, B.R.F.; Sakomura, N.K.; Reis, M.P.; Leme, B.B.; Létourneau-Montminy, M.P.; Viana, G.D.S. Modelling Broiler Requirements for Lysine and Arginine. Animals 2021, 11, 2914. [Google Scholar] [CrossRef] [PubMed]
- El-Bahr, S.M.; Shousha, S.; Alfattah, M.A.; Al-Sultan, S.; Khattab, W.; Sabeq, I.I.; Ahmed-Farid, O.; El-Garhy, O.; Albusadah, K.A.; Alhojaily, S.; et al. Enrichment of Broiler Chickens’ Meat with Dietary Linseed Oil and Lysine Mixtures: Influence on Nutritional Value, Carcass Characteristics and Oxidative Stress Biomarkers. Foods 2021, 10, 618. [Google Scholar] [CrossRef]
- Sterling, K.G.; Pesti, G.M.; Bakalli, R.I. Performance of different broiler genotypes fed diets with varying levels of dietary crude protein and lysine. Poult. Sci. 2006, 85, 1045–1054. [Google Scholar] [CrossRef]
- Tesseraud, S.; Temim, S.; Le Bihan-Duval, E.; Chagneau, A.M. Increased responsiveness to dietary lysine deficiency of pectoralis major muscle protein turnover in broilers selected on breast development. J. Anim. Sci. 2001, 79, 927–933. [Google Scholar] [CrossRef]
- Maqsood, M.A.; Khan, E.U.; Qaisrani, S.N.; Rashid, M.A.; Shaheen, M.S.; Nazir, A.; Talib, H.; Ahmad, S. Interactive effect of amino acids balanced at ideal lysine ratio and exogenous protease supplemented to low CP diet on growth performance, carcass traits, gut morphology, and serum metabolites in broiler chicken. Trop. Anim. Health Pro. 2022, 54, 186. [Google Scholar] [CrossRef]
- Tian, D.L.; Guo, R.J.; Li, Y.M.; Chen, P.P.; Zi, B.B.; Wang, J.J.; Liu, R.F.; Min, Y.N.; Wang, Z.P.; Niu, Z.Y.; et al. Effects of lysine deficiency or excess on growth and the expression of lipid metabolism genes in slow-growing broilers. Poult. Sci. 2019, 98, 2927–2932. [Google Scholar] [CrossRef]
- Laplante, M.; Sabatini, D.M. Regulation of mTORC1 and its impact on gene expression at a glance. J. Cell Sci. 2013, 126, 1713–1719. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shah, O.J.; Anthony, J.C.; Kimball, S.R.; Jefferson, L.S. 4E-BP1 and S6K1: Translational integration sites for nutritional and hormonal information in muscle. Am. J. Physiol. Endoc. M 2000, 279, E715–E729. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, X.; Li, K.; Niu, Y.; Lin, Q.; Liang, H.; Luo, X.; Liu, L.; Li, N. The mTOR/PGC-1α/SIRT3 Pathway Drives Reductive Glutamine Metabolism to Reduce Oxidative Stress Caused by ISKNV in CPB Cells. Microbiol. Spectr. 2022, 10, e0231021. [Google Scholar] [CrossRef]
- Sandri, M. Protein breakdown in muscle wasting: Role of autophagy-lysosome and ubiquitin-proteasome. Int. J. Biochem. Cell B 2013, 45, 2121–2129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bilodeau, P.A.; Coyne, E.S.; Wing, S.S. The ubiquitin proteasome system in atrophying skeletal muscle: Roles and regulation. Am. J. Physiol.-Cell Physiol. 2016, 311, C392–C403. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, P.; Leray, V.; Diez, M.; Serisier, S.; Le Bloc’h, J.; Siliart, B.; Dumon, H. Liver lipid metabolism. J. Anim. Physiol. Anim. Nutr. 2008, 92, 272–283. [Google Scholar] [CrossRef]
- Kasper, P.; Selle, J.; Vohlen, C.; Wilke, R.; Kuiper-Makris, C.; Klymenko, O.; Bae-Gartz, I.; Schömig, C.; Quaas, A.; Schumacher, B.; et al. Perinatal Obesity Induces Hepatic Growth Restriction with Increased DNA Damage Response, Senescence, and Dysregulated Igf-1-Akt-Foxo1 Signaling in Male Offspring of Obese Mice. Int. J. Mol. Sci. 2022, 23, 5609. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhong, L.; Yu, S.; Shen, W.; Cai, C.; Yu, H. Inhibition of stearoyl-coenzyme A desaturase 1 ameliorates hepatic steatosis by inducing AMPK-mediated lipophagy. Aging 2020, 12, 7350–7362. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Wang, J.; Wang, Y.; Wang, P.; Zhou, Z.; Wu, R.; Xu, Q.; You, H.; Liu, Y.; Wang, L.; et al. A propolis-derived small molecule ameliorates metabolic syndrome in obese mice by targeting the CREB/CRTC2 transcriptional complex. Nat. Commun. 2022, 13, 246. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, X.; Elsabagh, M.; Zhang, Y.; Ma, Y.; Jin, Y.; Wang, M.; Wang, H.; Jiang, H. Effects of the Gut Microbiota and Barrier Function on Melatonin Efficacy in Alleviating Liver Injury. Antioxidants 2022, 11, 1727. [Google Scholar] [CrossRef]
- Zhai, W.; Peebles, E.D.; Wang, X.; Gerard, P.D.; Olanrewaju, H.A.; Mercier, Y. Effects of dietary lysine and methionine supplementation on Ross 708 male broilers from 21 to 42 d of age (III): Serum metabolites, hormones, and their relationship with growth performance1. J. Appl. Poult. Res. 2016, 25, 223–231. [Google Scholar] [CrossRef]
- Na, W.; Wu, Y.-Y.; Gong, P.-F.; Wu, C.-Y.; Cheng, B.-H.; Wang, Y.-X.; Wang, N.; Du, Z.-Q.; Li, H. Embryonic transcriptome and proteome analyses on hepatic lipid metabolism in chickens divergently selected for abdominal fat content. BMC Genomics. 2018, 19, 384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wan, X.; Yang, Z.; Ji, H.; Li, N.; Yang, Z.; Xu, L.; Yang, H.; Wang, Z. Effects of lycopene on abdominal fat deposition, serum lipids levels and hepatic lipid metabolism-related enzymes in broiler chickens. Anim. Biosci. 2021, 34, 385–392. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Liu, L.; Chen, D.; Zhang, X.; Zhou, C.; Gan, Q.; Li, Y.; Wu, Q.; Li, H.; Xu, W.; et al. Functional microRNA screening for dietary vitamin E regulation of abdominal fat deposition in broilers. Br. Poult. Sci. 2020, 61, 344–349. [Google Scholar] [CrossRef]
- He, J.; Chen, D.; Zhang, K.; Yu, B. A high-amylopectin diet caused hepatic steatosis associated with more lipogenic enzymes and increased serum insulin concentration. Br. J. Nutr. 2011, 106, 1470–1475. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.; He, J.; Yu, B.; Yu, J.; Mao, X.B.; Chen, D.W.; Yin, Y.L. The effect of dietary amylose/amylopectin ratio on serum and hepatic lipid content and its molecular mechanisms in growing-finishing pigs. J. Anim. Physiol. Anim. Nutr. 2018, 102, 1657–1665. [Google Scholar] [CrossRef]
- Donsbough, A.L.; Powell, S.; Waguespack, A.; Bidner, T.D.; Southern, L.L. Uric acid, urea, and ammonia concentrations in serum and uric acid concentration in excreta as indicators of amino acid utilization in diets for broilers1. Poult. Sci. 2010, 89, 287–294. [Google Scholar] [CrossRef]
- Zarghi, H.; Golian, A.; Nikbakhtzade, M. Effect of dietary digestible lysine level on growth performance, blood metabolites and meat quality of broilers 23–38 days of age. J. Anim. Physiol. An. Nutr. 2020, 104, 156–165. [Google Scholar] [CrossRef]
- Emadi, M.; Jahanshiri, F.; Kaveh, K.; Hair-Bejo, M.; Ideris, A.; Alimon, A.R. Nutrition and immunity: The effects of the combination of arginine and tryptophan on growth performance, serum parameters and immune response in broiler chickens challenged with infectious bursal disease vaccine. Avian. Pathol. 2011, 40, 63–72. [Google Scholar] [CrossRef]
- Zhu, L.-J.; Liu, Q.-Q.; Wilson, J.D.; Gu, M.-H.; Shi, Y.-C. Digestibility and physicochemical properties of rice (Oryza sativa L.) flours and starches differing in amylose content. Carbohyd. Polym. 2011, 86, 1751–1759. [Google Scholar] [CrossRef]
- Aziz, A.A.; Kenney, L.S.; Goulet, B.; Abdel-Aal, E.-S. Dietary Starch Type Affects Body Weight and Glycemic Control in Freely Fed but Not Energy-Restricted Obese Rats. J. Nutr. 2009, 139, 1881–1889. [Google Scholar] [CrossRef] [Green Version]
- Behall, K.M.; Hallfrisch, J. Plasma glucose and insulin reduction after consumption of breads varying in amylose content. Eur. J. Clin. Nutr. 2002, 56, 913–920. [Google Scholar] [CrossRef] [Green Version]
- Ma, J.; Yang, T.; Yang, M.; Yan, Z.; Zhao, L.; Yao, L.; Chen, J.; Chen, Q.; Tan, B.; Li, T.; et al. Effects of dietary amylose/amylopectin ratio and amylase on growth performance, energy and starch digestibility, and digestive enzymes in broilers. J. Anim. Physiol. Anim. Nutr. 2020, 104, 928–935. [Google Scholar] [CrossRef]
- Deng, J.; Wu, X.; Bin, S.; Li, T.J.; Huang, R.; Liu, Z.; Liu, Y.; Ruan, Z.; Deng, Z.; Hou, Y.; et al. Dietary amylose and amylopectin ratio and resistant starch content affects plasma glucose, lactic acid, hormone levels and protein synthesis in splanchnic tissues. J. Anim. Physiol. Anim. Nutr. 2010, 94, 220–226. [Google Scholar] [CrossRef]
- Yin, F.; Yin, Y.; Zhang, Z.; Xie, M.; Huang, J.; Huang, R.; Li, T. Digestion rate of dietary starch affects the systemic circulation of lipid profiles and lipid metabolism-related gene expression in weaned pigs. Br. J. Nutr. 2011, 106, 369–377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watanabe, G.; Kobayashi, H.; Shibata, M.; Kubota, M.; Kadowaki, M.; Fujimura, S. Reduction in dietary lysine increases muscle free amino acids through changes in protein metabolism in chickens. Poult. Sci. 2020, 99, 3102–3110. [Google Scholar] [CrossRef]
- Li, F.; Yin, Y.; Tan, B.; Kong, X.; Wu, G. Leucine nutrition in animals and humans: mTOR signaling and beyond. Amino. Acids. 2011, 41, 1185–1193. [Google Scholar] [CrossRef] [PubMed]
- Zheng, C.; Yao, J.; Guo, L.; Cao, Y.; Liang, Z.; Yang, X.; Cai, C. Leucine-induced promotion of post-absorptive EAA utilization and hepatic gluconeogenesis contributes to protein synthesis in skeletal muscle of dairy calves. J. Anim. Physiol. An. Nutr. 2019, 103, 705–712. [Google Scholar] [CrossRef] [PubMed]
- Fidalgo da Silva, E.; Fong, J.; Roye-Azar, A.; Nadi, A.; Drouillard, C.; Pillon, A.; Porter, L.A. Beyond Protein Synthesis; The Multifaceted Roles of Tuberin in Cell Cycle Regulation. Front. Cell Dev. Biol. 2021, 9, 806521. [Google Scholar] [CrossRef]
- Thoreen, C.C.; Chantranupong, L.; Keys, H.R.; Wang, T.; Gray, N.S.; Sabatini, D.M. A unifying model for mTORC1-mediated regulation of mRNA translation. Nature 2012, 485, 109–113. [Google Scholar] [CrossRef] [Green Version]
- Wilson, F.A.; Suryawan, A.; Orellana, R.A.; Gazzaneo, M.C.; Nguyen, H.V.; Davis, T.A. Differential effects of long-term leucine infusion on tissue protein synthesis in neonatal pigs. Amino. Acids. 2011, 40, 157–165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoshida, T.; Delafontaine, P. Mechanisms of IGF-1-Mediated Regulation of Skeletal Muscle Hypertrophy and Atrophy. Cells 2020, 9, 1970. [Google Scholar] [CrossRef]
- Bodine, S.C.; Baehr, L.M. Skeletal muscle atrophy and the E3 ubiquitin ligases MuRF1 and MAFbx/atrogin-1. Am. J. Physiol.-Endoc. Metab. 2014, 307, E469–E484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zou, D.; Liu, R.; Shi, S.; Du, J.; Tian, M.; Wang, X.; Hou, M.; Duan, Z.; Ma, Y. BHBA regulates the expressions of lipid synthesis and oxidation genes in sheep hepatocytes through the AMPK pathway. Res. Vet. Sci. 2021, 140, 153–163. [Google Scholar] [CrossRef]
- Qiu, L.; Wu, X.; Chau, J.F.L.; Szeto, I.Y.Y.; Tam, W.Y.; Guo, Z.; Chung, S.K.; Oates, P.J.; Chung, S.S.M.; Yang, J.Y. Aldose Reductase Regulates Hepatic Peroxisome Proliferator-activated Receptor α Phosphorylation and Activity to Impact Lipid Homeostasis. J. Biol. Chem. 2008, 283, 17175–17183. [Google Scholar] [CrossRef] [Green Version]
- Sugden, M.C.; Bulmer, K.; Gibbons, G.F.; Knight, B.L.; Holness, M.J. Peroxisome-proliferator-activated receptor-alpha (PPARalpha) deficiency leads to dysregulation of hepatic lipid and carbohydrate metabolism by fatty acids and insulin. Biochem. J. 2002, 364, 361–368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Starch Sources | Corn | Cassava | Waxy Corn | ||||||
---|---|---|---|---|---|---|---|---|---|
DLys Levels | 1.08 | 1.20 | 1.32 | 1.08 | 1.20 | 1.32 | 1.08 | 1.20 | 1.32 |
Corn | 40.70 | 41.60 | 42.60 | 40.70 | 41.60 | 42.60 | 40.70 | 41.60 | 42.60 |
Corn starch | 15.00 | 15.00 | 15.00 | - | - | - | - | - | - |
Cassava starch | - | - | - | 15.00 | 15.00 | 15.00 | - | - | - |
Waxy corn starch | - | - | - | - | - | - | 15.00 | 15.00 | 15.00 |
Corn gluten meal | 4.57 | 5.00 | 5.00 | 4.57 | 5.00 | 5.00 | 4.57 | 5.00 | 5.00 |
Soybean meal | 33.23 | 31.30 | 29.80 | 33.23 | 31.30 | 29.80 | 33.23 | 31.30 | 29.80 |
Soybean oil | 1.60 | 1.40 | 1.10 | 1.60 | 1.40 | 1.10 | 1.60 | 1.40 | 1.10 |
Calcium phosphate | 1.67 | 1.70 | 1.70 | 1.67 | 1.70 | 1.70 | 1.67 | 1.70 | 1.70 |
Limestone | 1.15 | 1.15 | 1.15 | 1.15 | 1.15 | 1.15 | 1.15 | 1.15 | 1.15 |
Sodium chloride | 0.20 | 0.20 | 0.15 | 0.20 | 0.20 | 0.15 | 0.20 | 0.20 | 0.15 |
Sodium bicarbonate | 0.33 | 0.33 | 0.38 | 0.33 | 0.33 | 0.38 | 0.33 | 0.33 | 0.38 |
Vitamins premix 1 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 |
Mineral premix 2 | 0.20 | 0.20 | 0.20 | 0.20 | 0.20 | 0.20 | 0.20 | 0.20 | 0.20 |
Choline chloride (50%) | 0.16 | 0.16 | 0.16 | 0.16 | 0.16 | 0.16 | 0.16 | 0.16 | 0.16 |
Antioxidant | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 |
Phytase 10,000 U/g | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 |
L-Lysine hydrochloride (98%) | 0.27 | 0.47 | 0.67 | 0.27 | 0.47 | 0.67 | 0.27 | 0.47 | 0.67 |
DL-Methionine (98%) | 0.22 | 0.33 | 0.42 | 0.22 | 0.33 | 0.42 | 0.22 | 0.33 | 0.42 |
L-Threonine (98%) | 0.06 | 0.16 | 0.26 | 0.06 | 0.16 | 0.26 | 0.06 | 0.16 | 0.26 |
L-Arginine hydrochloride (98%) | 0.07 | 0.24 | 0.40 | 0.07 | 0.24 | 0.40 | 0.07 | 0.24 | 0.40 |
L-Tryptophan (98%) | - | - | 0.03 | - | - | 0.03 | - | - | 0.03 |
L-Valine (98%) | - | 0.08 | 0.20 | - | 0.08 | 0.20 | - | 0.08 | 0.20 |
Titanium dioxide | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 |
L-Isoleucine (98%) | - | 0.11 | 0.21 | - | 0.11 | 0.21 | - | 0.11 | 0.21 |
Total | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
Nutritional Level | |||||||||
Metabolizable energy (Mcal/kg) 3 | 3.02 | 2.99 | 2.97 | 3.00 | 2.91 | 2.94 | 2.95 | 3.00 | 2.94 |
CP, % | 20.99 | 21.05 | 21.06 | 20.99 | 21.05 | 21.06 | 20.99 | 21.05 | 21.06 |
Calcium, % | 0.95 | 0.95 | 0.94 | 0.95 | 0.95 | 0.94 | 0.95 | 0.95 | 0.94 |
NPP, % | 0.37 | 0.37 | 0.37 | 0.37 | 0.37 | 0.37 | 0.37 | 0.37 | 0.37 |
Sodium, % | 0.19 | 0.19 | 0.18 | 0.19 | 0.19 | 0.18 | 0.19 | 0.19 | 0.18 |
Chlorine, % | 0.23 | 0.27 | 0.28 | 0.23 | 0.27 | 0.28 | 0.23 | 0.27 | 0.28 |
Digestible lysine, % | 1.08 | 1.20 | 1.32 | 1.08 | 1.20 | 1.32 | 1.08 | 1.20 | 1.32 |
Digestible methionine, % | 0.50 | 0.60 | 0.69 | 0.50 | 0.60 | 0.69 | 0.50 | 0.60 | 0.69 |
Digestible methionine + cystine, % | 0.78 | 0.89 | 0.96 | 0.78 | 0.89 | 0.96 | 0.78 | 0.89 | 0.96 |
Digestible threonine, % | 0.71 | 0.79 | 0.87 | 0.71 | 0.79 | 0.87 | 0.71 | 0.79 | 0.87 |
Digestible valine, % | 0.84 | 0.90 | 0.99 | 0.84 | 0.90 | 0.99 | 0.84 | 0.90 | 0.99 |
Digestible arginine, % | 1.16 | 1.28 | 1.4 | 1.16 | 1.28 | 1.4 | 1.16 | 1.28 | 1.4 |
Digestible isoleucine, % | 0.74 | 0.83 | 0.90 | 0.74 | 0.83 | 0.90 | 0.74 | 0.83 | 0.90 |
Digestible leucine, % | 1.72 | 1.71 | 1.68 | 1.72 | 1.71 | 1.68 | 1.72 | 1.71 | 1.68 |
Digestible tryptophan, % | 0.21 | 0.20 | 0.22 | 0.21 | 0.20 | 0.22 | 0.21 | 0.20 | 0.22 |
Gene | Forward Sequences (5′–3′) | Reverse Sequences (5′–3′) |
---|---|---|
β-actin | GAGAAATTGTGCGTGACATCA | CCTGAACCTCTCATTGCCA |
mTOR | AGTGAGAGTGATGCGGAGAG | GAAACCTTGGACAGCGGG |
S6K1 | GGTGGAGTTTGGGGGCATTA | GAAGAACGGGTGAGCCTAA |
MAFbx | CCTTCACAGACCTGCCATTG | GCAGAGCTTCTTCCACAGCA |
MuRF | GCTGGTGGAGAACATCATCG | GCTGGTGGAGAACATCATCG |
Eif4E | TGGAACCGGAAACCACTCCC | GCGCCCATCTGTTTTGTAGTG |
CathepsinB | TGTGGAAGCGATTTCGGACA | TAACCACCATTGCACCCCAT |
Atrogin-1 | CAGACAGATTCGCAAACGGC | CTCCTTCCGTGGGTAACACC |
m-calpain | TGGAAGCTGCAGGGTTCAAG | GGTTTCCAGCCGAATCAAGC |
AMPK | ATCTGTCTCGCCCTCATCCT | CCACTTCGCTCTTCTTACACCTT |
FABP1 | CAGGAGAGAAGGCCAAGTGTA | TGGTGTCTCCGTTGAGTTCG |
PPARα | AGAGCCACTTGCTATCACCA | GTCATTTCACTTCACGCAGCA |
ACC | TGTTGAAGGTGACCCGACAG | AAGATAGGAGCAGCCCTCCA |
ME | AATACACAGAGGGACGTGGC | GCAACTCCAGGGAACACGTA |
SREBP-1 | GCCATCGAGTACATCCGCTT | GGTCCTTGAGGGACTTGCTC |
CPT1 | GTGAGTGATTGGTGGGAAGA | CCTGTATGGTTGTGGGAGATAAA |
Item | Breast Muscle, % | Abdominal Fat, % | |
---|---|---|---|
Corn starch | 1.08% dLys | 16.52 | 0.92 bc |
1.20% dLys | 16.26 | 0.88 cd | |
1.32% dLys | 17.22 | 0.76 e | |
Cassava starch | 1.08% dLys | 16.48 | 1.00 a |
1.20% dLys | 16.81 | 0.86 d | |
1.32% dLys | 17.09 | 0.67 f | |
Waxy corn starch | 1.08% dLys | 16.49 | 1.01 a |
1.20% dLys | 16.83 | 0.90 bcd | |
1.32% dLys | 16.71 | 0.93 b | |
SEM | 0.16 | 0.01 | |
Main effect | |||
Starch source | Corn starch | 16.66 | 0.85 b |
Cassava starch | 16.79 | 0.84 b | |
Waxy corn starch | 16.68 | 0.95 a | |
dLys level | 1.08% | 16.50 | 0.98 a |
1.20% | 16.63 | 0.88 b | |
1.32% | 17.01 | 0.79 c | |
p value | |||
Starch source | 0.948 | <0.001 | |
dLys level | 0.503 | <0.001 | |
Starch source × dLys level | 0.898 | <0.001 |
Item | Urea Nitrogen, mmol/L | Uric Acid, μmol/L | Total Cholesterol, mmol/L | Triglyceride, mmol/L | |
---|---|---|---|---|---|
Corn starch | 1.08% dLys | 0.617 | 251.33 | 3.14 | 0.363 |
1.20% dLys | 0.783 | 206.33 | 3.13 | 0.335 | |
1.32% dLys | 0.917 | 196.00 | 2.63 | 0.350 | |
Cassava starch | 1.08% dLys | 0.683 | 215.33 | 3.20 | 0.322 |
1.20% dLys | 0.817 | 224.50 | 3.50 | 0.332 | |
1.32% dLys | 0.783 | 229.50 | 3.13 | 0.363 | |
Waxy corn starch | 1.08% dLys | 0.850 | 246.33 | 3.27 | 0.393 |
1.20% dLys | 0.667 | 196.83 | 3.49 | 0.377 | |
1.32% dLys | 0.833 | 188.67 | 3.02 | 0.342 | |
SEM | 0.029 | 8.24 | 0.05 | 0.012 | |
Main effect | |||||
Starch source | Corn starch | 0.772 | 217.89 | 2.97 b | 0.349 |
Cassava starch | 0.761 | 223.11 | 3.28 a | 0.339 | |
Waxy corn starch | 0.783 | 210.61 | 3.26 a | 0.371 | |
dLys level | 1.08% | 0.717 | 204.72 | 3.20 a | 0.359 |
1.20% | 0.756 | 209.22 | 3.37 a | 0.348 | |
1.32% | 0.844 | 237.67 | 2.92 b | 0.352 | |
p value | |||||
Starch source | 0.950 | 0.830 | 0.012 | 0.596 | |
dLys level | 0.180 | 0.230 | 0.001 | 0.932 | |
Starch source × dLys level | 0.163 | 0.569 | 0.568 | 0.791 |
Item | mTOR | S6K1 | Eif4E | MAFbx | MuRF | CathepsinB | Atrogin-1 | M-Calpain | |
---|---|---|---|---|---|---|---|---|---|
Corn starch | 1.08% dLys | 0.95 | 0.85 d | 0.66 b | 1.37 | 1.62 a | 1.46 a | 1.23 a | 1.28 a |
1.20% dLys | 0.88 | 0.86 d | 0.74 b | 1.10 | 0.85 b | 1.13 abc | 1.11 ab | 0.68 c | |
1.32% dLys | 1.01 | 1.41 ab | 1.22 a | 0.69 | 0.70 b | 1.20 abc | 0.44 c | 0.98 bc | |
Cassava starch | 1.08% dLys | 0.74 | 1.10 abcd | 1.16 a | 1.04 | 1.20 ab | 1.12 abc | 0.85 abc | 0.95 bc |
1.20% dLys | 0.76 | 1.42 ab | 1.11 a | 0.93 | 0.93 b | 1.00 c | 0.63 c | 0.82 bc | |
1.32% dLys | 1.14 | 0.90 cd | 0.72 b | 1.25 | 0.93 b | 1.14 abc | 0.77 abc | 0.96 bc | |
Waxy corn starch | 1.08% dLys | 0.72 | 0.97 bcd | 0.73 b | 0.86 | 0.93 b | 0.90 c | 0.80 abc | 0.71 c |
1.20% dLys | 1.07 | 1.33 abc | 1.30 a | 0.86 | 1.57 a | 1.36 ab | 1.16 ab | 1.04 ab | |
1.32% dLys | 1.22 | 1.48 a | 1.28 a | 0.80 | 0.95 b | 1.31 ab | 0.74 bc | 0.75 bc | |
SEM | 0.04 | 0.06 | 0.05 | 0.08 | 0.07 | 0.04 | 0.06 | 0.04 | |
Main effect | |||||||||
Starch source | Corn starch | 0.95 | 1.04 | 0.88 b | 1.05 | 1.06 | 1.26 | 0.93 | 0.98 |
Cassava starch | 0.88 | 1.14 | 1.00 ab | 1.07 | 1.02 | 1.08 | 0.75 | 0.91 | |
Waxy corn starch | 1.00 | 1.26 | 1.10 a | 0.84 | 1.15 | 1.19 | 0.90 | 0.83 | |
dLys level | 1.08% | 0.80 b | 0.98 b | 0.85 b | 1.09 | 1.25 a | 1.16 | 0.96 a | 0.98 |
1.20% | 0.90 b | 1.20 ab | 1.05 a | 0.96 | 1.12 ab | 1.16 | 0.97 a | 0.85 | |
1.32% | 1.12 a | 1.26 a | 1.07 a | 0.91 | 0.86 b | 1.21 | 0.65 b | 0.89 | |
p value | |||||||||
Starch source | 0.370 | 0.180 | 0.037 | 0.422 | 0.635 | 0.173 | 0.289 | 0.215 | |
dLys level | 0.002 | 0.044 | 0.021 | 0.650 | 0.029 | 0.792 | 0.014 | 0.245 | |
Starch source × dLys level | 0.134 | 0.006 | <0.001 | 0.382 | 0.003 | 0.010 | 0.014 | 0.001 |
Item | AMPK | FABP1 | SREBP-1 | ACC | ME | PPARα | CPT1 | |
---|---|---|---|---|---|---|---|---|
Corn starch | 1.08% dLys | 0.54 | 0.40 | 1.82 | 0.64 | 1.43 | 0.45 | 0.40 |
1.20% dLys | 0.74 | 0.79 | 1.02 | 0.77 | 1.53 | 0.66 | 0.55 | |
1.32% dLys | 0.70 | 0.62 | 1.42 | 1.30 | 2.29 | 1.28 | 0.49 | |
Cassava starch | 1.08% dLys | 0.61 | 0.52 | 1.53 | 0.85 | 1.84 | 0.55 | 0.49 |
1.20% dLys | 0.80 | 0.59 | 2.23 | 1.46 | 1.69 | 0.72 | 0.56 | |
1.32% dLys | 0.74 | 0.56 | 1.23 | 0.91 | 1.10 | 1.12 | 0.61 | |
Waxy corn starch | 1.08% dLys | 0.75 | 0.78 | 1.74 | 1.12 | 1.75 | 0.71 | 0.76 |
1.20% dLys | 1.13 | 0.77 | 1.82 | 1.59 | 1.29 | 1.36 | 1.03 | |
1.32% dLys | 1.32 | 0.84 | 2.31 | 1.86 | 1.47 | 1.16 | 0.69 | |
SEM | 0.05 | 0.04 | 0.11 | 0.11 | 0.11 | 0.07 | 0.05 | |
Main effect | ||||||||
Starch source | Corn starch | 0.66 b | 0.60 b | 1.42 | 0.90 b | 1.75 | 0.79 | 0.48 b |
Cassava starch | 0.72 b | 0.55 b | 1.66 | 1.07 ab | 1.54 | 0.80 | 0.55 b | |
Waxy corn starch | 1.06 a | 0.80 a | 1.96 | 1.52 a | 1.50 | 1.08 | 0.83 a | |
dLys level | 1.08% | 0.63 b | 0.57 | 1.70 | 0.87 | 1.67 | 0.57 b | 0.55 |
1.20% | 0.89 a | 0.72 | 1.69 | 1.27 | 1.51 | 0.91 a | 0.71 | |
1.32% | 0.92 a | 0.67 | 1.65 | 1.36 | 1.62 | 1.18 a | 0.60 | |
p value | ||||||||
Starch source | <0.001 | 0.031 | 0.127 | 0.047 | 0.614 | 0.071 | 0.025 | |
dLys level | 0.006 | 0.260 | 0.984 | 0.123 | 0.815 | <0.001 | 0.433 | |
Starch source × dLys level | 0.343 | 0.486 | 0.051 | 0.460 | 0.122 | 0.168 | 0.803 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, C.; Chen, Y.; Yin, D.; Yuan, J. Effects of Different Dietary Starch Sources and Digestible Lysine Levels on Carcass Traits, Serum Metabolites, Liver Lipid and Breast Muscle Protein Metabolism in Broiler Chickens. Animals 2023, 13, 2104. https://doi.org/10.3390/ani13132104
Luo C, Chen Y, Yin D, Yuan J. Effects of Different Dietary Starch Sources and Digestible Lysine Levels on Carcass Traits, Serum Metabolites, Liver Lipid and Breast Muscle Protein Metabolism in Broiler Chickens. Animals. 2023; 13(13):2104. https://doi.org/10.3390/ani13132104
Chicago/Turabian StyleLuo, Caiwei, Yanhong Chen, Dafei Yin, and Jianmin Yuan. 2023. "Effects of Different Dietary Starch Sources and Digestible Lysine Levels on Carcass Traits, Serum Metabolites, Liver Lipid and Breast Muscle Protein Metabolism in Broiler Chickens" Animals 13, no. 13: 2104. https://doi.org/10.3390/ani13132104
APA StyleLuo, C., Chen, Y., Yin, D., & Yuan, J. (2023). Effects of Different Dietary Starch Sources and Digestible Lysine Levels on Carcass Traits, Serum Metabolites, Liver Lipid and Breast Muscle Protein Metabolism in Broiler Chickens. Animals, 13(13), 2104. https://doi.org/10.3390/ani13132104