Comparison of the Effect of Synthetic (Tannic Acid) or Natural (Oak Bark Extract) Hydrolysable Tannins Addition on Fatty Acid Profile in the Rumen of Sheep
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Diets
2.2. Sampling Procedure
2.3. Chemical Analysis of Animal Diet
2.4. Fatty Acid Composition in Animal Diet and Rumen Fluid
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mueller-Harvey, I. Analysis of hydrolysable tannins. Anim. Feed Sci. Technol. 2001, 91, 3–20. [Google Scholar] [CrossRef]
- Patra, A.K.; Saxena, J. Exploitation of dietary tannins to improve rumen metabolism and ruminant nutrition. J. Sci. Food Agric. 2011, 91, 24–37. [Google Scholar] [CrossRef] [PubMed]
- Majewska, M.P.; Pająk, J.J.; Skomiał, J.; Miltko, R.; Kowalik, B. The effect of lingonberry leaves and oak cortex addition to sheep diets on pancreatic enzymes activity. J. Anim. Feed Sci. 2017, 26, 354–358. [Google Scholar] [CrossRef]
- Jones, G.A.; McAllister, T.A.; Muir, A.D.; Cheng, K.J. Effects of sainfoin (Onobrychis viciifolia Scop.) condensed tannins on growth and proteolysis by four strains of ruminal bacteria. Appl. Environ. Microbiol. 1994, 60, 1374–1378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Min, B.R.; Solaiman, S. Comparative aspects of plant tannins on digestive physiology, nutrition and microbial community changes in sheep and goats: A review. J. Anim. Physiol. Anim. Nutr. 2018, 102, 1181–1193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barbehenn, R.V.; Constabel, C.P. Tannins in plant-herbivore interactions. Phytochemistry 2011, 72, 1551–1565. [Google Scholar] [CrossRef] [PubMed]
- Makkar, H.P.S. Review. Effects and fate of tannins in ruminant animals, adaptation to tannins, and strategies to overcome detrimental effects of feeding tannin-rich feeds. Small Rumin. Res. 2003, 49, 241–256. [Google Scholar] [CrossRef]
- Lotfi, R. A commentary on methodological aspects of hydrolysable tannins metabolism in ruminant: A perspective view. Lett. Appl. Microbiol. 2020, 71, 466–478. [Google Scholar] [CrossRef]
- McSweeney, C.S.; Palmer, B.; McNeill, D.M.; Krause, D.O. Microbial interactions with tannins: Nutritional consequences for ruminants. Anim. Feed Sci. Technol. 2001, 91, 83–93. [Google Scholar] [CrossRef]
- Patra, A.K.; Saxena, J. Dietary phytochemicals as rumen modifiers: A review of the effects on microbial population. Antonie Leeuwenhoek 2009, 96, 363–375. [Google Scholar] [CrossRef]
- Vasta, V.; Daghio, M.; Cappuci, A.; Buccioni, A.; Serra, A.; Viti, C.; Mele, M. Invited review: Plant polyphenols and rumen microbiota responsible for fatty acid biohydrogenation, fiber digestion, and methane emission: Experimental evidence and methodological approaches. J. Dairy Sci. 2019, 102, 3781–3804. [Google Scholar] [CrossRef] [PubMed]
- Priolo, A.; Bella, M.; Lanza, M.; Galofaro, V.; Biondi, L.; Barbagallo, D.; Ben Salem, H.; Pennisi, P. Carcass and meat quality of lambs fed fresh sulla (Hedysarum coronarium L.) with or without polyethylene glycol or concentrate. Small Rumin. Res. 2005, 259, 281–288. [Google Scholar] [CrossRef]
- Rana, M.S.; Tyagi, A.; Hossain, S.A.; Tyagi, A.K. Effect of tanniniferous Terminalia chebula extract on rumen biohydrogenation, ∆9-desaturase activity, CLA content and fatty acid composition in longissimus dorsi muscle of kids. Meat Sci. 2012, 90, 558–563. [Google Scholar] [CrossRef] [PubMed]
- Frutos, P.; Hervás, G.; Natalello, A.; Luciano, G.; Fondevila, M.; Priolo, A. Ability of tannins to modulate ruminal lipid metabolism and milk and meat fatty acid profiles. Anim. Feed Sci. Technol. 2020, 269, 114623. [Google Scholar] [CrossRef]
- Vasta, V.; Bessa, R.J.B. Manipulating Ruminal Biohydrogenation by the Use of Plants Bioactive Compounds. In Dietary Phytochemicals and Microbes; Patra, A.K., Ed.; Springer Science + Business Media: Dordrecht, The Netherlands, 2012; pp. 263–284. [Google Scholar]
- Morales, R.; Ungerfeld, E.M. Use of tannins to improve fatty acids profile of meat and milk quality in ruminants: A review. Chilean J. Agric. Res. 2015, 75, 239–248. [Google Scholar] [CrossRef] [Green Version]
- Manso, T.; Bodas, R.; Castro, T.; Jimeno, V.; Mantecon, A.R. Animal performance and fatty acid composition of lambs fed with different vegetable oils. Meat Sci. 2008, 83, 511–516. [Google Scholar] [CrossRef]
- Vasta, V.; Makkar, H.P.S.; Mele, M.; Priolo, A. Ruminal biohydrogenation as affected by tannins in vitro. Br. J. Nutr. 2009, 102, 82–92. [Google Scholar] [CrossRef] [Green Version]
- Khiaosa-Ard, R.; Bryner, S.F.; Scheeder, M.R.L.; Wettstein, H.-R.; Kreuzer, M.; Soliva, C.R. Evidence for the inhibition of the terminal step of ruminal α-linolenic acid biohydrogenation by condensed tannins. J. Dairy Sci. 2009, 92, 177–188. [Google Scholar] [CrossRef] [Green Version]
- Guerreiro, O.; Alves, S.P.; Costa, M.; Cabo, Â.; Duarte, M.F.; Jerónimo, E.; Bessa, R.J.B. Effects of extracts obtained from Cistus ladanifer L. on in vitro rumen biohydrogenation. Anim. Feed Sci. Technol. 2016, 219, 304–312. [Google Scholar] [CrossRef]
- Costa, M.; Alves, S.P.; Cabo, Â.; Guerreiro, O.; Stilwell, G.; Dentinho, M.T.; Bessa, R.J.B. Modulation of in vitro rumen biohydrogenation by Cistus ladanifer tannins compared with other tannins sources. J. Sci. Food Agric. 2017, 97, 629–635. [Google Scholar] [CrossRef]
- Elansary, H.O.; Szopa, A.; Kubica, P.; Ekiert, H.; Mattar, M.A.; Al-Yafrasi, M.A.; El-Ansary, D.O.; El-Abedin, T.K.Z.; Yessoufou, K. Polyphenol profile and pharmaceutical potential of Quercus spp. bark extracts. Plants 2019, 8, 486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duda-Chodak, A.; Tarko, T.; Rus, M. Antioxidant activity and total polyphenol content of selected herbal medicine products used in Poland. Herb. Pol. 2011, 57, 48–61. [Google Scholar]
- Majewska, M.P.; Kowalik, B. Growth performance, carcass characteristics, fatty acid composition, and blood biochemical parameters of lamb fed diet with the addition of lingonberry leaves and oak bark. Eur. J. Lipid Sci. Technol. 2019, 122, 1900273. [Google Scholar] [CrossRef]
- Majewska, M.P.; Miltko, R.; Bełżecki, G.; Kędzierska, A.; Kowalik, B. Protozoa population and carbohydrate fermentation in sheep fed diet with different plant additives. Anim. Biosci. 2021, 34, 1146–1156. [Google Scholar] [CrossRef] [PubMed]
- Singh, B.; Bhat, T.K.; Sharma, O.P. Biodegradation of tannic acid in an in vitro ruminal system. Livest. Prod. Sci. 2001, 68, 259–262. [Google Scholar] [CrossRef]
- Silanikove, N.; Perevolotsky, A.; Provenza, F.D. Use of tannin-binding chemicals to assay for tannins and their negative postingestive effects in ruminants. Anim. Feed Sci. Technol. 2001, 91, 69–81. [Google Scholar] [CrossRef]
- Peréz, V.; Doce, R.R.; García-Pariente, C.; Hervás, G.; Ferrera, M.C.; Mantecón, Á.R.; Frutos, P. Oak leaf (Quercus pyrenaica) poisoning in cattle. Res. Vet. Sci. 2011, 91, 269–277. [Google Scholar] [CrossRef]
- Rojas-Román, L.A.; Castro-Pérez, B.I.; Estrada-Angulo, A.; Angulo-Montoya, C.; Yocupicio-Rocha, J.A.; López-Soto, M.A.; Barreras, A.; Zinn, R.A.; Plascencia, A. Influence of long-term supplementation of tannins on growth performance, dietary net energy and carcass characteristics: Finishing lambs. Small Rumin. Res. 2017, 153, 137–141. [Google Scholar] [CrossRef]
- Majewska, M.P.; Miltko, R.; Bełżecki, G.; Skomiał, J.; Kowalik, B. Supplementation of rapeseed and linseed oils to sheep rations: Effects on ruminal fermentation characteristics and protozoal populations. Czech J. Anim. Sci. 2017, 62, 527–538. [Google Scholar] [CrossRef] [Green Version]
- AOAC. Association of Official Analytical Chemists, Official Methods of Analysis, 18th ed.; AOAC: Arlington, VA, USA, 2011. [Google Scholar]
- Folch, J.; Lees, M.; Sloane Stanley, G.H. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef]
- Czauderna, M.; Kowalczyk, J.; Krajewska, K.A.; Rozbicka, A.J.; Michalski, J.P. Dietary selenite and conjugated linoleic acid isomers influence fatty acid concentrations in the liver and femoral muscles of rats. J. Anim. Feed Sci. 2009, 18, 564–581. [Google Scholar] [CrossRef]
- IZ PIB-INRA. Normy żywienia przeżuwaczy. In Wartość pokarmowa francuskich i krajowych pasz dla przeżuwaczy (in Polish); Strzetelski, J., Ed.; Instytut Zootechniki–Państwowy Instytut Badawczy: Kraków, Poland, 2009. [Google Scholar]
- Szumacher-Strabel, M. The role of animal feeding in obtaining animal products rich in health promoting agents. Kosmos 2010, 59, 375–383. [Google Scholar]
- Vasta, V.; Yáñez-Ruiz, D.R.; Mele, M.; Serra, A.; Luciano, G.; Lanza, M.; Biondi, L.; Priolo, A. Bacterial and protozoa communities and fatty acid profile in the rumen of sheep fed a diet containing added tannins. Appl. Environ. Microbiol. 2010, 76, 2549–2555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buccioni, A.; Pauselli, M.; Viti, C.; Minieri, S.; Pallara, G.; Roscini, V.; Rapaccini, S.; Trabalza Marinucci, M.; Lupi, P.; Conte, G.; et al. Milk fatty acid composition, rumen microbial population and animal performances in response to diets rich in linoleic acid supplemented with chestnut or quebracho tannins in dairy ewes. J. Dairy Sci. 2015, 98, 1145–1156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skene, I.K.; Brooker, J.D. Characterization of tannin acylhydrolase activity in the ruminal bacterium Selenomonas Ruminantium. Anaerobe 1995, 1, 321–327. [Google Scholar] [CrossRef] [PubMed]
- Costa, M.; Alves, S.P.; Cappucci, A.; Cook, S.R.; Duarte, A.; Caldeira, R.M.; McAllister, T.A.; Bessa, R.J.B. Effects of condensed and hydrolyzable tannins on rumen metabolism with emphasis on the biohydrogenation of unsaturated fatty acids. J. Agric. Food Chem. 2018, 66, 3367–3377. [Google Scholar] [CrossRef]
- British Pharmaceutical Codex. An Imperial Dispensatory for the Use of Medical Practitioners and Pharmacists; Pharmaceutical Society of Great Britain, Ohio State University: Columbus, OH, USA, 1911. [Google Scholar]
- Smeriglio, A.; Barreca, D.; Bellocco, E.; Trombetta, D. Proanthocyanidins and hydrolysable tannins: Occurrence, dietary intake and pharmacological effects. Brit. J. Pharmacol. 2017, 174, 1244–1262. [Google Scholar] [CrossRef] [Green Version]
- Mosley, E.M.; Powell, G.L.; Riley, M.B.; Jenkins, T.C. Microbial biohydrogenation of oleic acid to trans isomers in vitro. J. Lipid Res. 2002, 43, 290–296. [Google Scholar] [CrossRef]
- Carreño, D.; Hervás, G.; Toral, P.G.; Belenguer, A.; Frutos, P. Ability of different types and doses of tannin extracts to modulate in vitro ruminal biohydrogenation in sheep. Anim. Feed Sci. Technol. 2015, 202, 42–51. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, K. Occurrence of conjugated linoleic acid in ruminant products and its physiological functions. Anim. Sci. J. 2005, 76, 291–303. [Google Scholar] [CrossRef]
- Al-Jumaili, W.S.; Goh, Y.M.; Jafari, S.; Rajion, M.A.; Jahromi, M.F.; Ebrahimi, M. An in vitro study on the ability of tannic acid to inhibit methanogenesis and biohydrogenation of C18 PUFA in the rumen of goats. Ann. Anim. Sci. 2017, 17, 491–502. [Google Scholar] [CrossRef] [Green Version]
- Francisco, A.E.; Santos-Silva, J.M.; Portugal, A.P.V.; Alves, S.P.; Bessa, R.J.B. Relationship between rumen ciliate protozoa and biohydrogenation fatty acid profile in rumen and meat of lambs. PLoS ONE 2019, 14, e0221996. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lourenҫo, M.; Ramos-Morales, E.; Wallace, R.J. The role of microbes in rumen lipolysis and biohydrogenation and their manipulation. Animal 2010, 4, 1008–1023. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cabiddu, A.; Molle, G.; Decandia, M.; Spada, S.; Fiori, M.; Piredda, G.; Addis, M. Responses to condensed tannins of flowering sulla (Hedysarum coronarium L.) grazed by dairy sheep. Part 2: Effects on milk fatty acid profile. Livest. Sci. 2009, 123, 230–240. [Google Scholar] [CrossRef]
- Vahmani, P.; Ponnampalam, E.N.; Kraft, J.; Mapiye, C.; Bermingham, E.N.; Watkins, P.J.; Proctor, S.D.; Dugan, M.E.R. Bioactivity and health effects of ruminant meat lipids. Invited Review. Meat Sci. 2020, 165, 108114. [Google Scholar] [CrossRef] [PubMed]
Item | CON | OAK | TAN |
---|---|---|---|
Components (g/kg DM) | |||
Meadow hay | 588 | 581 | 586 |
Barley meal | 294 | 290 | 293 |
Soybean meal | 98.0 | 96.8 | 97.7 |
Polfamix 2 | 19.6 | 19.4 | 19.5 |
Oak bark extract | - | 12.6 | - |
Tannic acid | - | - | 3.91 |
Chemical composition (g/kg DM) | |||
Dry matter | 887 | 887 | 887 |
Crude protein 3 | 110 | 109 | 109 |
Crude fat | 21.8 | 21.8 | 21.7 |
Starch | 222 | 219 | 221 |
NDF | 442 | 436 | 440 |
ADF | 371 | 366 | 369 |
ADL | 35.7 | 35.4 | 35.6 |
Crude ash | 34.4 | 34.2 | 34.3 |
Nutrient intake (g/d) | |||
Dry matter | 905 | 917 | 908 |
Crude protein | 112 | 112 | 112 |
Crude fat | 22.2 | 22.5 | 22.2 |
Starch | 226 | 226 | 226 |
NDF | 451 | 451 | 451 |
ADF | 378 | 378 | 378 |
ADL | 36.4 | 36.5 | 36.4 |
Crude ash | 35.1 | 35.3 | 35.1 |
Item | CON | OAK | TAN |
---|---|---|---|
FA composition (mg FAME/kg additive) 1 | |||
C14:0 | - | 25.4 | 15.8 |
C16:0 | - | 400 | 117 |
C16:1 c9 | - | - | - |
C18:0 | - | 228 | 201 |
C18:1 c9 | - | 111 | - |
C18:2 c9c12 | - | 439 | - |
C18:3 c9c12c15 | - | - | - |
C20:0 | - | - | - |
C20:3 n-6 | - | - | - |
C24:0 | - | - | - |
Total FA | - | 1203 | 334 |
FA composition (mg FAME/kg diet) 2 | |||
C14:0 | 33.8 | 34.1 | 33.9 |
C16:0 | 728 | 733 | 728 |
C16:1 c9 | 6.99 | 6.99 | 6.99 |
C18:0 | 239 | 242 | 240 |
C18:1 c9 | 107 | 109 | 107 |
C18:2 c9c12 | 739 | 744 | 739 |
C18:3 c9c12c15 | 694 | 694 | 694 |
C20:0 | 11.8 | 11.8 | 11.8 |
C20:3 n-6 | 13.3 | 13.3 | 13.3 |
C24:0 | 4.73 | 4.73 | 4.73 |
Total FA | 2 578 | 2593 | 2579 |
Fatty Acid | Diet (D) | Sampling Time (T) | SEM | p-Value | |||||
---|---|---|---|---|---|---|---|---|---|
0 h | 2 h | 4 h | 8 h | T | D | T × D | |||
C14:0 | CON | 4.40 | 3.37 | 2.96 | 3.10 | 0.121 | <0.001 | 0.798 | 0.556 |
OAK | 3.77 | 3.03 | 3.14 | 2.84 | |||||
TAN | 3.90 | 3.09 | 2.64 | 3.09 | |||||
C14:1 | CON | 3.18 | 2.47 | 2.97 | 3.17 | 0.096 | <0.001 | 0.563 | 0.022 |
OAK | 3.64 a | 2.09 b | 2.31 b | 2.52 b | |||||
TAN | 3.05 | 2.33 | 2.47 | 3.00 | |||||
C16:0 | CON | 52.4 | 41.7 | 45.4 | 48.7 | 0.04 | 0.056 | 0.414 | 0.928 |
OAK | 46.6 | 34.3 | 34.8 | 45.2 | |||||
TAN | 52.2 | 43.8 | 48.1 | 47.8 | |||||
C16:1 | CON | 1.42 | 1.32 | 0.57 | 0.92 | 0.044 | 0.098 | 0.809 | 0.006 |
OAK | 1.14 | 0.80 | 1.09 | 0.80 | |||||
TAN | 1.78 | 1.74 | 1.03 | 1.10 | |||||
C18:0 | CON | 79.2 | 58.9 | 65.4 | 69.5 | 2.36 | 0.056 | 0.538 | 0.949 |
OAK | 70.8 | 48.6 | 52.3 | 66.4 | |||||
TAN | 77.0 | 51.8 | 57.2 | 61.8 | |||||
C18:1 t9 | CON | 6.57 | 5.31 | 5.83 | 6.16 | 0.150 | <0.001 | <0.001 | 0.734 |
OAK | 5.51 | 3.97 | 4.10 | 4.65 | |||||
TAN | 5.95 | 4.38 | 4.45 | 4.91 | |||||
C18:1 c9 | CON | 12.8 | 12.4 | 10.9 | 9.30 | 0.464 | 0.225 | 0.564 | 0.215 |
OAK | 9.70 | 8.98 | 8.93 | 11.5 | |||||
TAN | 13.5 | 12.2 | 10.9 | 10.3 | |||||
C18:2 c9c12 | CON | 10.9 a,b | 10.8 a,b | 14.9 a | 9.42 b,x | 0.050 | <0.001 | 0.045 | <0.001 |
OAK | 8.37 | 9.84 | 12.0 | 10.8 x | |||||
TAN | 9.76 a | 12.1 a | 14.1 a | 23.4 b,y | |||||
CLA c9t11 | CON | 0.88 | 1.00 | 0.96 | 0.92 | 0.056 | 0.001 | 0.223 | 0.003 |
OAK | 1.46 a | 0.42 b | 0.74 b | 0.88 a,b | |||||
TAN | 1.22 a,b | 0.90 a | 0.59 a,b | 1.35 b | |||||
C18:3 c9c12c15 | CON | 1.50 | 1.63 | 1.45 x,y | 1.30 | 0.063 | 0.325 | 0.008 | 0.086 |
OAK | 1.59 | 1.02 | 1.13x | 1.48 | |||||
TAN | 1.78 | 1.53 | 2.05 y | 2.01 | |||||
C20:0 | CON | 1.00 | 0.63 | 0.82 | 0.68 | 0.032 | 0.201 | 0.844 | 0.889 |
OAK | 0.97 | 0.65 | 0.70 | 0.90 | |||||
TAN | 1.39 | 0.62 | 0.74 | 0.82 | |||||
C20:1 | CON | 0.95 a | 0.49 b | 0.76 a,b | 0.86 a | 0.035 | <0.001 | 0.134 | <0.001 |
OAK | 0.68 | 0.77 | 0.94 | 0.95 | |||||
TAN | 1.04 a | 0.47 b | 0.57 b,c | 0.83 a,c | |||||
C20:3 n-6 | CON | 0.45 a,x | 0.84 b,x | 0.36 a | 0.54 a | 0.018 | 0.002 | 0.021 | <0.001 |
OAK | 0.63 a,b,x,y | 0.40 a,y | 0.52 a,b | 0.76 b | |||||
TAN | 0.87 a,y | 0.54 b,y | 0.56 b | 0.60 ab | |||||
C20:4 | CON | 0.68 x | 0.39 | 0.60 | 0.73 x,y | 0.036 | 0.668 | 0.001 | <0.001 |
OAK | 0.54 x | 1.00 | 0.90 | 0.62 x | |||||
TAN | 0.96 y | 0.89 | 0.70 | 1.01 y | |||||
C24:0 | CON | 0.92 a,b | 0.61 a | 0.65 a | 0.99 b | 0.032 | 0.013 | 0.449 | 0.001 |
OAK | 0.81 | 1.13 | 0.95 | 0.93 | |||||
TAN | 0.83 | 1.03 | 0.83 | 1.04 | |||||
Total FA | CON | 177 | 142 | 155 | 156 | 4.5 | <0.001 | 0.441 | 0.904 |
OAK | 156 | 117 | 125 | 151 | |||||
TAN | 175 | 137 | 147 | 163 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Majewska, M.P.; Miltko, R.; Bełżecki, G.; Kędzierska, A.; Kowalik, B. Comparison of the Effect of Synthetic (Tannic Acid) or Natural (Oak Bark Extract) Hydrolysable Tannins Addition on Fatty Acid Profile in the Rumen of Sheep. Animals 2022, 12, 699. https://doi.org/10.3390/ani12060699
Majewska MP, Miltko R, Bełżecki G, Kędzierska A, Kowalik B. Comparison of the Effect of Synthetic (Tannic Acid) or Natural (Oak Bark Extract) Hydrolysable Tannins Addition on Fatty Acid Profile in the Rumen of Sheep. Animals. 2022; 12(6):699. https://doi.org/10.3390/ani12060699
Chicago/Turabian StyleMajewska, Małgorzata P., Renata Miltko, Grzegorz Bełżecki, Aneta Kędzierska, and Barbara Kowalik. 2022. "Comparison of the Effect of Synthetic (Tannic Acid) or Natural (Oak Bark Extract) Hydrolysable Tannins Addition on Fatty Acid Profile in the Rumen of Sheep" Animals 12, no. 6: 699. https://doi.org/10.3390/ani12060699
APA StyleMajewska, M. P., Miltko, R., Bełżecki, G., Kędzierska, A., & Kowalik, B. (2022). Comparison of the Effect of Synthetic (Tannic Acid) or Natural (Oak Bark Extract) Hydrolysable Tannins Addition on Fatty Acid Profile in the Rumen of Sheep. Animals, 12(6), 699. https://doi.org/10.3390/ani12060699